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Abstract:

 This expository article explores the connection between the polar duality from polyhedral geometry and mirror symmetry from mathematical physics and algebraic geometry. Topics discussed include duality of polytopes and cones as well as the famous quintic threefold and the toric variety of a reflexive polytope.
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1. Introduction

In 1991, a group of physicists astounded the algebraic geometry community with conjectures for the number of rational curves of degree d lying on the famous quintic threefold, a variety of dimension three and degree five in 4-dimensional projective space. The key tool used in the paper [1] is mirror symmetry, which is an isomorphism of quantum field theories that turns a difficult counting problem on the quintic threefold into a much simpler problem on the so-called quintic mirror.

All of this seems far removed from the polar duality of polytopes, but as we will see in this article, there is a surprisingly deep connection based on the reflexive polytopes introduced by Batyrev [2] in the context of toric geometry.



2. Reflexive Polytopes

A polytope [image: there is no content] is the convex hull of finitely many points in [image: there is no content]. If [image: there is no content], then its polar or dual is



[image: there is no content]={u∈[image: there is no content]∣u·m≥-1forallm∈P}.








It is well-known that [image: there is no content] is a polytope with 0∈Int([image: there is no content]) and ([image: there is no content])∘=P (see, for instance, ([3] 2.3)).
Figure 1 shows a classic example of a polytope and its dual in three dimensions. The polytopes relevant to mirror symmetry have dimension four. In Example 2.1, we give the polytopes that underlie the quintic threefold and its mirror.

Figure 1. A cube [image: there is no content] and its dual octahedron [image: there is no content]. Reprinted from [4] (p. 81) with permission of the American Mathematical Society.
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Example 2.1. Consider the Standard 4-Simplex



Δ4=Conv(0,e1,e2,e3,e4)={(m1,m2,m3,m4)∈[image: there is no content]∣mi≥0,m1+m2+m3+m4≤1},








where [image: there is no content] are the standard basis of [image: there is no content] and “Conv” denotes convex hull. Then 0 is an interior point of the polytope


[image: there is no content]








and the dual of P is


[image: there is no content]=Conv(e1,e2,e3,e4,(-1,-1,-1,-1)).








As polytopes, P and [image: there is no content] are simplices. But in terms of lattice points (points with integer coordinates, i.e., [image: there is no content]4⊆[image: there is no content]), there is a substantial difference:


	P has 125 lattice points, i.e., [image: there is no content].


	[image: there is no content] has 6 lattice points, i.e., |[image: there is no content]∩[image: there is no content]4|=6.




We will see later that P and [image: there is no content] give rise to mirror manifolds where a hard problem on P transforms into a simpler problem on [image: there is no content] because of the small number of lattice points.
This example suggests that lattice points have an important role to play. In general, a lattice polytope or integer polytope is the convex hull of a finite subset of [image: there is no content]⊆[image: there is no content]. The book [5] gives a nice introduction to lattice polytopes and their associated counting problems.

The cube P in Figure 1 becomes a lattice polytope when we choose coordinates so that its vertices are [image: there is no content] for the standard basis [image: there is no content] of [image: there is no content]. Then [image: there is no content] is the lattice polytope with vertices [image: there is no content], [image: there is no content], [image: there is no content].

In general, polar duality interacts poorly with lattice polytopes—what happened in Figure 1 is rather special. For example, if we double the size of the cube to get [image: there is no content], then its dual is



(2P)∘=12[image: there is no content],








which fails to be a lattice polytope. This leads to the following definition, due to Batyrev [2].
Definition 2.1. A lattice polytope P is reflexive if [image: there is no content] and [image: there is no content] is also a lattice polytope.

Figure 2 shows a less obvious example of a reflexive polytope.

Figure 2. A reflexive polytope in [image: there is no content] with 14 vertices. Reprinted from [6] (p. 180) with permission of the American Mathematical Society.
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If P is reflexive, then it is straightforward to show that 0 is the unique interior lattice point of P. For another way to see what reflexive means, we first recall another description of the dual polytope. Given an arbitrary polytope with [image: there is no content], every facet F of P has a unique inward-pointing facet normal [image: there is no content] with the property that



F={m∈P∣m·[image: there is no content]=-1}.








Then one can show that


[image: there is no content]=Conv([image: there is no content]∣FisafacetofP).








Hence, a lattice polytope P with [image: there is no content] is reflexive if and only if [image: there is no content]∈[image: there is no content] for all facets F of P.
Classifying reflexive polytopes in [image: there is no content] is an important problem because of their relevance to mirror symmetry. By “classify”, we mean up to a lattice equivalence of [image: there is no content], i.e., up to coordinate change by an element of [image: there is no content]. In dimension two, the 16 classes of reflexive polygons are shown in Figure 3. It is a fun exercise to match polygons with their duals. In some cases, one needs to change coordinates by an element of [image: there is no content] to identify the dual. Some of the polygons are self-dual up to [image: there is no content].

Figure 3. The 16 classes of reflexive lattice polygons in [image: there is no content]. The open circles represent the origin and the labels record the number of boundary lattice points. Reprinted from [4] (p. 382) with permission of the American Mathematical Society.
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In dimension three, there are 4319 classes of reflexive polytopes, and such number balloons to 473,800,776 in dimension four, an impressive calculation done by Kreuzer and Skarke [7] in 2002. As we will soon see, 4-dimensional reflexive polytopes are important in mirror symmetry.





3. Mirror Symmetry

String theory from mathematical physics is based on a 10-dimensional universe, where four dimensions are the familiar space-time of general relativity and the remaining six dimensions are where the quantum effects take place. The Elegant Universe by Greene [8] describes this model of the universe for a general audience.

The 6-dimensional quantum piece is a (very small) compact manifold, about the size of Planck’s constant. To make this manifold support the kind of quantum field theory required by string theory, the manifold needs to have a complex structure with a trivial canonical bundle and vanishing first Betti number. Six real dimensions mean three complex dimensions, and the complex manifolds that arise are called Calabi–Yau threefolds. We recommend The Shape of Inner Space by Yau and Nadis [9] for a non-technical account of these spaces.

Example 3.1. The simplest Calabi–Yau threefold is the quintic threefold. We start with [image: there is no content], the 4-dimensional projective space over the complex numbers. Points in [image: there is no content] have homogeneous coordinates[image: there is no content], where the coordinates never vanish simultaneously and two sets of coordinates give the same point if and only if they differ by a nonzero scalar multiple. A homogeneous equation



F[image: there is no content]=0,deg(F)=5,








defines the quintic threefold V⊆[image: there is no content]. For most choices of F, V is smooth, i.e., is a manifold. Then having degree five guarantees that V is a Calabi–Yau threefold.
Mirror symmetry involves some sophisticated physics and algebraic geometry. The string theories used in mirror symmetry are superconformal field theories (SCFTs) with twisted versions called the A-model and the B-model. The SCFT on a Calabi–Yau threefold V depends on two types of parameters:


	Kähler moduli parameters that encode the metric on V and control the A-model.


	Complex moduli parameters that encode the complex structure of V and control the B-model.




The number of parameters of each type is determined by the Hodge numbers of V, defined by



[image: there is no content]



(1)




In particular, [image: there is no content] is the number of Kähler parameters and [image: there is no content] is the number of complex parameters.
The central idea of mirror symmetry is that given a family of Calabi–Yau threefolds V, there should be a mirror family of Calabi–Yau threefolds [image: there is no content] such that the corresponding SCFTs are isomorphic in a way that interchanges the A- and B-models and hence interchanges Kähler and complex moduli. In particular, V and [image: there is no content] satisfy



[image: there is no content]([image: there is no content])=[image: there is no content](V)and[image: there is no content]([image: there is no content])=[image: there is no content](V).



(2)




The first explicit example of mirror symmetry involves the quintic threefold V⊆[image: there is no content] and its mirror, which is defined as follows.

Example 3.2. To construct the quintic mirror, we begin with the threefold in W⊆[image: there is no content] defined by



x05+x15+x25+x35+x45+ψx0x1x2x3x4=0,ψ∈C\{0}.



(3)




Let [image: there is no content] and note that the group


G={(ζa0,ζa1,ζa2,ζa3,ζa4)∣a0+a1+a2+a3+a4≡0mod5}








acts on W. The quotient [image: there is no content] is not smooth, so one needs to do a resolution of singularities to produce a smooth variety. If done carefully, the result is Calabi–Yau. This is the quintic mirror [image: there is no content].
The single parameter ψ in the above equation gives the complex moduli parameter [image: there is no content], so that [image: there is no content]([image: there is no content])=1. This is consistent with Equation (2) since the quintic threefold V has [image: there is no content].

As explained in the 1991 paper [1], we have the following miracle:


	Rational curves on V of various degrees are important in enumerative algebraic geometry. These can be encoded into Gromov–Witten invariants that are intimately related to Kähler moduli and the A-model of V.


	By mirror symmetry and the mirror map, we can switch to the B-model of [image: there is no content], where the complex moduli and B-model can be studied by the differential equations that arise in the variation of Hodge structure on [image: there is no content]. This is straightforward to study since [image: there is no content]([image: there is no content])=1.


	The result is an explicit formula for all of the Gromov–Witten invariants! A careful description of the formula is appears in ([10] Chapter 2).




This formula astounded the algebraic geometers: a far-out theory from physics turns a hard problem in enumerative algebraic geometry into a solvable problem in Hodge theory. Mind blowing!

Since SCFTs are not mathematically rigorous, the formulas in [1] were regarded as conjectures by the mathematics community. These formulas are now theorems (see ([10] Chapter 11) for proofs and references to the original papers), though the full story of the relation between rational curves on the quintic threefold and Gromov–Witten invariants is still not fully understood.



4. Mirror Symmetry and Reflexive Polytopes

After the quintic threefold, many other examples of mirror manifolds were discovered using weighted projective spaces. However, there were some examples where the mirrors seemed to be missing. This was rectified in 1994 when Batyrev [2] pointed out that a 4-dimensional reflexive polytope gives a pair of Calabi–Yau threefolds that are natural candidates for a mirror pair.

An elementary approach to the transition from 4-dimensional reflexive polytopes to Calabi–Yau threefolds can be found in the paper [11], which is accessible to undergraduates. A more sophisticated approach uses the theory of toric varieties, which is an important part of modern algebraic geometry. A brief introduction to toric varieties can be found in [12], while [4] gives a comprehensive treatment.

For us, the starting point is that a lattice polytope [image: there is no content] gives a d-dimensional toric variety [image: there is no content] as follows. Let [image: there is no content] be coordinates on the torus[image: there is no content], where [image: there is no content]. Then a lattice point m=(a1,⋯,ad)∈[image: there is no content] gives the Laurent monomial



[image: there is no content]








Negative exponents are allowed, but this is fine since [image: there is no content]. If P has “enough lattice points” (this can be made precise) and P∩[image: there is no content]={m0,⋯,ms}, then the map


t=(t1,⋯,td)∈[image: there is no content]⟼(tm0,⋯,tms)∈Ps








is injective, and the toric variety [image: there is no content]⊆Ps is defined to be the closure of the image. Note that [image: there is no content] contains the torus [image: there is no content], hence the name “toric variety”. (When P does not have enough lattice points, one uses [image: there is no content] for [image: there is no content] in [image: there is no content]—see [4] §2.2 and §2.3.)
Besides helping to define [image: there is no content], the lattice points of P also give some interesting hypersurfaces of [image: there is no content]. Namely, if P∩[image: there is no content]={m0,⋯,ms} as above, then the equation



c0tm0+⋯+cstms=0



(4)




defines a hypersurface in [image: there is no content]. Its closure in [image: there is no content] is the desired hypersurface V⊆[image: there is no content].
Example 4.1. When we apply this process to the polytope [image: there is no content] from Example 2.1, we get [image: there is no content]=[image: there is no content], and the hypersurface is our friend the quintic threefold V⊆[image: there is no content].

If instead we use [image: there is no content]=Conv(e1,e2,e3,e4,(-1,-1,-1,-1)), then we get the toric variety X[image: there is no content]=[image: there is no content]/G, where G is the group defined in Example 3.2. The six lattice points of [image: there is no content] consist of the origin and the five vertices, so that Equation (4) reduces to



c0+c1t1+c2t2+c3t3+c4t4+c5t1-1t2-1t3-1t4-1=0.








When we apply the homogenization process described in ([12] Section 13) and ([4] §5.4), this equation becomes


c0x05+c1x15+c2x25+c3x35+c4x45+c5x0x1x2x3x4=0.








Rescaling the coordinates [image: there is no content] appropriately, one can assume that [image: there is no content]. Hence we recover the Equation (3), which here defines the hypersurface of X[image: there is no content]=[image: there is no content]/G that was denoted [image: there is no content] in Example 3.2. As explained in that example, this gives the quintic mirror [image: there is no content] after a suitable resolution of singularities.
It is satisfying to see how P and [image: there is no content] lead naturally to the quintic threefold and its mirror. In 1994, Batyrev [2] (see also ([10] Section 4.1)) proved the following general results:


	A 4-dimensional reflexive polytope P gives a hypersurface in [image: there is no content] that becomes a Calabi–Yau threefold V after a suitable resolution of singularities.


	The dual polytope [image: there is no content] gives a Calabi–Yau threefold [image: there is no content], and the Hodge numbers of V and [image: there is no content] are related by



[image: there is no content]([image: there is no content])=[image: there is no content](V)and[image: there is no content]([image: there is no content])=[image: there is no content](V),








as required by mirror symmetry.




In 1995, the paper [13] used reflexive polytopes to supply the “missing mirrors” mentioned at the beginning of this section. This was first clear indication of the deep relation between mirror symmetry and 4-dimensional reflexive polytopes. However, there are two things to keep in mind:


	Not all Calabi–Yau threefolds arise from Batyrev’s construction. We will learn more about this later in the paper.


	It is still an open question in physics as to whether V and [image: there is no content] give isomorphic SCFTs when P is an arbitrary 4-dimensional reflexive polytope. The evidence is compelling, but an actual isomorphism is only known for certain special cases, such as the quintic threefold and its mirror.






5. Duality and Symmetry in Mirror Symmetry

Given the themes of duality and symmetry, it makes sense to say more about what they mean in the context of mirror symmetry. The duality aspect is clear, given how P and [image: there is no content] give a mirror pair V and [image: there is no content]. But what about symmetry?

When considering a smooth projective threefold V, its Hodge numbers [image: there is no content] from Equation (1) are often represented in the Hodge diamond shown in Figure 4.

Figure 4. The Hodge diamond of an arbitrary smooth projective threefold (a); the Hodge diamond of a Calabi–Yau threefold (b).
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In this figure, the Hodge diamond on the right follows from standard facts about smooth projective threefolds and the definition of Calabi–Yau. In particular, the Hodge diamond of a Calabi–Yau threefold is completely determined by [image: there is no content] and [image: there is no content]. Since mirror symmetry gives



[image: there is no content]([image: there is no content])=[image: there is no content](V)and[image: there is no content]([image: there is no content])=[image: there is no content](V),








we see that the Hodge diamond of V is the mirror image of the Hodge diamond of [image: there is no content] about the 45∘ line through the center of the diamond. This is the origin of the name “mirror symmetry”.
The Hodge diamond symmetry applies to a single mirror pair V and [image: there is no content]. If we take the Hodge numbers of all mirror pairs, then another remarkable picture emerges. We noted in Section 2 that there were 473,800,776 4-dimensional reflexive polytopes. This gives a lot of mirror pairs, all of which have symmetric of Hodge numbers. When plotted in two dimensions, we get Figure 5.

Figure 5. [image: there is no content] (horizontal) versus [image: there is no content] (vertical) for Calabi–Yau threefolds coming from 4-dimensional reflexive polytopes. Reprinted from [14] (p. 432) with permission of International Press of Boston.
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This iconic image is taken from [14]. Since the Betti numbers are the row sums of the of Hodge diamond, the topological Euler characteristic is [image: there is no content]. This invariant from algebraic topology is important in mathematical physics, where it shows up in various guises (central charge of a Virasoro algebra, [image: there is no content] number of fermion generations, etc.). Mirror symmetry interchanges [image: there is no content] and [image: there is no content]. This leaves the vertical coordinate [image: there is no content] of Figure 5 unchanged but replaces the horizontal coordinate [image: there is no content] with its negative. Hence mirror symmetry underlies the bilateral symmetry of Figure 5.

The 2015 paper [15] presents a state-of-the-art discussion of Figure 5, which includes data for other mirror pairs beyond those arising from 4-dimensional reflexive polytopes. That paper also describes the website [16] where the reader can find the most current version of Figure 5.



6. CICYs and Duality of Cones

We mentioned earlier that not all Calabi–Yau threefolds come from 4-dimensional reflexive polytopes. Currently, there is no classification of Calabi–Yau threefolds, although many constructions are known. Some involve toric varieties, while others, such as those described in ([10] Section 4.4), have nothing to do with toric methods.

Within the toric realm, there is more to the story than just hypersurfaces in 4-dimensional toric varieties. For example:


	A generic intersection of two cubic hypersurfaces in [image: there is no content] is a Calabi–Yau threefold.


	A generic intersection of two quadric hypersurfaces and a cubic hypersurface in [image: there is no content] is a Calabi–Yau threefold.




There are similar examples in higher dimensional projective spaces. These are example of complete intersection Calabi–Yau threefolds, often written CICYs. The term “complete intersection” refers to the fact that the number of defining equations equals the codimension.

These examples can be generalized to the toric setting where higher dimensional reflexive polytopes take center stage. The construction is based on work of Batyrev and Borisov. We will follow the version presented in [17], focusing on the case of CICY threefolds. The reader should consult [17] for references to the original papers.

Before we can begin, we need some tools from polyhedral geometry:


	The Minkowski sum of polytopes [image: there is no content],[image: there is no content]⊆[image: there is no content] is defined by



[image: there is no content]








Note that [image: there is no content] is a lattice polytope whenever [image: there is no content] and [image: there is no content] are.


	Points m1,⋯,ms∈[image: there is no content] generate the rational convex polyhedral cone



σ=Cone(m1,⋯,ms)={λ1m1+⋯+λsms∣λi≥0}⊆[image: there is no content].









	Given such a cone σ, its dual is



[image: there is no content]={u∈[image: there is no content]∣u·m≥0forallm∈σ}.








Then [image: there is no content] is again a rational convex polyhedral cone, and we have the duality ([image: there is no content])∨=σ.




Proofs of these standard facts can be found in [3].

Now suppose that we have a [image: there is no content]-dimensional reflexive polytope P that is a Minkowski sum



P=[image: there is no content]+⋯+Pr,



(5)




where each [image: there is no content] is a lattice polytope containing the origin. This is called a nef-partition for reasons having to do with numerically effective divisors on toric varieties.
Given a nef-partition Equation (5), we get the toric variety [image: there is no content] of dimension [image: there is no content], and using the lattice points of the Minkowski summands [image: there is no content],⋯,Pr as in Equation (4), we get hypersurfaces Y1,⋯,Yr⊆[image: there is no content]. If the equations of the [image: there is no content] are sufficiently generic, then the intersection



[image: there is no content]








is complete intersection threefold whose resolution of singularities (carefully done) is a Calabi–Yau threefold V. This is CICY threefold determined by the nef-partition Equation (5). The examples presented at the beginning of this section are instances of this construction.
To create the mirror family, we use duality, but we have to be careful since in Equation (5), the [image: there is no content] contain 0, but not as an interior point. This means that the dual [image: there is no content] is an unbounded polyhedron. The key idea of the Batyrev–Borisov construction is to define “dual” polytopes [image: there is no content] as follows:



[image: there is no content]={u∈[image: there is no content]∣u·m≥-1forallm∈[image: there is no content],u·m≥0forallm∈Pj,j≠i}.



(6)




Here are the key properties of [image: there is no content]:

	[image: there is no content] are lattice polytopes containing the origin.


	[image: there is no content] is a reflexive polytope of dimension [image: there is no content].




In other words, [image: there is no content] is a nef-partition, called the dual nef-partition. This also works in reverse, since P=[image: there is no content]+⋯+Pr is the dual of [image: there is no content].
The dual nef-partition [image: there is no content] gives the toric variety [image: there is no content] and the hypersurfaces coming from [image: there is no content]. The resulting CICY threefold [image: there is no content] is a candidate for the mirror of the CICY V of the original nef-partition P=[image: there is no content]+⋯+Pr.

To get a better sense of what Equation (6) means from the point of view of duality, let us focus on [image: there is no content]. First observe that the cone



Cone([image: there is no content]∪⋯∪Pr)=Cone([image: there is no content]+⋯+Pr)








is rational polyhedral since it is the cone generated by the vertices of [image: there is no content],⋯,Pr. Then we can write [image: there is no content] as follows:


[image: there is no content]={u∈[image: there is no content]∣u·m≥-1forallm∈[image: there is no content],u·m≥0forallm∈Pj,j=2,⋯,r}=[image: there is no content]∩Cone([image: there is no content]∪⋯∪Pr)∨.








Individually, [image: there is no content] and Cone([image: there is no content]∪⋯∪Pr)∨ are unbounded polyhedra. Their intersection is bounded, i.e., is a polytope, because 0 is an interior point of [image: there is no content]+⋯+Pr. This works not just for [image: there is no content] but for all of the [image: there is no content]. The surprise, as noted in the above bullets, is that the [image: there is no content] are lattice polytopes with reflexive Minkowski sum.
The resulting “duality” between P and Q is remarkable: we take P and decompose it into pieces via P=[image: there is no content]+⋯+Pr. For each piece [image: there is no content], we modify the usual dual [image: there is no content] using the cone dual to the remaining pieces. This gives [image: there is no content], and then we assemble the [image: there is no content] to create [image: there is no content].

Here is an example of what this looks like in an especially simple case.

Example 6.1. Consider the reflexive polygon P=3Δ2-(1,1)⊆[image: there is no content]. This is the polygon labeled “9” in Figure 3. Note that P is the 2-dimensional analog of the polytope 5Δ4-(1,1,1,1)⊆[image: there is no content] that gives the quintic threefold.

Figure 6 shows a nef-partition of P and the resulting dual nef-partition. In the figure, note that [image: there is no content] is a line segment. The “dual” Q is equivalent to the polygon labeled “5a” in Figure 3, while the usual dual [image: there is no content] of P is the polygon labeled “3” in Figure 3.

Figure 6. Dual nef-partitions P=[image: there is no content]+[image: there is no content] and Q=[image: there is no content]+Q2.



[image: Symmetry 07 01633 g006 1024]







This example shows that the duality of nef-partitions differs from the usual duality of polytopes.

It is also possible to encode the duality of nef-partitions into the standard duality of cones. Given the nef-partition P=[image: there is no content]+⋯+Pr in [image: there is no content], consider the cone in [image: there is no content]×Rr defined by



C{[image: there is no content]}=Cone([image: there is no content]×e1)+⋯+Cone(Pr×er)⊆[image: there is no content]×Rr,








and define C{[image: there is no content]} similarly. Then one can show that C{[image: there is no content]} and C{[image: there is no content]} are dual cones under the standard dot product in [image: there is no content]×Rr.
The cones C{[image: there is no content]} and C{[image: there is no content]} are examples of dual reflexive Gorenstein cones. The duality of these cones leads to additional examples relevant to mirror symmetry. We refer the reader to [17] for details and further reading.



7. Conclusions

In this article we have explored several types of duality of polytopes that relate to mirror symmetry. Although both physics and algebraic geometry have moved beyond the “classical” picture of mirror symmetry presented here, we hope to have made a convincing demonstration that something wonderful happened in 1994 when Batyrev suggested that the duality of reflexive polytopes was relevant to mirror symmetry.
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