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Abstract:

 Using elementary techniques, an algorithmic procedure to construct skew-symmetric matrices realizing the real irreducible representations of [image: there is no content] is developed. We further give a simple criterion that enables one to deduce the decomposition of an arbitrary real representation R of [image: there is no content] into real irreducible components from the characteristic polynomial of an arbitrary representation matrix.
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1. Introduction

Albeit the fact that the representation theory of semisimple Lie algebras in general, and the orthogonal algebras [image: there is no content] and their various reals forms in particular, is well known and constitutes nowadays a standard tool in (physical) applications (see, e.g., [1,2] and the references therein), specific results in the literature concerning the explicit matrix construction of the matrices corresponding to real irreducible representations of [image: there is no content] are rather scarce. Even if the structural properties of such representations can be derived from the complex case [3], the inherent technical difficulties arising in the analysis of irreducible representations over the real field make it cumbersome to determine an algorithmic procedure that provides the specific real representation matrices explicitly.

Even for the lowest dimensional case, that of [image: there is no content], the description of real irreducible representations is generally restricted to multiplets of low dimension appearing in specific problems [4]. One interesting work devoted exclusively to the real irreducible representations from the perspective of harmonic analysis is given in [5]. Most of the applications of [image: there is no content] make use of the angular momentum operators or the Gel’fand–Zetlin formalism, hence describing the states by means of eigenvalues of a complete set of diagonalizable commuting operators. However, for real irreducible representations of [image: there is no content], corresponding to rotations in the representation space, no such bases of states of this type are possible, as no inner labeling diagonalizable operator over the real numbers can exist, the external being the Casimir operator [6]. In spite of this fact, real representations are of considerable practical importance, as they provide information on the embedding of [image: there is no content] into other simple algebras and, thus, constitute interesting tools to determine the stability of semidirect sums of Lie algebras [7]. The hierarchy of real irreducible representations of simple Lie algebras is therefore deeply connected to the embedding problem and the branching rules. In this context, it is desirable to develop a simple algorithmic method for the construction of real irreducible representations R of [image: there is no content] in terms of skew-symmetric matrices, as these correspond naturally to the embedding of [image: there is no content] as a subalgebra of [image: there is no content].

In this work, we propose such a procedure, based on the elementary properties of rotation matrices. It is shown that the class of a real irreducible representation R is completely determined by the characteristic polynomial of a matrix in R. This further enables one to deduce the decomposition of an arbitrary real representation of [image: there is no content] into real irreducible factors from the properties of the characteristic polynomial of a matrix within the representation.


1.1. Real Representations of [image: there is no content]

Recall that for [image: there is no content], the standard basis is given by [image: there is no content] with commutators:



h,e=2e,h,f=−2f,e,f=h.



(1)




Let [image: there is no content] denote the irreducible representation of [image: there is no content] of dimension [image: there is no content], where [image: there is no content]. For the basis [image: there is no content] of the representation space, the matrices [image: there is no content] for the generators [image: there is no content] are easily recovered from the matrix elements:


ei[image: there is no content]hej=δij2J+1−2i;ei[image: there is no content]eej=δi+1j2J+1−i










ei[image: there is no content]fej=δij+1i−1.



(2)




As is well known, the Lie algebra [image: there is no content] admits two real forms, the normal real form [image: there is no content] obtained by restriction of scalars, as well as the compact real form [image: there is no content] obtained from the Cartan map:


X1=i2h,X2=12e−f,X3=i2e+f



(3)




and satisfying the brackets:


Xi,Xj=εijkXk,1≤i,j,k≤3.



(4)




While the matrices of the representation [image: there is no content] define a real representation of [image: there is no content] for the compact real form [image: there is no content], the matrices of [image: there is no content] are complex, given by:


[image: there is no content]X1=i2[image: there is no content]h,[image: there is no content]X2=12[image: there is no content]e−[image: there is no content]f,[image: there is no content]X3=i2[image: there is no content]e+[image: there is no content]f.



(5)




In many applications, the representation space of [image: there is no content] is best described by states of the type:


μ,J[image: there is no content],μ=−J,⋯,J



(6)




on an appropriate basis, as, e.g., that commonly used in the theory of angular momentum [8]. It must be observed, however, that such bases are not suitable for real representations, as geometric rotation matrices are not diagonalizable over the real field [image: there is no content].
The problem of classifying the real irreducible representations of the compact real forms of semisimple Lie algebras was systematically considered by Cartan and Karpelevich, being later expanded for arbitrary real Lie algebras by Iwahori [9]. According to these works, real representations are distinguished by the decomposition of their complexification. More precisely, if Γ is a real representation of the (real) Lie algebra [image: there is no content], then:


	Γ is called of first class, denoted by [image: there is no content], if Γ⊗[image: there is no content]C is a complex irreducible representation of [image: there is no content].


	Γ is called of second class, denoted by [image: there is no content], if Γ⊗[image: there is no content]C is a complex reducible representation of [image: there is no content].




Following this distinction, the representations [image: there is no content] of [image: there is no content] with [image: there is no content] belong to the first class. This in particular implies the existence of an invertible matrix [image: there is no content], such that for [image: there is no content]:



[image: there is no content]Xk=U[image: there is no content]XkU−1



(7)




is a real matrix [9]. For half-integer values [image: there is no content], no such transition matrices U can exist, and in order to obtain a real representation, the dimension of the representation space must be doubled:


[image: there is no content]Xk↦DJIIXk=Re[image: there is no content]ak−Im[image: there is no content]akIm[image: there is no content]akRe[image: there is no content]ak.



(8)




As a consequence, even dimensional irreducible real representations of [image: there is no content] only exist for [image: there is no content] with [image: there is no content] (details on the double-covering [image: there is no content] can be found, e.g., in [10]).
Albeit not usually referred to in the literature, the class of a real representation of a (simple) Lie algebra is deeply connected to the embedding problem of (complex) semisimple Lie algebras [11]. In particular, it determines whether an algebra is irreducibly embedded into another. Recall that an embedding [image: there is no content] of semisimple Lie algebras is called irreducible if the lowest dimensional irreducible representation Γ of [image: there is no content] remains irreducible when restricted to [image: there is no content]′ [11]. Irreducible embeddings play an important role in applications, as they allow one to construct bases of a Lie algebra [image: there is no content] in terms of a basis of irreducibly-embedded subalgebras and irreducible tensor operators [12].

From the analysis of [image: there is no content] representations, it is straightforward to establish the following embeddings:


	For [image: there is no content], [image: there is no content] is a maximal subalgebra irreducibly embedded into [image: there is no content]p4≃[image: there is no content]o5.


	For [image: there is no content], [image: there is no content] is irreducibly embedded into [image: there is no content]o7 through the chain:



[image: there is no content]o3⊂G2,−14⊂[image: there is no content]o7.









	For any integer [image: there is no content], [image: there is no content] is a maximal subalgebra irreducibly embedded into [image: there is no content]o2J+1.


	For [image: there is no content], [image: there is no content] is embedded into [image: there is no content]o4 through the chain:



[image: there is no content]o3⊂[image: there is no content]p4⊂[image: there is no content]u4⊂[image: there is no content]o(7)⊂[image: there is no content]o(8)









	For half-integers [image: there is no content], [image: there is no content] is embedded into [image: there is no content]o4J+2 through the chain:



[image: there is no content]o3⊂[image: there is no content]p2J+1⊂[image: there is no content]u2J+1⊂[image: there is no content]o4J+2











In this context, a natural construction of real irreducible representations of [image: there is no content] should be by means of skew-symmetric matrices that realize these embeddings.




2. Construction of the Matrices [image: there is no content]

As already observed, for integer J, the representation [image: there is no content] given by (7) is of first class. Therefore, [image: there is no content] can be represented as a subalgebra of the compact Lie algebra [image: there is no content]o2J+1. In particular, we can find a transition matrix [image: there is no content], such that the matrices:



[image: there is no content]Xk=U[image: there is no content]XkU−1



(9)




are skew-symmetric for [image: there is no content], thus describe the embedding.
The construction of skew-symmetric real matrices [image: there is no content] satisfying the similarity Condition (9) is essentially based on the following two properties of the (complex) representation matrices [image: there is no content]Xk, the proof of which is straightforward using Equation (5):

Lemma 1. Let J be a positive integer. The following conditions hold:


	The characteristic and minimal polynomials [image: there is no content] and [image: there is no content] of the matrices [image: there is no content]Xk in (5) coincide and are given by:



[image: there is no content]



(10)




for [image: there is no content].


	In the representation [image: there is no content], the Casimir operator [image: there is no content] of [image: there is no content] is given by:



[image: there is no content]=[image: there is no content]X12+[image: there is no content]X22+[image: there is no content]X32=−J[image: there is no content]Id2J+1.



(11)







We show that, up to multiplicative factors, these properties are sufficient to construct skew-symmetric matrices [image: there is no content], such that:



[image: there is no content]Xi,[image: there is no content]Xj=εijk[image: there is no content]Xk



(12)




holds and Equation (7) is satisfied. In particular, there is no need to consider the transition matrix U explicitly. As a starting point, for any [image: there is no content], we define the [image: there is no content] matrices:


[image: there is no content]



(13)




We further define the [image: there is no content]-block matrix:


[image: there is no content]X3=MJ⋱M10.



(14)




It is obvious that [image: there is no content]X3 belongs to [image: there is no content]o2J+1 and that the minimal and characteristic polynomials of [image: there is no content]X3 coincide. These polynomials are given by (10). It follows at once that [image: there is no content]X3 is similar to the matrices [image: there is no content]Xk for any [image: there is no content]. Now, to construct skew-symmetric matrices [image: there is no content]X1 and [image: there is no content]X2 satisfying (12), we consider block matrices of the type:


S=0A1B10A2B2⋱0AJ−1BJ−10−vTv0,



(15)




where [image: there is no content] are [image: there is no content] real matrices for [image: there is no content] and [image: there is no content] is a vector. As S is assumed to be a skew-symmetric matrix, for any index l, we have:


[image: there is no content]



(16)




The choice of the matrix form is motivated by the fact that each block [image: there is no content] of [image: there is no content]X3 describes a rotation in the two-plane generated by the vectors [image: there is no content]. With this block structure, it is straightforward to verify that the commutator of [image: there is no content] and S has the following structure:


[image: there is no content]X3,S=0C1D10[image: there is no content][image: there is no content]⋱0CJ−1DJ−10−wTw0,



(17)




where [image: there is no content] and for [image: there is no content] the identities:


[image: there is no content]=MJ+1−l[image: there is no content]−[image: there is no content]MJ−l;Dl=MJ−lBl−BlMJ+1−l.



(18)




hold. The matrix [image: there is no content],S is still skew-symmetric, as can be easily shown using (16) and the skew-symmetry of the [image: there is no content]-matrices [image: there is no content]. For each l, we have:


ClT+Dl=AlTMJ+1−lT−MJ−lTAlT+MJ−lBl−BlMJ+1−l=BlMJ+1−l−MJ−lBl+MJ−lBl−BlMJ+1−l=0.



(19)




As the matrix S is composed of [image: there is no content]-blocks (with the exception of the vector v), the [image: there is no content] can be essentially of two types: either [image: there is no content] is a diagonal matrix or it is skew-symmetric. A generic S-matrix will thus depend at most on [image: there is no content] parameters. In order to facilitate the computation of representatives to describe the real representation [image: there is no content], we consider all blocks [image: there is no content] being of the same type (by a change of basis, an equivalent matrix representative with [image: there is no content]-blocks of a different type can be obtained). Without loss of generality, we make the choice:


[image: there is no content]=0[image: there is no content]−[image: there is no content]0,1≤l≤J−1.



(20)




By Equation (16), we have Bl=[image: there is no content]; hence, the matrix S depends on [image: there is no content] parameters. For the commutator matrix [image: there is no content]X3,S, it now follows at once from (18) that:


[image: there is no content]



(21)




for any [image: there is no content]. The blocks [image: there is no content] correspond to the second possible type (diagonal) for the blocks [image: there is no content], showing that the result does not depend on the particular form chosen initially for the blocks.
If we now compute the iterated commutator S,[image: there is no content]X3,S, we obtain a matrix having the same block structure as [image: there is no content]X3 and given explicitly by:



S,[image: there is no content]X3,S=E1⋱EJ0,



(22)




where


E1=0−2a122a120;Ek=02ak−12−2ak2−2ak−12+2ak20,2≤k≤J−1



(23)




and


[image: there is no content]



(24)




Assuming that the blocks [image: there is no content] are given by (16), we define [image: there is no content]X1=S. Following Equation (12):


[image: there is no content]X2=[image: there is no content]X3,[image: there is no content]X1.



(25)




As a consequence, the matrix on the right hand side of the commutator (22) must coincide with [image: there is no content]X3. Comparing the entries leads to the quadratic system:


J=2a12,J−l=2al2−al−12,2≤l≤J−2v12+v22−2aJ−12=1.



(26)




Up to the sign, the solution to this system is given by:


[image: there is no content]=±2lJ−ll−14,1≤l≤J−1;v1=±J[image: there is no content]2−v22,



(27)




where [image: there is no content] is free. This shows that the matrices [image: there is no content] transform like the [image: there is no content] generators (4). As these matrices must satisfy the similarity Condition (7) with the matrices (5), the Casimir operator must have the form (11). In particular, this implies that the following matrix identity must be fulfilled:


[image: there is no content]X12+[image: there is no content]X22=λ1⋱λ2J+1,



(28)




where


λ2q−1=λ2q=q−12−J2q−1,1≤q≤Jλ2J+1=−J[image: there is no content].



(29)




A routine computation shows that the preceding system is satisfied identically for the values obtained in (27). Therefore, the three matrices [image: there is no content] have (10) as their characteristic and minimal polynomial, and thus, there exists a complex matrix U transforming the matrices (5) onto the real matrices [image: there is no content]. We observe that the value of [image: there is no content] is not determined by either the commutator (12) or the Condition (28). This parameter is however inessential, as it merely indicates the possibility of considering linear combinations of the matrices [image: there is no content]X1 and [image: there is no content]X2. In fact, taking the case [image: there is no content], the realization above gives the matrices:


[image: there is no content]X2=−1−v22[image: there is no content]1−v22−[image: there is no content],[image: there is no content]X1=[image: there is no content]1−v22−[image: there is no content]−1−v22.



(30)




For [image: there is no content]=0, these matrices reduce to the standard rotation matrices in [image: there is no content]3 corresponding to the adjoint representation of [image: there is no content]. For this reason, in the following, we set [image: there is no content]=0 without loss of generality. As the signs in (27) can further be chosen freely, we make the following choice:


[image: there is no content]=2lJ−ll−14,1≤l≤J−1;v1=J[image: there is no content]2.



(31)




The matrices [image: there is no content] constructed with these values satisfy Equation (7) and clearly belong to [image: there is no content]o2J+1, showing that the linear map:


φJ:[image: there is no content]o3→[image: there is no content]o2J+1;Xk↦[image: there is no content]Xk



(32)




defines a Lie algebra homomorphism and an irreducible embedding. We observe that choosing different signs for the parameters [image: there is no content] gives rise to an embedding belonging to the same conjugation class in [image: there is no content]o2J+1.
Let [image: there is no content] denote a basis of the representation space of the real representation [image: there is no content]. Further, let [image: there is no content] denote the integer part of [image: there is no content]. Then, the matrix elements are easily described in terms of the coefficients in (31) as:



ek[image: there is no content]X1el=1+−1k−12δk+3lak+12+δkl+1ak−12−aJ+J2+J2×δ2J+1lδk2J−δ2Jlδk2J+1−1+−1k2δk+1lak2+δkl+3ak−22.



(33)






ek[image: there is no content]X2el=δk+2lak+12−δkl+2ak−12−aJ+J2+J2δ2J+1lδk2J−1−δ2J−1lδk2J+1.



(34)






ek[image: there is no content]X3el=1+−1kδkl+12J+2−k+−1k−1δlk+12J+1−k4,



(35)




where [image: there is no content].
The first non-trivial case for which the method applies is [image: there is no content] in dimension five. According to (5), the complex matrices of the irreducible representation [image: there is no content] are given by the diagonal matrix [image: there is no content]X1=Δ2i,i,0,−i,−2i and:



[image: there is no content]X2=02000−12032000−101000−32012000−20,[image: there is no content]X3=02i000i203i2000i0i0003i20i20002i0.








In this form, however, the matrices are not skew-symmetric, and hence, the properties of the representation are not easily recognized. Using the matrix elements deduced in (33)–(35), we can easily construct the corresponding real matrices [image: there is no content]. Their explicit expression is:


R2IX1=0001000−10001000−10003000−30,R2IX2=0010000010−1000−30−100000300,R2IX3=0−200020000000−100010000000.



(36)




These matrices are linear combinations of the basis elements of the compact orthogonal Lie algebra [image: there is no content]o5, hence defining an embedding [image: there is no content]o3⊂[image: there is no content]o5. If, moreover, [image: there is no content] denotes the canonical basis of the representation space, we can easily check that:


[image: there is no content]








showing that the action of [image: there is no content] is actually irreducible. It is routine to check that for [image: there is no content], the similarity relation [image: there is no content]Xj=U[image: there is no content]XjU−1 is satisfied for the transition matrix:


[image: there is no content]










3. Construction of the Matrices [image: there is no content]

In contrast to the case of integer J, the matrices [image: there is no content] are already given over the reals, as a consequence of the dimension doubling in the representation space. It is straightforward to see that the matrices [image: there is no content] can be written in terms of tensor products as:



DJIIXk=1001⊗Re[image: there is no content]Xk+0−110⊗Im[image: there is no content]Xk.



(37)




We observe that [image: there is no content] is skew-symmetric by construction, as [image: there is no content]X1 is diagonal with purely imaginary entries. In general, however, [image: there is no content] and [image: there is no content] are not skew-symmetric, and therefore, the representation is not given in terms of elements belonging to the (compact) Lie algebra [image: there is no content]o4J+2. The two properties required to construct the skew-symmetric matrices realizing the representation [image: there is no content] are again the characteristic polynomial and the eigenvalue of the Casimir operator. The procedure to find such matrices is formally very similar to the previous case, up to the necessary modifications due to the tensor product (37). For this reason, we merely indicate the mains steps, skipping the detailed computations.
For any [image: there is no content], the characteristic and minimal polynomials of [image: there is no content] are respectively given by:



pJz=122J+21+4z229+4z22⋯J2+4z22,qJz=pJx.



(38)




The eigenvalue of the Casimir operator on such a representation is given by:


[image: there is no content](DJII)=−J[image: there is no content]4Id2J+1.



(39)




In this case, the [image: there is no content]-matrices to start from are of the type:


[image: there is no content]



(40)




where [image: there is no content] is an odd integer. With these blocks, we define the [image: there is no content]-block matrix:


RJIIX3=NJ⋱N1−N1⋱−NJ.



(41)




For this rotation matrix, it is easy to verify that the characteristic and minimal polynomials satisfy Equation (38). Next, we consider matrices of the type:



S=0A1−A1T0A2−A2T⋱0AJ−AJT0,



(42)




where the [image: there is no content] are [image: there is no content]-matrices. We observe that, without loss of generality, these can be taken as in (16). Repeating the same argument as for the integer case, the commutator [image: there is no content](X3),S is a skew-symmetric matrix having the same block structure as (42). We thus define the matrix [image: there is no content](X1)=S and also [image: there is no content](X2)=[image: there is no content]X3,S. Developing explicitly the commutators of these matrices, it can be proven easily that the [image: there is no content]-blocks satisfy the constraint:


[image: there is no content]+AJ−l=0,1≤l≤J2.



(43)




Hence, the number of parameters for a generic matrix S is bounded by [image: there is no content]. Now, imposing the condition S,[image: there is no content]X3,S=[image: there is no content]X3, we are again led to a quadratic system in the coefficients of [image: there is no content] and [image: there is no content]. In this case, however, the solution can be computed up to the sign, and no free parameters appear (this is a consequence of the constraint (43)).
Making, e.g., the choice of skew-symmetric blocks [image: there is no content] and fixing the positive sign for the solution of the quadratic system, the matrix elements of [image: there is no content](Xk) for [image: there is no content] are given by the formulae:



ek[image: there is no content]X1el=1+−1k−12δk+3lak+12+δkl+1ak−12−1+−1k2×δk+1lak2+δkl+3ak−22



(44)






ek[image: there is no content]X2el=δk+2lak+12−δkl+2ak−12.



(45)






ek[image: there is no content]X3el=1+−1kδkl+12J+2−k+−1k−1δlk+12J+1−k4



(46)




As a byproduct of the method, we remark that the matrix elements (33)–(35), as well as those in (44)–(46) provide a prescription to realize the Lie algebra [image: there is no content]o(3) in terms of vectors fields in [image: there is no content]2J+1 and [image: there is no content]4J+2, respectively. More specifically, if M is the representation matrix of an element Y∈[image: there is no content]o3, the associated vector field [image: there is no content] is given by:



[image: there is no content]:=ekMelxk∂∂xl.



(47)






4. Tensor Products of Real Irreducible Representations

While the tensor products of complex representations of [image: there is no content] are well known and easily found by means of the formula:



[image: there is no content]⊗DJ′=DJ+J′⊕⋯⊕DJ−J′,



(48)




for the tensor products of the real irreducible representations, the preceding formula is generally no longer valid, due to the division into the first and second class [8]. As a consequence, in general, such a tensor product will not be always multiplicity free, i.e., the irreducible real representations appearing in the decomposition may have multiplicity greater than one. This is easily seen using the corresponding complexification, to which Formula (48) applies. A simple computation shows that for the tensor products of real irreducible representations [image: there is no content] and [image: there is no content] of [image: there is no content], three possibilities are given:

	[image: there is no content] and [image: there is no content]



[image: there is no content]⊗RJ′I=∑α=02J′RJ+J′−αI.



(49)




The tensor product is multiplicity free, and the irreducible factors are all of Class I. This actually corresponds exactly to the tensor product of the complex representations [image: there is no content].


	[image: there is no content], J′≡1mod2:



[image: there is no content]⊗[image: there is no content]=∑α=02J′R2J+J′−α2II.



(50)




The irreducible factors are all of Class II and have multiplicity one; hence, the product is also multiplicity free.


	[image: there is no content]≡1mod2:



[image: there is no content]⊗[image: there is no content]=∑α=02J′4RJ+J′−α2I.



(51)




As expected, in this case, the irreducible factors are all of Class I, and the tensor product is not multiplicity free. All factors have the same multiplicity [image: there is no content].




As follows from (38) when compared to (10), given an arbitrary matrix of a real irreducible representation of [image: there is no content], its class can be immediately deduced from the characteristic polynomial. Actually, a stronger assertion can be obtained using this property. The main fact in this context is that the representation matrices of the three generators [image: there is no content] of [image: there is no content] have the same characteristic and minimal polynomials. This enables us to determine easily the characteristic polynomial for any linear combination [image: there is no content] and any real irreducible representation:


	If [image: there is no content] is a representation of first class, then [image: there is no content]X has characteristic polynomial:



pJz=−z∏α=1Jz2+ξα2,



(52)




where [image: there is no content]. Moreover, the minimal polynomial satisfies [image: there is no content].


	If [image: there is no content] is a representation of the second class, then [image: there is no content]X has characteristic polynomial:



pJ2z=122J+2∏β=0J−124z2+ξ2β+122



(53)




where [image: there is no content]. In this case, [image: there is no content].




It is worthy to be observed that the quadratic factor [image: there is no content] must appear in any representation with integer J, while [image: there is no content] appears for any half-integer. This implies that the common factor ξ can be easily found from the corresponding characteristic polynomial when the latter is rewritten taking into account (10) and (38). This fact further enables us to deduce the decomposition of an arbitrary real representation of [image: there is no content] by simply analyzing the characteristic polynomial of a matrix within this representation. Let us inspect this fact more closely.

Let



[image: there is no content]



(54)




be the decomposition of R into real irreducible factors, where [image: there is no content] are positive integers, such that:


[image: there is no content]



(55)




holds and Jk,Jl′≠0 for [image: there is no content]. Without loss of generality, we can suppose that [image: there is no content] and [image: there is no content]. The polynomial [image: there is no content] of [image: there is no content] thus factorizes as the product:


pz=p0μ0zpJ1μ1z⋯pJrμrzpJ1′2zν1⋯pJs′2zνs.



(56)




As follows from (52) and (53), there exists a common factor ξ in all quadratic factors of [image: there is no content]. For [image: there is no content] and [image: there is no content], define further:


mσ=∑k=σrμk;nτ=2∑l=τsνl.



(57)




Expanding the polynomial [image: there is no content], we obtain the expression:


[image: there is no content]=−z[image: there is no content]∏α=1J1z2+ξα2m1∏α=1+J1J2z2+ξα2m2⋯∏α=Jr−1+1Jrz2+ξα2[image: there is no content]×∏l=1s2−(2J+2)νl∏β=0J1′−124z2+ξ2β+12n1⋯∏β=Js−1′−12Js′−124z2+ξ2β+12ns.



(58)




Starting from the polynomial (58), we can go backwards and deduce the precise decomposition (54) of R by merely inspecting the multiplicities of the different quadratic factors. In practice, the coefficients of the polynomial simplify, so that the factor ξ must be first deduced from the quadratic real irreducible factors, having in mind that for irreducible representations of the first class and second class, they are of the form given in (52) and (53). On the other hand, the values [image: there is no content] and [image: there is no content] of the irreducible factors are uniquely determined as the highest values in the quadratic factors [image: there is no content] and [image: there is no content] preceding a variation in the multiplicity. Therefore, the number of irreducible factors in the decomposition of R is given by the number of different multiplicities of the quadratic factors and that of z. The corresponding multiplicity of each irreducible factor of R is easily obtained by the following prescription:


	The multiplicity of z, given by [image: there is no content], indicates the number of irreducible factors of Class I.


	The multiplicity of [image: there is no content] is given by [image: there is no content], whereas the multiplicity of [image: there is no content] is given by [image: there is no content] for [image: there is no content].


	The multiplicity of the trivial representation [image: there is no content] is given by [image: there is no content]−m1.


	The multiplicity of [image: there is no content] is given by [image: there is no content], whereas the multiplicity of [image: there is no content] is given by [image: there is no content] for [image: there is no content].




This proves that the essential information concerning the real irreducible factors of a real representation is codified in the factorization of the characteristic polynomial of an arbitrary matrix. This proves the following criterion:

Theorem 2. Let R be an arbitrary real representation of [image: there is no content] and X∈[image: there is no content]o3. Then, the decomposition of R as the sum of real irreducible representations is completely determined by the characteristic polynomial [image: there is no content] of the matrix [image: there is no content].

As an example that illustrates the method, suppose that the matrix X belonging to a real representation R of [image: there is no content] has characteristic polynomial:



[image: there is no content]



(59)




where [image: there is no content]. The exponents are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]; thus, it follows at once that R must be a sum of four irreducible factors of Class II, as z does not appear in the factorization of [image: there is no content] into real irreducible factors. Taking into account Expression (38), the polynomial can be rewritten as:


[image: there is no content]



(60)




Hence, we can extract the common factor [image: there is no content]. The values of J for the irreducible components are:


J12=1,J22=45050=9,J32=125050=25,J42=245050=49.



(61)




On the other hand, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], showing that X is a matrix belonging to the representation [image: there is no content].


5. Conclusions

By means of elementary techniques of Lie algebras and matrix theory, explicit formulae to construct real matrices of real irreducible representations of the first and second class of the compact Lie algebra [image: there is no content] have been obtained. The procedure is based on the important observation that, as a consequence of the Cartan map (3), the representation matrices of the [image: there is no content]-generators in an irreducible representation have the same characteristic and minimal polynomial, a fact that is not true on the usual Cartan–Weyl basis. This enables us to characterize the class of a real representation according to the structure of these polynomials. Using the latter enables one to construct skew-symmetric matrices for any irreducible real representation. The real matrices so constructed actually realize the embedding of [image: there is no content] into the compact Lie algebras [image: there is no content] and [image: there is no content], respectively, depending on whether J is an integer or half-integer and, hence, corresponding to matrices of the representation subduced by the restriction of the defining representation of the orthogonal Lie algebras. As an application of the method, it has been shown that for an arbitrary real representation R of [image: there is no content], the decomposition of R into irreducible factors can be deduced from the characteristic polynomial of an arbitrary matrix in the representation. This provides in particular a useful practical criterion to determine whether a given matrix belongs to an irreducible real representation.

We finally remark that the realizations in terms of vector fields (47) that are deduced from the matrix elements (33)–(35), as well as those in (44)–(46), are potentially of interest in the context of point symmetries of ordinary differential equations. Systems of ordinary differential equations have been exhaustively studied by means of the Lie method (see, e.g., [13,14,15] and the references therein), albeit for systems containing arbitrary functions as parameters, there still remains some work to be done. In this context, indirect approaches as that developed in [16] characterizing systems in terms of specific realizations of Lie algebras constitute an alternative procedure that can be useful for applications.

As an elementary application of the real representations of [image: there is no content]o(3) to the Lie symmetry method, consider the representation [image: there is no content] for [image: there is no content]. Using the prescription given in (47), the vector fields in [image: there is no content]5 associated with the matrices (36) are the following:



[image: there is no content]



(62)




Now, let [image: there is no content] be an arbitrary function, and consider the equations of motion:


x¨i=Φt∂V∂xi,1≤i≤5



(63)




associated with the Lagrangian:


L=12x˙12+⋯+x˙52+ΦtVx1,⋯,x5,



(64)




where [image: there is no content] is a homogeneous cubic polynomial. After some computation, it can be shown that the preceding vector fields are point symmetries of (63) only if [image: there is no content] has the following form:


[image: there is no content]








where α∈[image: there is no content]. The realization (62) of [image: there is no content] obtained from the representation [image: there is no content] further imposes some restrictions on the existence of additional point symmetries. A generic point symmetry [image: there is no content] of (63) has components:


ξt,x=b4t2+b5t+[image: there is no content],η1t,x=−b1x4+b2x3+2b3x2+b4tx1+12b5x1+b7x1,η2t,x=b1x3+b2x4−2b3x1+b4tx2+12b5x2+b7x2,η3t,x=−b1x2−b2x1+3x5+b3x4+b4tx3+12b5x3+b7x3,η4t,x=b1x1−3x5−b2x2−b3x3+b4tx4+12b5x4+b7x4,η5t,x=3b1x4+3b2x3+b4tx5+12b5x5+b7x5



(65)




where the coefficients [image: there is no content] are subjected to the constraint:


[image: there is no content]



(66)




It follows that for non-constant generic functions [image: there is no content], the symmetry algebra is isomorphic to [image: there is no content], whereas if [image: there is no content] satisfies the separable ordinary differential Equation (66), at most two additional point symmetries can be found. It is easily verified that if the system possesses five point symmetries (these are determined by the coefficients [image: there is no content] and [image: there is no content], corresponding to the time translation and a scaling symmetry, respectively), then [image: there is no content] is necessarily a constant. It may be observed that, in any case, the symmetries generating the [image: there is no content]-subalgebra are also Noether symmetries. We thus conclude that for functions [image: there is no content] not satisfying the constraint (66), the algebras of point and Noether symmetries coincide.
For the remaining values of J, a similar ansatz as the previous one can be applied to obtain criteria that ensure that a non-linear system of ordinary differential equations exhibits an exact [image: there is no content]-symmetry. Work in this direction is currently in progress.
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