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Abstract:

 In this paper, we consider a quite general class of advection reaction diffusion systems. By using an equivalence generator, derived in a previous paper, the authors apply a projection theorem to determine some special forms of the constitutive functions that allow the extension by one of the two-dimensional principal Lie algebra. As an example, a special case is discussed at the end of the paper.
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1. Introduction

In this paper, we focus our attention on the following family of [image: there is no content] nonlinear advection reaction diffusion systems in [image: there is no content] independent variables:



[image: there is no content]=(f(u)[image: there is no content])x+g(u,v,[image: there is no content]),[image: there is no content]=h(u,v),



(1)




with [image: there is no content] analytic functions. These systems, apart from their own mathematical interest, offer the possibility to be analyzed as possible biomathematical models for two interacting species u and v, where one of them, the species v, does not suffer diffusion. The dependence of the function g on the gradient [image: there is no content] shows advection effects; in fact, the individuals of the species u could be influenced by external stimuli as wind velocity or water currents. Of course, the absence of the advective phenomena brings to the following system:


[image: there is no content]=(f(u)[image: there is no content])x+g(u,v),[image: there is no content]=h(u,v),



(2)




that can describe the evolution of the Aedes aegypti mosquito population in a region where wind effects are negligible or the evolution of a Proteus mirabilis bacterial colony when the diffusion coefficient depends only on the species u, that is when the system (2) is a subclass of the following wider class:


[image: there is no content]=(f(u,v)[image: there is no content])x+g(u,v),[image: there is no content]=h(u,v),



(3)




considered in [1,2,3,4].
One of the most important problems in modeling the phenomena of life sciences and natural sciences is to select “good” forms of arbitrary functions (constitutive equations) that fit well with the experimental data and possess mathematical properties that allow scientists to get some solutions or much news about them.

A powerful tool of investigation in this field is given from transformation groups, in particular from equivalence transformations and symmetries.

In the framework of the group analysis, the literature concerning the systems of the type (1) is scarce. There are no papers devoted to a complete Lie symmetry analysis of PDE systems with advection (convection) terms of the form (1). In [5], it is possible to find a complete solution of this problem for a class of diffusion systems with convection terms in both equations. Moreover, the paper [6] contains some description of Lie symmetries for a class of systems, which includes cases having a structure similar to system (3). However, it is possible to find some papers devoted to the complete Lie symmetry analysis of a single advection (convection) reaction diffusion equation (see, e.g., [7,8,9]).

Following, e.g., [10], an equivalence transformation for the system (1) is a non-degenerate change of the independent and dependent variables [image: there is no content] into [image: there is no content]:



[image: there is no content]



(4)




that transforms a system of the class (1) in another one of the same class. That is, an equivalence transformation brings the system of the form (1) in a system preserving the differential structure, but, in general, with:


f^(u^)≠f(u),g^(u^,v^,u^x^)≠g(u,v,[image: there is no content]),h^(u^,v^)≠h(u,v).



(5)




It maps a solution of a system in a solution of the equivalent system.

It could occur that the transformed equations show still the same structure, but the arbitrary functions are depending on additional variables. In this case, the equivalence is said weak.

Of course, in the case:



f^(u^)=f(u),g^(u^,v^,u^x^)=g(u,v,[image: there is no content]),h^(u^,v^)=h(u,v),



(6)




an equivalence transformation becomes a symmetry (a transformation of variables that leaves invariant the transformed system).
A symmetry allows one to reduce the number of independent variables of an equation so that, for instance, a PDE in [image: there is no content] independent variables can become an ODE. Once solved this last one, going back to the original variables, we get a solution that is invariant with respect to the symmetries used for the reduction. It is worthwhile to note that a symmetry transforms invariant solutions into invariant solutions that are not essentially different (see Ovsiannikov [11]), but, having a different form, they could satisfy different suitable initial/boundary conditions.

The aim of this paper is an improvement of the results that we have shown in [12], bearing in mind some generalization of the special form assumed from the constitutive functions f, g and h already used in some previous papers about [4,12,13,14]. In this paper, we use the infinitesimal generator of equivalence transformations derived in [12] for the class (1) in order to obtain some extensions of the principal Lie algebra for the following subclass:



[image: there is no content]=(f(u)[image: there is no content])x+ur[image: there is no content]+[image: there is no content](u)+[image: there is no content](v),[image: there is no content]=h(u,v).



(7)




Here, we assumed:



g(u,v,[image: there is no content])=ur[image: there is no content]+[image: there is no content](u)+[image: there is no content](v)



(8)




that is a generalization of that ones used in [12,13].
In the next section, after recalling, for the sake of completeness, some elements about equivalence transformations (for additional mathematical and methodical details, the interested reader can see [12,15,16]), we write the equivalence generator derived in [12]. In Section 3, the principal Lie algebra and its extensions are discussed; moreover, a simple example that could be related to the biomathematical model of Aedes aegypti is considered. The conclusions are given in the last section.



2. On Equivalence Transformations and Their Calculation for the Class (1)

It is easy to ascertain that, often, in papers on differential equations, it is possible to find several examples of equivalence transformations and their applications. In general, in the past and now, the direct search for the most general equivalence transformations through the finite form of the transformation has been used. Quite often, this search is connected to considerable computational difficulties and does not always lead to the complete solution of the problem (e.g., [17,18]).


2.1. Elements on Equivalence Transformations

Following [11,15,16,19,20] (see also, e.g., [10,21,22,23]), we look for the infinitesimal generator of the equivalence transformations of the system (1) of the form:



[image: there is no content]



(9)




where the infinitesimal components [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are sought depending on x, t, u, v, while the infinitesimal components [image: there is no content] ([image: there is no content]) can also depend on [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], f, g and h. Here, we are interested in obtaining the infinitesimal coordinates [image: there is no content], [image: there is no content] and [image: there is no content] ([image: there is no content] and [image: there is no content]), by applying the Lie–Ovsiannikov infinitesimal criterion [11] by requiring the invariance, with respect to a suitable prolongations [image: there is no content] and [image: there is no content] of generator (9), of the following equations:


[image: there is no content]−(f[image: there is no content])x−g=0,



(10)






[image: there is no content]−h=0,



(11)




without requiring the invariance of the so-called auxiliary conditions [15,16,24,25]:


ft=fx=fv=f[image: there is no content]=f[image: there is no content]=f[image: there is no content]=f[image: there is no content]=gt=gx=g[image: there is no content]=g[image: there is no content]=g[image: there is no content]=0,



(12)






ht=hx=h[image: there is no content]=h[image: there is no content]=h[image: there is no content]=h[image: there is no content]=0,



(13)




that characterize the functional dependence of f, g and h.
In this way, we obtain the weak equivalence transformations [15,16].

The main difference with respect to the classical one is that the infinitesimal operators of weak equivalence transformations can generate transformations that do not preserve the functional dependence of the arbitrary elements.

With respect to the application in biomathematical models, equivalence and weak equivalence transformations were applied not only to study tumor models [26,27], but also the population dynamics in [1,3,4].



2.2. Calculation of Weak Equivalence Transformations

We need the following prolongations [image: there is no content] and [image: there is no content]:



[image: there is no content]=Y+ζ11∂[image: there is no content]+ζ21∂[image: there is no content]+ζ12∂[image: there is no content]+ζ22∂[image: there is no content]+ωu1∂fu,



(14)






[image: there is no content]=[image: there is no content]+ζxx1∂uxx,



(15)




with (see [12] for more details),


ζ11=[image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content],



(16)






ζ21=[image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content],



(17)






ζ12=[image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content],



(18)






ζ22=[image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content][image: there is no content][image: there is no content],



(19)






ζ111=[image: there is no content]ζ11−uxx[image: there is no content][image: there is no content]−utx[image: there is no content][image: there is no content],



(20)






ωu1=[image: there is no content]μ1−fu[image: there is no content][image: there is no content],



(21)




where [image: there is no content] and [image: there is no content] are, respectively, the total derivatives with respect to x and t, while in our case, the operator [image: there is no content] is defined as:


[image: there is no content]=∂u+fu∂f+gu∂g+hu∂h.



(22)




The invariant conditions read:



ζ21−2ζ11[image: there is no content]fu−ux2ωu1−uxxμ1−fζ111−μ2=0,



(23)






ζ22−μ3=0,



(24)




both under the constraints (10) and (11).
Following the usual techniques, we derive the following infinitesimal components for the weak equivalence generators:



[image: there is no content]=α(x),[image: there is no content]=β(t),[image: there is no content]=δ(t,u),[image: there is no content]=λ(x,t,v),



(25)






μ1=(2α′−β′)f,μ2=δt+(δu−β′)g+(α″[image: there is no content]−δuuux2)f,μ3=(λv−β′)h+λt,



(26)




where [image: there is no content] are arbitrary real functions of their arguments. The corresponding infinitesimal generator is:


Y=α(x)∂x+β(t)∂t+δ(t,u)∂u+λ(x,t,v)∂v+(2α′−β′)f∂f+δt+(δu−β′)g+(α″[image: there is no content]−δuuux2)f∂g+(λv−β′)h+λt∂h.



(27)







3. Symmetries for a Subclass of Advection Reaction Diffusion Systems

In this section, we apply the projection theorem, introduced in [28] and successively generalized in [15,16,24], in order to carry out a symmetry classification for the following subclass of system (1):



[image: there is no content]=(f(u)[image: there is no content])x+ur[image: there is no content]+[image: there is no content](u)+[image: there is no content](v),[image: there is no content]=h(u,v),



(28)




with [image: there is no content], [image: there is no content] and [image: there is no content].
For the system (28), we can affirm the following:

Theorem 1. The projection of the infinitesimal weak equivalence generator Y for the system (1) on the space [image: there is no content]:



[image: there is no content]



(29)




is an infinitesimal symmetry generator of a system of the class (28) if and only if the constitutive equations, specifying the forms of f, g and h, are invariant with respect to Y.
Applying the previous theorem, in order to obtain the determining system for the subclass (28), we request the invariance with respect to Y of the following constitutive equations:



f=f(u),g=ur[image: there is no content]+[image: there is no content](u)+[image: there is no content](v),h=h(u,v),



(30)




that is


Y(f−f(u))=0,Y(g−ur[image: there is no content]−[image: there is no content](u)−[image: there is no content](v))=0,Y(h−h(u,v))=0,



(31)




under the constraints (30). Then, taking into account the form (27) of generator Y, we have the following determining equations:


(2α′−β′)f−δfu=0,



(32)






δt+(δu−β′)(ur[image: there is no content]+[image: there is no content]+[image: there is no content])−(δuuux2−α″[image: there is no content])f−(δu−α′)[image: there is no content]ur−δ(rur−1[image: there is no content]+[image: there is no content]′)−λ[image: there is no content]′=0,



(33)






(λv−β′)h+λt−δhu−λhv=0.



(34)




We recall here that the principal Lie algebra [image: there is no content] [10,19] is the Lie algebra that leaves invariant the system (28) for any form of the functions [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Then, the principal Lie algebra is the generator (29) where the functions α, β, δ and λ are solutions of the system (32)–(34) for arbitrary functions [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Consequently, it is a simple matter to ascertain the following:

Corollary 2. The projection (29) of infinitesimal weak equivalence generator Y for the system (1) on the space [image: there is no content]is the infinitesimal symmetry generator corresponding to the principal Lie algebra of the class (28) if and only if [image: there is no content]=0,[image: there is no content]=0,i=1,2,j=1,2,3.

Then, the principal Lie algebra [image: there is no content] is spanned by the following generators corresponding respectively to translations in time and in the space:



X1=∂t,X2=∂x.



(35)





3.1. On the Extensions of the [image: there is no content]

Here, we analyze some particular cases of the extension of the principal algebra for the class (28). That is, we look for a family of particular functions [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], such that the solution of system (32)–(34) is different from [image: there is no content] and α and β constants, which corresponds to the generators (35).

From Equation (32), deriving with respect to x, we get:



[image: there is no content]



(36)




that is


[image: there is no content]



(37)




with [image: there is no content] and [image: there is no content] arbitrary constants. Consequently, from Equation (33), deriving with respect to x, we get:


[image: there is no content]



(38)




and taking into account that [image: there is no content], we obtain:


[image: there is no content]



(39)




Equation (33) becomes:



δt+(δu−β′)([image: there is no content]+[image: there is no content])−δ[image: there is no content]′−λ[image: there is no content]′+[image: there is no content](([image: there is no content]−β′)ur−δrur−1)+ux2(−δuuf)=0.



(40)




As any function does not depend on [image: there is no content], from Equation (40), we derive:



δuuf=0,



(41)






([image: there is no content]−β′)ur−δrur−1=0,



(42)






δt+(δu−β′)([image: there is no content]+[image: there is no content])−δ[image: there is no content]′−λ[image: there is no content]′=0.



(43)




Then, from Equation (41):



[image: there is no content]



(44)




with [image: there is no content] and [image: there is no content] arbitrary functions of t. After these partial results, for the sake of clarity, we rewrite the determining system:


(2[image: there is no content]−β′)f−(uA1+A2)fu=0,



(45)






u([image: there is no content]−β′−rA1)−rA2=0,



(46)






(uA1′+A2′)+(A1−β′)([image: there is no content]+[image: there is no content])−(uA1+A2)[image: there is no content]′−λ[image: there is no content]′=0,



(47)






(λv−β′)h+λt−(uA1+A2)hu−λhv=0.



(48)




From Equation (46), taking into account that any function does not depend on u, we get:



A1=[image: there is no content]−β′r,A2=0,



(49)




then the other equations become:


(2[image: there is no content]−β′)f−u[image: there is no content]−β′rfu=0,



(50)






−β″ru+[image: there is no content]−(1+r)β′r([image: there is no content]+[image: there is no content])−u[image: there is no content]−β′r[image: there is no content]′−λ[image: there is no content]′=0,



(51)






(λv−β′)h+λt−u[image: there is no content]−β′rhu−λhv=0.



(52)




We observe that from Equation (50), if f is arbitrary, it follows [image: there is no content], [image: there is no content]=0, from Equation (51) [image: there is no content], while the Equation (52) is satisfied. Therefore, for f arbitrary, we do not obtain the extension of the principal Lie algebra. Then, in order to look for extensions of the principal algebra, we observe that from Equation (50), the form of function f must have the following structure:


	[image: there is no content].


	[image: there is no content] and [image: there is no content].




We study these cases separately.


	[image: there is no content]

In this case, from Equation (50), we have [image: there is no content]=0. Moreover, by differentiating Equation (51) with respect to u, we have:



β″+β′(r[image: there is no content]′−u[image: there is no content]″)=0.



(53)




We observe that if [image: there is no content] is arbitrary, we have [image: there is no content], while from Equation (51), we have [image: there is no content], and Equation (52) is satisfied; however, we do not obtain the extension of the principal Lie algebra. Then, in order to have extensions of the principal algebra, the following conditions must be satisfied:



u[image: there is no content]″−r[image: there is no content]′=[image: there is no content],



(54)






β″=[image: there is no content]β′.



(55)




We distinguish two cases: [image: there is no content] and [image: there is no content].


	(a)

	If [image: there is no content], from Equation (54), we get:



[image: there is no content](u)=c1u1+r1+r−[image: there is no content]ur+c2.



(56)




Consequently, from Equation (51), we obtain:



λ(t,v)=−(c2+[image: there is no content])(r+1)β′r[image: there is no content]′,



(57)




while Equation (52) becomes:



[image: there is no content]



(58)




with:



[image: there is no content]



(59)




We observe that if [image: there is no content], then [image: there is no content], and we do not obtain the extension of the principal Lie algebra. Consequently, in order to have extensions of the principal algebra, the functions [image: there is no content] and h must satisfy the equation [image: there is no content]. In this case, we have two possible generators depending on [image: there is no content].


	i.

	If [image: there is no content]≠0, as from Equation (55), we have:



β(t)=b0+b1e[image: there is no content]t,



(60)




the additional generator is:



X3=e[image: there is no content]t∂t−[image: there is no content]e[image: there is no content]tru∂u−(c2+[image: there is no content])(r+1)[image: there is no content]e[image: there is no content]tr[image: there is no content]′∂v.



(61)






	ii.

	If [image: there is no content]=0, as from Equation (55), we have:



[image: there is no content]



(62)




the additional generator is:



X3=t∂t−ur∂u−(c2+[image: there is no content])(r+1)r[image: there is no content]′∂v.



(63)










	(b)

	If [image: there is no content], from Equation (54), we get:



[image: there is no content](u)=c1ln(u)+[image: there is no content]u+c2.



(64)




Consequently, from Equation (51), we obtain:



λ(t,v)=−c1β′[image: there is no content]′,



(65)




while Equation (52) becomes:



β′[image: there is no content]′2J2=0



(66)




with:



J2≡hc1[image: there is no content]″−(h+uhu)[image: there is no content]′2+c1(hv−[image: there is no content])[image: there is no content]′.



(67)




We observe that if [image: there is no content], then [image: there is no content], and we do not obtain extension of the principal Lie algebra. Consequently, in order to have extensions of the principal algebra, the functions [image: there is no content] and h must satisfy the equation [image: there is no content]. In this case, we have two possible generators depending on [image: there is no content].


	i.

	If [image: there is no content]≠0, as from Equation (55), we have:



β(t)=b0+b1e[image: there is no content]t,



(68)




the additional generator is:



X3=e[image: there is no content]t∂t+[image: there is no content]e[image: there is no content]tu∂u−c1[image: there is no content]e[image: there is no content]t[image: there is no content]′∂v.



(69)






	ii.

	If [image: there is no content]=0, as from Equation (55), we have:



[image: there is no content]



(70)




the additional generator is:



X3=t∂t−ur∂u−c1[image: there is no content]′∂v.



(71)













	[image: there is no content] and [image: there is no content]

In this case, from Equation (50), we have:



β(t)=[image: there is no content](2r−s)r−st+b0,



(72)




and Equation (51) becomes:



[image: there is no content]u[image: there is no content]′−[image: there is no content](1+2r−s)([image: there is no content]+[image: there is no content])−(r−s)λ[image: there is no content]′=0.



(73)




Moreover, by differentiating with respect to u, we get:



[image: there is no content](u[image: there is no content]″+(s−2r)[image: there is no content]′)=0.



(74)




We observe that if [image: there is no content] is arbitrary, then we have [image: there is no content]=0, while from Equation (51) [image: there is no content] and Equation (52) is satisfied, but we do not obtain the extension of the principal Lie algebra. Then, in order to have extensions of the principal algebra, the following condition must be satisfied:



u[image: there is no content]″+(s−2r)[image: there is no content]′=0.



(75)




We distinguish the following two cases.


	(a)

	If [image: there is no content], from Equation (75), we get:



[image: there is no content](u)=c1+c2u1+2r−s.



(76)




From Equation (51):



λ(t,v)=[image: there is no content](s−2r−1)(c1+[image: there is no content])(r−s)[image: there is no content]′,



(77)




while Equation (52) becomes:



[image: there is no content](r−s)[image: there is no content]′2J3=0



(78)




with:



J3≡(1+2r−s)(c1+[image: there is no content])(h[image: there is no content]″+hv[image: there is no content]′)+(uhu−h(1+4r−2s))[image: there is no content]′2.



(79)




We observe that if the functions [image: there is no content] and h do not satisfy the equation [image: there is no content], we do not obtain the extension of the principal Lie algebra. Then, in order to have extensions of the principal algebra, the functions [image: there is no content] and h must satisfy the equation [image: there is no content]. In this case, we obtain the following additional generator:



X3=x∂x+2r−sr−st∂t+1s−ru∂u+(s−2r−1)(c1+[image: there is no content])(r−s)[image: there is no content]′∂v.



(80)






	(b)

	If [image: there is no content], from Equation (75), we get:



[image: there is no content](u)=c1ln(u)+c2,



(81)




and from Equation (72):



β(t)=[image: there is no content]r+1t+b0.



(82)




Consequently, from Equation (51), we obtain:



λ(t,v)=−c1[image: there is no content](r+1)[image: there is no content]′,



(83)




while Equation (52) becomes:



[image: there is no content](r+1)[image: there is no content]′2J4=0



(84)




with:



J4≡hc1[image: there is no content]″−(h+uhu)[image: there is no content]′2+c1hv[image: there is no content]′.



(85)




We observe that if the functions [image: there is no content] and h do not satisfy the equation [image: there is no content], we do not obtain the extension of the principal Lie algebra. Then, in order to have extensions of the principal algebra, the functions [image: there is no content] and h must satisfy the equation [image: there is no content]. In this case, we obtain the following additional generator:



X3=x∂x+1r+1t∂t+1r+1u∂u−c1(r+1)[image: there is no content]′∂v.



(86)











Summarizing, we obtained six subclasses of class (28), which admit a three-dimensional Lie algebra.


	[image: there is no content] with [image: there is no content], [image: there is no content](u)=c1u1+r1+r−[image: there is no content]ur+c2 with [image: there is no content]≠0, the functions h and [image: there is no content] linked from the following relation:



h(1+r)(c2+[image: there is no content])[image: there is no content]″−(h(1+2r)−uhu)[image: there is no content]′2+(1+r)(hv−[image: there is no content])(c2+[image: there is no content])[image: there is no content]′=0.



(87)





	[image: there is no content] with [image: there is no content], [image: there is no content](u)=c1u1+r1+r+c2 and the functions h and [image: there is no content] linked from the following relation:



h(1+r)(c2+[image: there is no content])[image: there is no content]″−(h(1+2r)−uhu)[image: there is no content]′2+(1+r)(hv)(c2+[image: there is no content])[image: there is no content]′=0.



(88)





	[image: there is no content], [image: there is no content](u)=c1ln(u)+[image: there is no content]u+c2 with [image: there is no content]≠0 and the functions h and [image: there is no content] linked from the following relation:



hc1[image: there is no content]″−(h+uhu)[image: there is no content]′2+c1(hv−[image: there is no content])[image: there is no content]′=0.



(89)





	[image: there is no content], [image: there is no content](u)=c1ln(u)+c2 and the functions h and [image: there is no content] linked from the following relation:



hc1[image: there is no content]″−(h+uhu)[image: there is no content]′2+c1(hv)[image: there is no content]′=0.



(90)





	[image: there is no content] with s≠r,2r+1, [image: there is no content](u)=c1+c2u1+2r−s and the functions h and [image: there is no content] linked from the following relation:



(1+2r−s)(c1+[image: there is no content])(h[image: there is no content]″+hv[image: there is no content]′)+(uhu−h(1+4r−2s))[image: there is no content]′2=0.



(91)





	[image: there is no content], [image: there is no content](u)=c1ln(u)+c2 and the functions h and [image: there is no content] linked from the following relation:



hc1[image: there is no content]″−(h+uhu)[image: there is no content]′2+c1hv[image: there is no content]′=0.



(92)









3.2. A Special Case

In agreement with some news about the biological compatibility of the form of g derived from some previous papers (see, e.g., [29,30] and references insides), in this subsection, we show an example of the application of the previous results.

By selecting the case 1a from the obtained cases and assuming [image: there is no content] and [image: there is no content] in (56), we consider [image: there is no content][image: there is no content], of the following form:



f=f0u,[image: there is no content](u)=[image: there is no content]u2−[image: there is no content]u,



(93)




with [image: there is no content][image: there is no content],[image: there is no content], arbitrary constants. Moreover, we assume:


[image: there is no content](v)=γ2v+[image: there is no content],



(94)




with [image: there is no content][image: there is no content], arbitrary constants.
In this case, in order to have an extension on the principal algebra, the function [image: there is no content] must satisfy the equation [image: there is no content], that is:



(uhu−3h)γ22+2(hv−[image: there is no content])(γ2v+[image: there is no content])[image: there is no content]=0.



(95)




Solutions of this equation are functions [image: there is no content] of the form:



h(u,v)=u3H(σ)−2[image: there is no content]γ2(γ2v+[image: there is no content]),



(96)




where H is an arbitrary function of σ=γ2v+[image: there is no content]γ2u2. By assuming [image: there is no content] in agreement with [13,29,30], we get:


h(u,v)=γ2v+[image: there is no content]γ2(u−2[image: there is no content]).



(97)




The system (28) becomes:



[image: there is no content]=f0ux2+f0uuxx+u[image: there is no content]+[image: there is no content]u2−[image: there is no content]u+γ2v+[image: there is no content],[image: there is no content]=γ2v+[image: there is no content]γ2(u−2[image: there is no content]).



(98)




While the third generator is obtained by specializing generator (61) and has the form:



X3=e[image: there is no content]t∂t−[image: there is no content]e[image: there is no content]tu∂u−2[image: there is no content]γ2(γ2v+[image: there is no content])e[image: there is no content]t∂v.



(99)




By considering the generator [image: there is no content], we get:



u(t,x)=U(z)e−[image: there is no content]t,v(t,x)=V(z)e−2[image: there is no content]t−[image: there is no content]γ2,



(100)




with z=[image: there is no content]xk+e−[image: there is no content]t, while the functions [image: there is no content][image: there is no content] are solutions of the reduced system:


U″Uf0γ02+U′2f0γ02+k[image: there is no content](U+k)U′+k2V+[image: there is no content]k2U2=0,



(101)






[image: there is no content]V′+UV=0.



(102)




This reduced system, as well as other cases of biological specializations, will be studied in later research.

Of course, the systems studied here cannot be considered, strictu sensu, as mathematical models. In fact, their constitutive parameters need to be characterized carefully from the biological point view. However, having in mind some previous models concerned with Aedes aegypti [13,14,29,30,31], we try to stress some structural features of the system (98). To this aim, we rewrite system (98) as:



[image: there is no content]=(f0u[image: there is no content])x+u[image: there is no content]+[image: there is no content]uu−[image: there is no content][image: there is no content]+γ2v+[image: there is no content]γ2[image: there is no content]=(u−2[image: there is no content])v+[image: there is no content]γ2



(103)




It is easy to ascertain a weak interaction of the equation for the aquatic population on the equation for the winged population. Moreover, in this last one appears a growth for population u having a logistic structure. By identifying [image: there is no content] as a positive rate of maturation of the aquatic forms in winged female mosquitoes and [image: there is no content] as the positive winged population mortality, it is possible to find a threshold value utrs=[image: there is no content][image: there is no content]. Finally, the aquatic population evolution equation shows a growth rate u−2[image: there is no content] ruled by the density of mosquitoes and their mortality.

Remark 1. It is a simple matter to ascertain that the system (103) admits as the special solution:



u=[image: there is no content][image: there is no content],v=−[image: there is no content]γ2.



(104)




Moreover, it is possible to get other solutions by assuming v=−[image: there is no content]γ2, while u is obtained as a solution of equation:



[image: there is no content]=(f0u[image: there is no content])x+u[image: there is no content]+[image: there is no content]uu−[image: there is no content][image: there is no content].



(105)




For the interested reader, it could be worthwhile noticing that Equation (105) is a particular case of equation considered in [8,9]. Moreover, we can get the results obtained in [8,9] (see Table 1, Case 8 of both papers) by projection. Indeed, the Lie symmetry generator (99) projected in the space t,x,u,v=−[image: there is no content]γ2 becomes the Lie symmetry [image: there is no content] of [8,9].




4. Conclusions

In this paper, we have considered a class of advection reaction diffusion systems of interest in biomathematics. After having recalled a weak equivalence generator, obtained in a previous work [12], we find some particular cases of the nonlinear system (28) admitting three-dimensional Lie algebras by using a specialization of a projection theorem [24,28]. In this subclass, the constitutive equation characterizing g is assigned as:



g=ur[image: there is no content]+[image: there is no content](u)+[image: there is no content](v)








that generalizes [12]:


g=ρuruxs+[image: there is no content]ua+[image: there is no content]vb,



(106)




where the constants ρ(≠0),[image: there is no content],[image: there is no content],r,s,a and b are constitutive parameters. We derive the principal Lie algebra and the functions admitting at least an extension by one. These results are summarized at the end of Section 3.1. A special case is considered in Section 3.2.





Acknowledgments

The authors wish to thank the reviewers for their interesting observations and the editor for his very useful comments. Mariano Torrisi was supported from Gruppo Nazionale per la Fisica Matematica of Istituto Nazionale di Alta Matematica.



Author Contributions

The authors contributed equally to this work.



Conflicts of Interest

The authors declare no conflict of interest.



References


	1. 
Cardile, V.; Torrisi, M.; Tracinà, R. On a reaction-diffusion system arising in the development of Bacterial Colonies. In Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 24–31 October 2004; Volume 32, p. 38.

	2. 
Medvedev, G.S.; Kaper, T.J.; Kopell, N. A reaction diffusion system with periodic front Dynamics. SIAM J. Appl. Math. 2000, 60, 1601–1638. [Google Scholar] [CrossRef]

	3. 
Torrisi, M.; Tracinà, R. On a class of reaction diffusion systems: Equivalence transformations and symmetries. In Asymptotic Methods in Nonlinear Wave Phenomena; Ruggeri, T., Sammartino, M., Eds.; World Science Publishing Co. Pte. Ltd.: Singapore, 2007; pp. 207–216. [Google Scholar]

	4. 
Torrisi, M.; Tracinà, R. Exact solutions of a reaction-diffusion system for Proteus Mirabilis bacterial colonies. Nonlinear Anal. Real World Appl. 2011, 12, 1865–1874. [Google Scholar] [CrossRef]

	5. 
Cherniha, R.; Serov, M. Nonlinear systems of the burgers-type equations: Lie and Q-conditional symmetries, ansätze and solutions. J. Math. Anal. Appl. 2003, 282, 305–328. [Google Scholar] [CrossRef]

	6. 
Cherniha, R.; Wilhelmsson, H. Symmetry and exact solution of heat-mass transfer equations in thermonuclear plasma. Ukr. Math. J. 1996, 48, 1434–1449. [Google Scholar] [CrossRef]

	7. 
Cherniha, R.; Serov, M. Lie and non-Lie symmetries of nonlinear diffusion equations with convection term. Symmetry Nonlinear Math. Phys. 1997, 2, 444–449. [Google Scholar]

	8. 
Cherniha, R.; Serov, M. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms. Eur. J. Appl. Math. 1998, 9, 527–542. [Google Scholar] [CrossRef]

	9. 
Cherniha, R.; Serov, M. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II. Eur. J. Appl. Math. 2006, 17, 597–605. [Google Scholar] [CrossRef]

	10. 
Ibragimov, N.H.; Torrisi, M.; Valenti, A. Preliminary group classification of equation vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 1991, 32, 2988–2995. [Google Scholar] [CrossRef]

	11. 
Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]

	12. 
Freire, I.L.; Torrisi, M. Weak equivalence transformations for a class of models in biomathematics. Abstr. Appl. Anal. 2014. [Google Scholar] [CrossRef]

	13. 
Freire, I.L.; Torrisi, M. Symmetry methods in mathematical modeling Aedes aegypti dispersal dynamics. Nonlinear Anal. Real World Appl. 2013, 14, 1300–1307. [Google Scholar] [CrossRef]

	14. 
Freire, I.L.; Torrisi, M. Similarity solutions for systems arising from an Aedes aegypti model. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 872–879. [Google Scholar] [CrossRef]

	15. 
Romano, V.; Torrisi, M. Application of weak equivalence transformations to a group analysis of a drift-diffusion model. J. Phys. A Math. Gen. 1999, 32, 7953–7963. [Google Scholar] [CrossRef]

	16. 
Torrisi, M.; Tracinà, R. Equivalence transformations and symmetries for a heat conduction model. Int. J. Non-Linear Mech. 1998, 33, 473–487. [Google Scholar] [CrossRef]

	17. 
Gazeau, J.P.; Winternitz, P. Symmetries of variable-coefficient Korteweg-de Vries equations. J. Math. Phys. 1992, 33, 4087–4102. [Google Scholar] [CrossRef]

	18. 
Winternitz, P.; Gazeau, J.P. Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Phys. Lett. A 1992, 167, 246–250. [Google Scholar] [CrossRef]

	19. 
Akhatov, I.S.H.; Gazizov, R.K.; Ibragimov, N.H. Nonlocal symmetries. Heuristic approach. J. Sov. Math. 1991, 55, 1401–1450. [Google Scholar] [CrossRef]

	20. 
Lisle, I.G. Equivalence Transformation for Classes of Differential Equations. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1992. [Google Scholar]

	21. 
Khalique, C.M.; Mahomed, F.M.; Ntsime, B.P. Group classification of the generalized Emden-Fowler-type equation. Nonlinear Anal. Real World Appl. 2009, 10, 3387–3395. [Google Scholar] [CrossRef]

	22. 
Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]

	23. 
Molati, M.; Khalique, C.M. Lie group classification of a generalized Lane–Emden Type system in two dimensions. J. Appl. Math. 2012. [Google Scholar] [CrossRef]

	24. 
Torrisi, M.; Tracinà, R. Equivalence transformations for systems of first order quasilinear partial differential equations. In Modern Group Analysis VI: Developments in Theory, Computation and Application; New Age International(P) Ltd.: New Delhi, India, 1996; pp. 115–135. [Google Scholar]

	25. 
Torrisi, M.; Tracinà, R.; Valenti, A. Group analysis approach for a non linear differential system arising in diffusion phenomena. J. Math. Phys. 1996, 37, 4758–4767. [Google Scholar] [CrossRef]

	26. 
Gambino, G.; Greco, A.M.; Lombardo, M.C. A group analysis via weak equivalence transformations for a model of tumour encapsulation. J. Phys. A 2004, 37, 3835–3846. [Google Scholar] [CrossRef]

	27. 
Ibragimov, N.H.; Säfström, N. The equivalence group and invariant solutions of a tumour growth model. Commun. Nonlinear Sci. Num. Simul. 2004, 9, 61–69. [Google Scholar] [CrossRef]

	28. 
Ibragimov, N.H.; Torrisi, M. A simple method for group analysis and its application to a model of detonation. J. Math. Phys. 1992, 33, 3931–3937. [Google Scholar] [CrossRef]

	29. 
Maidana, N.A.; Yang, H.M. Describing the geographic spread of dengue disease by traveling waves. Math. Biosci. 2008, 215, 64–77. [Google Scholar] [CrossRef] [PubMed]

	30. 
Takahashi, L.T.; Maidana, N.A.; Ferreira, W.C., Jr.; Pulino, P.; Yang, H.M. Mathematical models for the Aedes aegypti dispersal dynamics: Traveling waves by wing and wind. Bull. Math. Biol. 2005, 67, 509–528. [Google Scholar] [CrossRef] [PubMed]

	31. 
Bacani, F.; Freire, I.L.; Maidana, N.A.; Torrisi, M. Modelagem para a dinâmica populacional do Aedes aegypti via simetrias de Lie. Proc. Ser. Braz. Soc. Appl. Comput. Math. 2015, 3. [Google Scholar] [CrossRef]





© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  symmetry-07-01929


  
    		
      symmetry-07-01929
    


  




  





