An Application of Equivalence Transformations to Reaction Diffusion Equations
Abstract
:1. Introduction
2. On Equivalence Transformations and Their Calculation for the Class (1)
2.1. Elements on Equivalence Transformations
2.2. Calculation of Weak Equivalence Transformations
3. Symmetries for a Subclass of Advection Reaction Diffusion Systems
3.1. On the Extensions of the
- .
- and .
- In this case, from Equation (50), we have . Moreover, by differentiating Equation (51) with respect to u, we have:
- (a)
- If , from Equation (54), we get:
- i.
- If , as from Equation (55), we have:
- ii.
- If , as from Equation (55), we have:
- (b)
- If , from Equation (54), we get:
- i.
- If , as from Equation (55), we have:
- ii.
- If , as from Equation (55), we have:
- andIn this case, from Equation (50), we have:
- (a)
- If , from Equation (75), we get:
- (b)
- If , from Equation (75), we get:
- with , with , the functions h and linked from the following relation:
- with , and the functions h and linked from the following relation:
- , with and the functions h and linked from the following relation:
- , and the functions h and linked from the following relation:
- with , and the functions h and linked from the following relation:
- , and the functions h and linked from the following relation:
3.2. A Special Case
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cardile, V.; Torrisi, M.; Tracinà, R. On a reaction-diffusion system arising in the development of Bacterial Colonies. In Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 24–31 October 2004; Volume 32, p. 38.
- Medvedev, G.S.; Kaper, T.J.; Kopell, N. A reaction diffusion system with periodic front Dynamics. SIAM J. Appl. Math. 2000, 60, 1601–1638. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracinà, R. On a class of reaction diffusion systems: Equivalence transformations and symmetries. In Asymptotic Methods in Nonlinear Wave Phenomena; Ruggeri, T., Sammartino, M., Eds.; World Science Publishing Co. Pte. Ltd.: Singapore, 2007; pp. 207–216. [Google Scholar]
- Torrisi, M.; Tracinà, R. Exact solutions of a reaction-diffusion system for Proteus Mirabilis bacterial colonies. Nonlinear Anal. Real World Appl. 2011, 12, 1865–1874. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M. Nonlinear systems of the burgers-type equations: Lie and Q-conditional symmetries, ansätze and solutions. J. Math. Anal. Appl. 2003, 282, 305–328. [Google Scholar] [CrossRef]
- Cherniha, R.; Wilhelmsson, H. Symmetry and exact solution of heat-mass transfer equations in thermonuclear plasma. Ukr. Math. J. 1996, 48, 1434–1449. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M. Lie and non-Lie symmetries of nonlinear diffusion equations with convection term. Symmetry Nonlinear Math. Phys. 1997, 2, 444–449. [Google Scholar]
- Cherniha, R.; Serov, M. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms. Eur. J. Appl. Math. 1998, 9, 527–542. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II. Eur. J. Appl. Math. 2006, 17, 597–605. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Torrisi, M.; Valenti, A. Preliminary group classification of equation vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 1991, 32, 2988–2995. [Google Scholar] [CrossRef]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Freire, I.L.; Torrisi, M. Weak equivalence transformations for a class of models in biomathematics. Abstr. Appl. Anal. 2014. [Google Scholar] [CrossRef]
- Freire, I.L.; Torrisi, M. Symmetry methods in mathematical modeling Aedes aegypti dispersal dynamics. Nonlinear Anal. Real World Appl. 2013, 14, 1300–1307. [Google Scholar] [CrossRef]
- Freire, I.L.; Torrisi, M. Similarity solutions for systems arising from an Aedes aegypti model. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 872–879. [Google Scholar] [CrossRef]
- Romano, V.; Torrisi, M. Application of weak equivalence transformations to a group analysis of a drift-diffusion model. J. Phys. A Math. Gen. 1999, 32, 7953–7963. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracinà, R. Equivalence transformations and symmetries for a heat conduction model. Int. J. Non-Linear Mech. 1998, 33, 473–487. [Google Scholar] [CrossRef]
- Gazeau, J.P.; Winternitz, P. Symmetries of variable-coefficient Korteweg-de Vries equations. J. Math. Phys. 1992, 33, 4087–4102. [Google Scholar] [CrossRef]
- Winternitz, P.; Gazeau, J.P. Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Phys. Lett. A 1992, 167, 246–250. [Google Scholar] [CrossRef]
- Akhatov, I.S.H.; Gazizov, R.K.; Ibragimov, N.H. Nonlocal symmetries. Heuristic approach. J. Sov. Math. 1991, 55, 1401–1450. [Google Scholar] [CrossRef]
- Lisle, I.G. Equivalence Transformation for Classes of Differential Equations. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1992. [Google Scholar]
- Khalique, C.M.; Mahomed, F.M.; Ntsime, B.P. Group classification of the generalized Emden-Fowler-type equation. Nonlinear Anal. Real World Appl. 2009, 10, 3387–3395. [Google Scholar] [CrossRef]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Molati, M.; Khalique, C.M. Lie group classification of a generalized Lane–Emden Type system in two dimensions. J. Appl. Math. 2012. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracinà, R. Equivalence transformations for systems of first order quasilinear partial differential equations. In Modern Group Analysis VI: Developments in Theory, Computation and Application; New Age International(P) Ltd.: New Delhi, India, 1996; pp. 115–135. [Google Scholar]
- Torrisi, M.; Tracinà, R.; Valenti, A. Group analysis approach for a non linear differential system arising in diffusion phenomena. J. Math. Phys. 1996, 37, 4758–4767. [Google Scholar] [CrossRef]
- Gambino, G.; Greco, A.M.; Lombardo, M.C. A group analysis via weak equivalence transformations for a model of tumour encapsulation. J. Phys. A 2004, 37, 3835–3846. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Säfström, N. The equivalence group and invariant solutions of a tumour growth model. Commun. Nonlinear Sci. Num. Simul. 2004, 9, 61–69. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Torrisi, M. A simple method for group analysis and its application to a model of detonation. J. Math. Phys. 1992, 33, 3931–3937. [Google Scholar] [CrossRef]
- Maidana, N.A.; Yang, H.M. Describing the geographic spread of dengue disease by traveling waves. Math. Biosci. 2008, 215, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, L.T.; Maidana, N.A.; Ferreira, W.C., Jr.; Pulino, P.; Yang, H.M. Mathematical models for the Aedes aegypti dispersal dynamics: Traveling waves by wing and wind. Bull. Math. Biol. 2005, 67, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Bacani, F.; Freire, I.L.; Maidana, N.A.; Torrisi, M. Modelagem para a dinâmica populacional do Aedes aegypti via simetrias de Lie. Proc. Ser. Braz. Soc. Appl. Comput. Math. 2015, 3. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrisi, M.; Tracinà, R. An Application of Equivalence Transformations to Reaction Diffusion Equations. Symmetry 2015, 7, 1929-1944. https://doi.org/10.3390/sym7041929
Torrisi M, Tracinà R. An Application of Equivalence Transformations to Reaction Diffusion Equations. Symmetry. 2015; 7(4):1929-1944. https://doi.org/10.3390/sym7041929
Chicago/Turabian StyleTorrisi, Mariano, and Rita Tracinà. 2015. "An Application of Equivalence Transformations to Reaction Diffusion Equations" Symmetry 7, no. 4: 1929-1944. https://doi.org/10.3390/sym7041929
APA StyleTorrisi, M., & Tracinà, R. (2015). An Application of Equivalence Transformations to Reaction Diffusion Equations. Symmetry, 7(4), 1929-1944. https://doi.org/10.3390/sym7041929