

 Iterative Speedup by Utilizing Symmetric Data in Pricing Options with Two Risky Assets

Iterative Speedup by Utilizing Symmetric Data in Pricing Options with Two Risky Assets

Symmetry 2017, 9(1), 12; doi:10.3390/sym9010012

Article

Iterative Speedup by Utilizing Symmetric Data in Pricing Options with Two Risky Assets

Dohyun Pak 1, Changkyu Han 2 and Won-Tak Hong 1,*

1

Department of Mathematics & Finance, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea

2

Department of Risk Management, Kiwoom Securities Co., Ltd., 18 Yeouinaru-ro 4(sa)-gil, Yeongdeungpo-gu, Seoul 07331, Korea

*

Correspondence: Tel.: +82-31-750-5387

Academic Editors: Doo-Soon Park and Shu-Ching Chen

Received: 29 September 2016 / Accepted: 13 January 2017 / Published: 21 January 2017

Abstract:

The Crank–Nicolson method can be used to solve the Black–Scholes partial differential equation in one-dimension when both accuracy and stability is of concern. In multi-dimensions, however, discretizing the computational grid with a Crank–Nicolson scheme requires significantly large storage compared to the widely adopted Operator Splitting Method (OSM). We found that symmetrizing the system of equations resulting from the Crank–Nicolson discretization help us to use the standard pre-conditioner for the iterative matrix solver and reduces the number of iterations to get an accurate option values. In addition, the number of iterations that is required to solve the preconditioned system, resulting from the proposed iterative Crank–Nicolson scheme, does not grow with the size of the system. Thus, we can effectively reduce the order of complexity in multidimensional option pricing. The numerical results are compared to the one with implicit Operator Splitting Method (OSM) to show the effectiveness.

Keywords:

Black–Scholes equation; Operator Splitting Method (OSM); Crank–Nicolson; iterative solver

1. Introduction

The multidimensional Black–Scholes equation is often used to model options written on multiple assets. One of the traditional methods both in practice and research for discretizing multidimensional Black–Scholes equations is the Operator Splitting Method (OSM) [1,2,3]. To solve multidimensional Black–Scholes equations, the OSM solves one-dimensional Black–Scholes equations in turn. Thus, it is possible to use a highly efficient tridiagonal matrix solver as in one dimension [2]. The OSM converges at first order in time and second order in space if we discretize multidimensional Black–Scholes equations with an implicit central difference method. In one-dimensional cases, in which the option is written on a single asset, the order of convergence in time can be improved to the second order without too many difficulties if one replaces a time integration scheme with Crank–Nicolson.

In multi-dimensions, however, replacing the time integration scheme is not straightforward as in one-dimension. In general, multiple assets are correlated, and thus the multidimensional Black–Scholes equation has corresponding cross partial derivative terms, which do not appear in one-dimensional Black–Scholes equations. Sometimes, these partial derivatives are not calculated and are assumed to be known, which is easy to implement but leads to inaccuracy under high correlation and large volatilities. If an implicit scheme along with OSM is applied to discretize the mixed partial derivatives appearing in the equation, the resulting system becomes no longer tridiagonal and the Thomas algorithm is not applicable. Therefore, another matrix solver or more advanced multidimensional modeling with radial basis functions [4,5] have to be used at the cost of computation time. In practice, however, the Thomas algorithm is indispensable because of its highly efficient nature. Therefore, one avoids fully implicit discretization of multidimensional Black–Scholes equations by replacing the mixed partial derivative terms with known values so that other partial derivative terms can be discretized implicitly. In this way, practitioners could use the OSM with the most efficient matrix solver, the Thomas algorithm, but end up with only first order convergence in time.

Having second order convergence both in space and time is important if highly accurate option values are of concern. A second order convergence in time is helpful for the practitioners if an option has complex payoff structures or parameter adjustment is needed before the maturity. In addition, Greeks ([image: there is no content] etc.) are usually calculated in the post-processing stage using the computed option values, and more significant digits on the option price will improve the accuracy of Greeks. However, in practice, the time to obtain one more significant digit on the option price grows exponentially with the first order convergence speed in time. Therefore, it would be natural to try second order schemes such as Crank–Nicolson, BDF-2 [6,7], etc. Each of the second order schemes has its own advantages and disadvantages. We use the Crank–Nicolson scheme, which has second-order convergence in space and time.

A straightforward Crank–Nicolson discretization of the multidimensional Black–Scholes equation produces a system that makes the direct solver unattractive in terms of the computational effort. However, a simple modification to symmetrize the system helps to solve the system more efficiently with an iterative solver. We found that a standard preconditioner for the iterative solver significantly reduces the number of iterations for those problems that we tested after symmetrization. Finally, we compare the computational complexity of the iterative Crank–Nicolson method and OSM.

2. Nomenclature

We use bold uppercase letters to represent matrix [image: there is no content], bold lowercase letters to denote vector [image: there is no content], superscript’ to denote transpose, and superscript [image: there is no content] to indicate n-th time period. All vectors that are used in this paper are assumed to be a column vector.

Let the price of the derivative [image: there is no content], where x and y are two different asset prices, and [image: there is no content] is the solution of the following two-dimensional Black–Scholes partial differential equation [8,9]:

[image: there is no content]

(1)

where the domain is defined by t,x,y|t∈(0,T],x≥0,y≥0. In Equation (1), [image: there is no content] is the volatility of the i-th asset , ρ is the correlation coefficient, and r is the risk-free interest rate. The maturity of the option V is denoted by subscript T. We express the final payoff of the option V in the following form:

VT=VT(x,y)=V(T,x,y),∀x,y∈[0,∞).

(2)

Big O notation is used to measure the growth rate of algorithm in terms of input size. For example, a function [image: there is no content] means that there exist positive numbers C and [image: there is no content] such that [image: there is no content] for all [image: there is no content]

3. Implicit OSM

Operator Splitting Method (OSM) finds the solution of multi-dimensional version of Equation (1) by splitting the differential operator so that the multi-dimensional problem becomes several one-dimensional problems [2]. For brevity, let us consider two-dimensional version of OSM. Equation (1) can be rewritten as follows:

[image: there is no content]

(3)

where

[image: there is no content]

(4)

Given the final condition [image: there is no content], we find the solution at previous time, [image: there is no content], in two steps:

	Step (1)

	
Find the solution at [image: there is no content], by discretizing the equation [image: there is no content] with the given [image: there is no content]:

Vi,j(n+12)Δt+σ12xi2Vi-1,j(n+12)-2Vi,j(n+12)+Vi+1,j(n+12)2Δx2+rxVi+1,j(n+12)-Vi-1,j(n+12)2Δx-12rVi,j(n+12)=-ρσ1σ2xiyjVi+1,j+1(n+1)+Vi-1,j-1(n+1)-Vi+1,j-1(n+1)-Vi-1,j+1(n+1)8ΔxΔy+Vi,j(n+1)Δt.

(5)

	Step (2)

	
Find the solution at [image: there is no content], by discretizing the equation [image: there is no content] with the solution found in Step (1) as the given condition:

Vi,j(n)Δt+σ22yj2Vi,j-1(n)-2Vi,j(n)+Vi,j+1(n)2Δy2+ryjVi,j+1(n)-Vi,j-1(n)2Δy-12rVi,j(n)=-ρσ1σ2xiyjVi+1,j+1(n+12)+Vi-1,j-1(n+12)-Vi+1,j-1(n+12)-Vi-1,j+1(n+12)8ΔxΔy+Vi,j(n+12)Δt.

(6)

Depending on the size of the time step [image: there is no content], we need to repeat the above Steps (1) and (2) to find the option price at [image: there is no content] In the current presentation, we have only two steps to obtain solution at [image: there is no content] from time T because we have two operators in Equation (3). For a general m-dimensional problem, we need m steps to obtain a solution at [image: there is no content] In each Step, we have to solve the following linear system where [image: there is no content] and [image: there is no content] are known:

[image: there is no content]

(7)

The above discretization given in Equations (5) and (6) are not a full implicit discretization because of the partial derivative terms. Note that the mixed partial derivative terms are assumed to be known so that other partial derivative terms can be discretized implicitly. Thus, we should call it semi implicit discretization to be more precise, but, for the rest of this study, we will call the discretization given in Equation (7) an implicit discretization. This implicit discretization is unconditionally stable and has truncation error, [image: there is no content] In addition, the matrix [image: there is no content] in Equation (7) is tridiagonal (depending on the boundary condition, the matrix [image: there is no content] may not be exactly tridigonal; however, it could be converted to tridiagonal [10]). Thus, the system can be effectively solved by Thomas Algorithm [11], which is the main feature of implicit OSM.

4. Iterative Crank–Nicolson Method

We propose an iterative Crank–Nicolson finite difference discretization of Equation (1) on a general non-uniform grid. Instead of solving a smaller size one-dimensional problem repeatedly, as in the Operator Splitting Method (OSM), we propose to fully discretize the two asset Black–Scholes equation with a Crank–Nicolson scheme. The discretization can be solved efficiently by a GMRES (Generalized Minimal Residual Method) [12,13] solver with preconditioning after symmetrization.

In the following, we use [image: there is no content] and [image: there is no content] for the price of the first and second asset on a [image: there is no content]-th finite difference stencil. We define [image: there is no content] and [image: there is no content]. We approximate the differential operator in the Equation (1) as follows:

(8)∂V∂t|xi,yj=Vi,jn+1-Vi,jnΔt,(9)∂V∂x|xi,yj=-hiVi-1,jn+1+Vi-1,jn2hi-1(hi-1+hi)+(hi-hi-1)Vi,jn+1+Vi,jn2hi-1hi+hi-1Vi+1,jn+1+Vi+1,jn2hi(hi-1+hi),(10)∂V∂y|xi,yj=-kjVi,j-1n+1+Vi,j-1n2kj-1(kj-1+kj)+(kj-kj-1)Vi,jn+1+Vi,jn2kj-1kj+kj-1Vi,j+1n+1+Vi,j+1n2kj(kj-1+kj),(11)∂2V∂x2|xi,yj=Vi-1,jn+1+Vi-1,jnhi-1(hi-1+hi)-Vi,jn+1+Vi,jnhi-1hi+Vi+1,jn+1+Vi+1,jnhi(hi-1+hi),(12)∂2V∂y2|xi,yj=Vi,j-1n+1+Vi,j-1nkj-1(kj-1+kj)-Vi,jn+1+Vi,jnkj-1kj+Vi,j+1n+1+Vi,j+1nkj(kj-1+kj),(13)∂2V∂x∂y|xi,yj=Vi+1,j+1n+1-Vi+1,j-1n+1-Vi-1,j+1n+1+Vi-1,j-1n+12(hi-1+hi)(kj-1+kj)+Vi+1,j+1n-Vi+1,j-1n-Vi-1,j+1n+Vi-1,j-1n2(hi-1+hi)(kj-1+kj),(14)V|xi,yj=Vi,jn+1+Vi,jn2.

Applying Equations (8)−(14) to Equation (1), we obtain the following Crank–Nicolson discretization of two-dimensional Black–Scholes equation:

Li,j1Vi-1,j-1n+Li,j2Vi-1,jn+Li,j3Vi-1,j+1n+Li,j4Vi,j-1n+Li,j5Vi,jn+Li,j6Vi,j+1n+Li,j7Vi+1,j-1n+Li,j8Vi+1,jn+Li,j9Vi+1,j+1n=Ri,j1Vi-1,j-1n+1+Ri,j2Vi-1,jn+1+Ri,j3Vi-1,j+1n+1+Ri,j4Vi,j-1n+1+Ri,j5Vi,jn+1+Ri,j6Vi,j+1n+1+Ri,j7Vi+1,j-1n+1+Ri,j8Vi+1,jn+1+Ri,j9Vi+1,j+1n+1,

(15)

where

Li,j1=-ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Li,j1=rxihihi-1(hi-1+hi)-σ12xi2hi-1(hi-1+hi)Δt2,Li,j1=ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Li,j4=ryjkjkj-1(kj-1+kj)-σ22yj2kj-1(kj-1+kj)Δt2,Li,j5=-rxi(hi-hi-1)hi-1hi-ryj(kj-kj-1)kj-1kj+σ12xi2hi-1hi+σ22yj2kj-1kjΔt2+rΔt2+1,Li,j6=-ryjkj-1kj(kj-1+kj)-σ22yj2kj(kj-1+kj)Δt2,Li,j7=ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Li,j8=-rxihi-1hi(hi-1+hi)-σ12xi2hi(hi-1+hi)Δt2,Li,j9=-ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,

and

Ri,j1=ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Ri,j2=-rxihihi-1(hi-1+hi)+σ12xi2hi-1(hi-1+hi)Δt2,Ri,j3=-ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Ri,j4=-ryjkjkj-1(kj-1+kj)+σ22yj2kj-1(kj-1+kj)Δt2,Ri,j5=rxi(hi-hi-1)hi-1hi+ryj(kj-kj-1)kj-1kj-σ12xi2hi-1hi-σ22yj2kj-1kjΔt2-rΔt2+1,Ri,j6=ryjkj-1kj(kj-1+kj)+σ22yj2kj(kj-1+kj)Δt2,Ri,j7=-ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2,Ri,j8=rxihi-1hi(hi-1+hi)+σ12xi2hi(hi-1+hi)Δt2,Ri,j9=ρσ1σ2xiyj(hi-1+hi)(kj-1+kj)Δt2.

The symmetrized iterative Crank–Nicolson method for the two asset Black–Scholes equation is described as follows.

	Step (1)

	
Get a linear system by discretizing Equation (1) with the Crank–Nicolson scheme. The following equation is matrix-vector form of the Equation (15) :

[image: there is no content]

(16)

where

(17)v(n)=(Vi-1,j-1n,Vi-1,jn,Vi-1,j+1n,Vi,j-1n,Vi,jn,Vi,j+1n,Vi+1,j-1n,Vi+1,jn,Vi+1,j+1n)′,(18)v(n+1)=(Vi-1,j-1n+1,Vi-1,jn+1,Vi-1,j+1n+1,Vi,j-1n+1,Vi,jn+1,Vi,j+1n+1,Vi+1,j-1n+1,Vi+1,jn+1,Vi+1,j+1n+1)′.

Note that the data, [image: there is no content] and [image: there is no content], grows quadratically in terms of the grid points. In addition, the system in Equation (16) is non-symmetric.

	Step (2)

	
Apply appropriate boundary conditions to the [image: there is no content] and [image: there is no content]. Depending on the option type, the boundary condition is either given as a linear boundary condition on the truncated interface or an essential boundary condition where the price of the option is zero. We denote the boundary condition imposed system as follows:

[image: there is no content]

(19)

	Step (3)

	
Symmetrize the system given in Equation (19) as follows:

[image: there is no content]

(20)

where [image: there is no content] is the transpose of [image: there is no content]

	Step (4)

	
Create preconditioned matrix [image: there is no content] with [image: there is no content] using incomplete LU factorization (where LU stands for lower and upper triangular matrix). The choice of the preconditioner is more important than the choice of the Krylov iterative method such as GMRES [14,15]. The effectiveness of preconditioner [image: there is no content] created by incomplete LU factorization is measured by how well [image: there is no content] approximates the [image: there is no content].

	Step (5)

	
Solve Equation (20) repetitively using GMRES with the preconditioner [image: there is no content] and the previous solution vector [image: there is no content] as an initial guess until we find the option price [image: there is no content]. Use the final condition [image: there is no content] to start the iteration. We use the following split preconditioning with the incomplete LU factors, [image: there is no content] and [image: there is no content]:

[image: there is no content]

The previous solution vector, [image: there is no content], is used as an initial guess of [image: there is no content] to solve the Equations (21) and (22).

Thus far, we have explained the general procedure of the iterative Crank–Nicolson method for two asset Black–Scholes equations. The idea can be extended to the three asset Black–Scholes equation:

∂V∂t+12σ12x2∂2V∂x2+12σ22y2∂2V∂y2+12σ32z2∂2V∂z2+ρ12σ1σ2xy∂2V∂x∂y+ρ23σ2σ3yz∂2V∂y∂z+ρ13σ1σ3xz∂2V∂x∂z+rx∂V∂x+ry∂V∂y+rz∂V∂z=rV,

(23)

where t,x,y,z|t∈(0,T],x≥0,y≥0,z≥0. The difference with two asset case is that we have four additional terms to discretize. The discretization is essentially the same with different indices. Thus, we obtain equations that are similar to Equation (15) but have 27 terms on each side instead of nine terms. In vector notation, the procedure given above for Steps (1) to (5) is the same for the three asset case.

The oscillations in the solution due to non-smooth initial data are a well-known drawback of the Crank–Nicolson method. Thus, if the final condition of the given option has non-smoothness, the computational grid can be prepared so that the option strike price agrees to one of the midpoints in the grid or the [image: there is no content] in Equation (16) can be replaced with [image: there is no content] by a simple moving average—for example, on a uniform grid, we can use the following equation:

[image: there is no content]

(24)

5. Computational Perspective of the Iterative Crank–Nicolson Method

We will demonstrate the iterative Crank–Nicolson method with some European style options with two assets. In the following, we study computational cost and order of convergence of the iterative Crank-Nicolson method.

5.1. Some Numerical Examples

All numerical computations in this section are performed on the finite domain [image: there is no content]. The relative error (%) in the maximum norm is calculated by the following equation:

[image: there is no content]

(25)

where [image: there is no content] is the computed numerical solution and [image: there is no content] is the reference solution. We present numerical results with the following three different final payoffs [image: there is no content] and reference solution [image: there is no content] [16,17]. M is the bivariate normal distribution and K is the strike price.

The payoffs in Equations (26), (28) and (30) are carefully chosen so that (1) [image: there is no content] in Equation (26) is symmetric and discontinuous; (2) [image: there is no content] in Equation (28) is non-symmetric and discontinuous; and (3) [image: there is no content] in Equation (30) is symmetric and continuous:

	(1)

	
Cash or Nothing

[image: there is no content]

with parameters: ρ=0.5,r=0.02,K=75,σ1=0.15,σ2=0.2,T=1.0.Figure 1a,b shows [image: there is no content] and [image: there is no content], respectively.

Figure 1. The surface of option payoff [image: there is no content] and [image: there is no content] : (a) cash or nothing [image: there is no content]; (b) cash or nothing [image: there is no content]; (c) two asset call [image: there is no content]; (d) two asset call [image: there is no content]; (e) basket call [image: there is no content]; and (f) basket call [image: there is no content].

[image: Symmetry 09 00012 g001]

	(2)

	
Call

(28)V(T,x,y)=max(y-K2,0)ifx≥K1,(29)Vref=yM(d2+σ2T,d1+ρσ2T;ρ),-K2e-rTM(d2,d1;ρ),d1=ln(xK1)+(r-12σ12)Tσ1T,d2=ln(yK2)+(r-12σ22)Tσ2T,

with parameters: ρ=0.5,r=0.02,K1=75,K2=85,σ1=0.15,σ2=0.2,T=1.0.Figure 1c shows [image: there is no content] and Figure 1d shows [image: there is no content].

	(3)

	
Basket

[image: there is no content]

(30)

[image: there is no content] is approximated with the formula given in [18] with parameters: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]Figure 1e shows [image: there is no content] and Figure 1f shows [image: there is no content].

We use sparse storage for all matrices to hold the data throughout the test. In addition, the drop tolerance is set to [image: there is no content] in the incomplete LU factorization to create preconditioner and [image: there is no content] is used for GMRES stopping tolerance. We observed that the solution is reached within two iterations for each time step in all examples that we considered. These tolerances show dependency on the grid size for the problems that we considered and could be optimized, but we did not investigate the effect, as these parameters gave us an accurate numerical solution. Before we proceed to test the iterative Crank–Nicolson method for different payoffs, we show the symmetrization effect, Equation (20). The comparison between non-symmetrized system, given in Equation (19), and the symmetrized system is shown in Figure 2. The cash or nothing payoff is used with those parameters given in Equation (27). The slope for both symmetric and non-symmetric case is approximately constant, which suggests that the number of iteration per time steps and the number of iteration per spatical discretization does not grow as grid refinement.

Figure 2. The effect of symmetrization: (a) number of time steps (M) versus total iterations; and (b) number of spatial discretization versus total iterations.

[image: Symmetry 09 00012 g002]

Computed solution with the iterative Crank–Nicolson method and its errors for three different options are shown in Figure 3. We can observe there is no oscillation in the computed solution with non-smooth payoffs. The result of numerical tests is summarized in Table 1. The ratio column shows the dropping rate of relative error for both methods. Note that the number of time steps required for OSM is significantly larger to maintain the same level of accuracy compared to the iterative Crank–Nicolson method. For a coarse grid, note that the time required to obtain the same level of accuracy for OSM is shorter than the iterative Crank–Nicolson. In the beginning, when the grid size is still coarse, the iterative Crank–Nicolson scheme takes more time to precondition the system than to actually solve it. However, the iterative Crank–Nicolson method reached the accuracy level faster than OSM as the grid becomes finer. Table 1 suggests that the iterative Crank–Nicolson method becomes more favorable in time if the accuracy is of concern.

Figure 3. The iterative Crank–Nicolson solution and absolute error: (a) computed cash or nothing option values ([image: there is no content]); (b) errors in cash or nothing options; (c) computed two asset call option values ([image: there is no content]); (d) errors in two asset call options; (e) computed basket call option values ([image: there is no content]); and (f) errors in basket call options.

[image: Symmetry 09 00012 g003]

Table 1. Computational time comparison between iterative Crank-Nicolson and Operator Splitting Method (OSM) to reach targeted accuracy while maintaining convergence rate.

	
Option Type

	
Numerical Method

	
[image: there is no content]

	
[image: there is no content]

	
Rel. Err (%)

	
Ratio

	
Time (s)

	
(1) Cash or Nothing

	
Iterative-Crank–Nicolson

	
1/30

	
1/20

	
3.5

	
-

	
0.1

	
1/90

	
1/60

	
0.34

	
10

	
1.5

	
1/270

	
1/180

	
0.037

	
9.2

	
47

	
1/810

	
1/540

	
0.0044

	
8.3

	
2000

	
OSM

	
1/30

	
1/20

	
4.0

	
-

	
0.08

	
1/90

	
1/180

	
0.39

	
10

	
0.8

	
1/270

	
1/1620

	
0.042

	
9.3

	
5.4

	
1/810

	
1/14580

	
0.0046

	
9.0

	
4200

	
(2) Call

	
Iterative-Crank–Nicolson

	
1/30

	
1/20

	
1.6

	
-

	
0.1

	
1/90

	
1/60

	
0.21

	
7.6

	
1.2

	
1/270

	
1/180

	
0.024

	
8.8

	
43

	
1/810

	
1/540

	
0.0026

	
9.4

	
1900

	
OSM

	
1/30

	
1/20

	
1.9

	
-

	
0.03

	
1/90

	
1/180

	
0.25

	
7.4

	
0.8

	
1/270

	
1/1620

	
0.028

	
9.2

	
54

	
1/810

	
1/14580

	
0.0030

	
9.0

	
4300

	
(3) Basket

	
Iterative-Crank–Nicolson

	
1/30

	
1/30

	
0.71

	
-

	
0.1

	
1/60

	
1/60

	
0.17

	
4.2

	
0.5

	
1/120

	
1/120

	
0.042

	
4.0

	
4

	
1/240

	
1/240

	
0.011

	
4.0

	
35

	
1/480

	
1/480

	
0.0026

	
4.0

	
340

	
OSM

	
1/30

	
1/30

	
0.73

	
-

	
0.03

	
1/60

	
1/120

	
0.17

	
4.2

	
0.3

	
1/120

	
1/480

	
0.043

	
4.0

	
3.6

	
1/240

	
1/1920

	
0.011

	
4.0

	
6

	
1/480

	
1/7680

	
0.0026

	
4.0

	
780

We further compare both methods while keeping the [image: there is no content] ratio constant. The results are summarized in Table 2. We see that the iterative Crank–Nicolson method needs about half of the time that is required for OSM to reach the same level of relative error. However, the memory consumption of the iterative Crank–Nicolson is significantly larger than OSM.

Table 2. CPU time, Memory, and Relative Error comparison with the use of identical [image: there is no content] and [image: there is no content] for both methods. The memory and CPU time are accumulated for the entire simulation.

	
Option Type

	
Numerical Method

	
[image: there is no content]

	
[image: there is no content]

	
Rel. Err. (%)

	
Memory (Mb)

	
Time (s)

	
(1) Cash or Nothing

	
Iterative-Crank–Nicolson

	
1/30

	
1/20

	
1.68

	
18

	
0.8

	
1/90

	
1/60

	
0.19

	
345

	
15

	
1/270

	
1/180

	
0.02

	
8430

	
346

	
OSM

	
1/30

	
1/20

	
2.15

	
5

	
1.3

	
1/90

	
1/60

	
0.37

	
30

	
30

	
1/270

	
1/180

	
0.09

	
252

	
771

	
(2) Call

	
Iterative-Crank–Nicolson

	
1/30

	
1/20

	
1.6

	
18

	
0.8

	
1/90

	
1/60

	
0.21

	
345

	
13

	
1/270

	
1/180

	
0.02

	
8477

	
283

	
OSM

	
1/30

	
1/20

	
1.9

	
4

	
1.2

	
1/90

	
1/60

	
0.33

	
15

	
29

	
1/270

	
1/180

	
0.06

	
159

	
756

	
(3) Basket

	
Iterative-Crank–Nicolson

	
1/30

	
1/30

	
0.47

	
1.8

	
0.9

	
1/60

	
1/60

	
0.12

	
24

	
5.8

	
1/120

	
1/120

	
0.03

	
993

	
33

	
OSM

	
1/30

	
1/30

	
0.49

	
2

	
1.6

	
1/60

	
1/60

	
0.12

	
8.6

	
12

	
1/120

	
1/120

	
0.04

	
45

	
96.9

5.2. Computational Cost

We compare the computational complexity of the iterative Crank–Nicolson method and implicit OSM. Throughout this section, we use N and M for the number of discretization steps for space and time, respectively. Both methods have an order of complexity O(MN2) and storage requirement O(N2), while the former has a second order convergence rate both in space and time and the latter has a second order convergence rate in space and a first order convergence rate in time.

Theorem 1.

The implicit OSM for the two-dimensional Black–Scholes equation has an order of computational complexity O(MN2).

Proof.

Suppose we partition the space and time domain with [image: there is no content] and [image: there is no content] intervals. For each time slice, we have to solve [image: there is no content] (N times for each x- and y-direction) tridiagonal systems with the Thomas algorithm, which requires O(N) computational cost. In other words, [image: there is no content] operations are needed to solve the system of equations for a fixed time period, and we have a total of M time steps. As a consequence, the total computational cost to solve Equation (3) becomes O(MN2). ☐

With O(MN2) computational complexity, the implicit OSM achieves second order convergence in space but first order convergence in time. The computational demand for implicit OSM increases to O(M2N2), if we increase the number of time steps to [image: there is no content] to obtain an overall second order convergence rate in error defined in Equation (25). Figure 4a–c shows the growth rate of computational complexity measured in time for implicit OSM, where M was chosen to be the same as N. The slope in Figure 4 supports the fact that implicit OSM, which has a second order convergence rate in terms of maximum norm, has computational complexity O(M2N2)=O(N4).

Figure 4. The order of complexity measured in time for implicit OSM with a different payoff: (a) cash or nothing; (b) two asset call; (c) basket call. The order of complexity measured in time for the iterative Crank–Nicolson method with a different payoff: (d) cash or nothing; (e) two asset call; and (f) basket call. The dotted line shows the growth rate.

[image: Symmetry 09 00012 g004]

Theorem 2.

The iterative Crank–Nicolson method for the two-dimensional Black–Scholes equation has the computational complexity O(MN2).

Proof.

Let us assume that we partition the space and time domain with [image: there is no content] and [image: there is no content] intervals. Then, we have to solve the system given in Equation (16) of size [image: there is no content], for which the preconditioning and GMRES solver in Equations (21) and (22) require O(N2) computation for each time slice. Therefore, total computational cost to solve Equation (1), using the implicit Crank–Nicolson method is O(MN2). ☐

The growth rate shown in Figure 4d–f supports the iterative Crank–Nicolson method having computational complexity O(MN2)=O(N3) when M was chosen to be the same as N.

Thus far, we have seen how the computational complexity grows for the iterative Crank–Nicolson method. Memory consumption is another factor that one should consider for the actual computation.

Theorem 3.

The memory requirement of the fully discretized Crank–Nicolson method is [image: there is no content] for the two-dimensional Black–Scholes equation.

Proof.

The fully discretized Crank–Nicolson method, Equation (16), requires holding [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] in Equations (21) and (22) for a fixed [image: there is no content]. The exact dimension of these matrices is [image: there is no content], requiring approximately [image: there is no content] amount of space when fully populated. ☐

However, [image: there is no content], [image: there is no content], [image: there is no content] are all sparse matrices so that we can relax the storage requirement to [image: there is no content] by storing only the non-zeros. The actual number of non-zeros are on the order of [image: there is no content], not [image: there is no content]. The ratio of non-zeros in the matrix, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], are similar. To see the growth of non-zeros in these matrices in terms of N, see, for example, Figure 5. The non-zero terms in sparse matrix (a) [image: there is no content], (b) [image: there is no content], and (c) [image: there is no content] grow quadratically in number of grid points. The dotted line shown in Figure 5 has slope 2 and shows us that the actual storage requirement can be reduced to the order of [image: there is no content] from [image: there is no content].

Figure 5. Number of non-zeros in the matrices, given in Equation (16), versus N, the number of grid points: (a) [image: there is no content]; (b) [image: there is no content]; and (c) [image: there is no content]. The quadratic growth rate is shown with the dotted line.

[image: Symmetry 09 00012 g005]

Theorem 4.

The memory requirement of the implicit OSM is O(N2) for the two-dimensional Black–Scholes equation.

Proof.

To solve the tridiagonal system given in Equation (7), we only need [image: there is no content] spaces in memory. However, to do this, we have to hold the data [image: there is no content]. Since the entire computational domain is a grid of size [image: there is no content], [image: there is no content] amount of storage is needed in memory to hold [image: there is no content] throughout the time period, [image: there is no content], to obtain [image: there is no content] in Equation (7). Therefore, the amortized cost is on the order of [image: there is no content]. ☐

Before closing this section, we summarize the computational complexity and memory requirement for the implicit OSM and iterative Crank–Nicolson method. The former is first order, and the latter is second order method in time. Both have the computational complexity of O(MN2). However, implicit OSM has O(N2) memory requirement and iterative Crank–Nicolson has O(N4) memory need for the two-dimensional Black–Scholes equation. Therefore, the growth of the data can not be compared for large N but, after symmetrizing and using a sparse storage structure, we can reduce the storage need to O(N2) for the iterative Crank–Nicolson method, which is worth the effort.

5.3. Order of Convergence in Space and Time

The numerical solution obtained by implicit OSM has a second order convergence rate in space and a first order convergence rate in time because the truncation error of the finite difference discretization given in Section 3 are all in second order and first order in time (see, for example, Figure 6a–c). The relative error in maximum norm for implicit OSM drops with slope one, which means it is first order in time.

Figure 6. The relative error measured in maximum norm versus the time step size for: (a) cash or nothing option; (b) two asset call option; and (c) basket call option.

[image: Symmetry 09 00012 g006]

On the other hand, the iterative Crank–Nicolson method has a second order convergence rate both in space and time. The slope of the relative error curve, shown in Figure 6a–c, support the proposed method that has a second order convergence rate in time for all three options that we have considered while the implicit OSM converges first order in time. The second order of convergence can be proved by calculating the truncation error. The truncation error of iterative Crank–Nicolson discretization with non-uniform grid size is indeed second order in space and time (see Appendix in [19]).

6. Conclusions

A second order method is essential for pricing options when highly accurate option price is needed in time. The second order convergence even in the simplest case, a European style, is of great importance in practice when the option has complex payoff structures. For example, a multidimensional Black–Scholes equation has to be solved many times in a row to price and hedge an equity-linked security. A three-dimensional extension of the current study would be an interesting and important future work. A straightforward implementation of the multi-dimensional Crank–Nicolson scheme could be thought inefficient. However, with a simple symmetrization and a standard preconditioner, we have found that the order of complexity to solve the system is about the same for the fully discretized iterative Crank–Nicolson scheme and (semi-)implicit Operator Splitting Method. In other words, the order of complexity for the first and second order method turned out to be the same. However, note that the second order method, the iterative Crank–Nicolson method, needs more storage compared to the first order method, OSM, but reaches the same level of error in significantly less time. It is interesting to observe the trade-off between storage and computational time in the context of option pricing.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper. The research for this paper was financially supported by Gachon University, Grant No. GCU-2015-0177.

Author Contributions

Won-Tak Hong conceived and designed the study; Changyu Han implemented computer code and performed numerical analysis; Dohyun Pak analyzed the data and prepared the manuscript. All authors contributed to writing and revising the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Daoud, Y.; Özis, T. The Operator Splitting Method for Black–Scholes Equation. Appl. Math. 2011, 2, 771–778. [Google Scholar] [CrossRef]

	2.
Duffy, D.J. Finite Difference Methods in Financial Engineering: A Partial Differential Approach; John Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]

	3.
Jeong, D.; Kim, J. A comparison study of ADI and operator splitting methods on option pricing models. J. Comput. Appl. Math. 2013, 247, 162–171. [Google Scholar] [CrossRef]

	4.
Cavoretto, R. A numerical algorithm for multidimensional modeling of scattered data points. Comput. Appl. Math. 2015, 34, 65–80. [Google Scholar] [CrossRef]

	5.
Shcherbakov, V.; Larsson, E. Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 2016, 71, 185–200. [Google Scholar] [CrossRef]

	6.
Oosterlee, C.W.; Leentvaar, C.C.; Huang, X. Accurate American Option Pricing by Grid Stretching and High Order Finite Differences; Technical Report; Delft University of Technology: Delft, The Netherlands, 2005. [Google Scholar]

	7.
Le Floc’h, F. TR-BDF2 for Stable American Option Pricing. J. Comput. Finance 2014, 17, 31–56. [Google Scholar] [CrossRef]

	8.
Hull, J.C. Options, Futures and Other Derivatives, 9 ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2014. [Google Scholar]

	9.
Wilmott, P. Paul Wilmott on Quantitative Finance, 2 ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]

	10.
Zhu, Y.L.; Wu, X.; Chern, I. Derivative Securities and Difference Methods; Springer: Berlin, Germany, 2004. [Google Scholar]

	11.
Morton, K.W.; Mayers, D. Numerical Solution of Partial Differential Equations, 2 ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]

	12.
Saad, Y. Iterative Methods for Sparse Linear Systems, 2 ed.; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]

	13.
Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]

	14.
Mittal, R.; Al-Kurdi, A. An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method. Comput. Math. Appl. 2003, 45, 1757–1772. [Google Scholar] [CrossRef]

	15.
Trefethen, L.N.; Iii, D.B. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]

	16.
Krekel, M.; de Kock, J.; Korn, R.; Man, T.K. An Analysis of Pricing Methods for Baskets Options; Wilmott: Soissons, France, 2004; pp. 82–89. [Google Scholar]

	17.
Haug, E.G. The Complete Guide to Option Pricing Formulas; McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]

	18.
Ju, N. Pricing Asian and Basket options via taylor expansion. J. Comput. Financ. 2002, 5, 79–103. [Google Scholar] [CrossRef]

	19.
Han, C. Finite Difference Method with GMRES Solver for the 2D Black–Scholes Equation. Master’s Thesis, Korea University, Seoul, Korea, 2014. [Google Scholar]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 symmetry-09-00012

 		
 symmetry-09-00012

media/file8.jpg
R B
SR T

10

No. of grid points

No. of grid points

No. of arid points

©

®)

@

media/file11.png
...

iterative C.-N.

+—

10°

(9%) WIOU XBW Ul JOLId dANR[Y

iterative C.-N. S

+=—F
O—0 implicit OSM
g

(9%) WIOU XBW Ul JOLId dANR[Y

..................

iterative C.-N.

-
- O—0O implicit OSM

10’
10° |0
0
0
10

(9%) WIOU XBW Ul JOLId dANR[Y

107 10°° 10™
At

107

107°

107°

At

(b)

(a)

media/file6.jpg
®

media/file1.png
300

o
Zono
5

: o
. 2:.
B .‘..“.”.“.“...
T i
Ay

e ———
e ————
A

A

200

100
8
6
4
2

300

/i

o

Wi

o

W
............. 8
i i
.‘............:. e
‘:......... i
_....‘...................... e
.‘.......... il
.....‘...“.“..............‘............. T
..............................‘..... N
.......:............................. i
...................................... q
.........:.............. i
.:............... s

...........::.. (e

Stock 1

0

Stock 2

Stock 1

Stock 2

)

b

(

()

Stock 1

0

0

Stock 2

Stock 1

0

0

Stock 2

(d)

©)

Stock 1

0

Stock 2

Stock 1

0

Stock 2

f)

(

(e)

media/file10.jpg
Relative error in max norm (%)

10 10 10 ~
#—# itcrative C-N. +—# iwcrative C-N. e N P
By e ks i

10" = -

g g
E E
- H
H H
107 & H
t :
107 2 2
10° 10° 10" 10° 10° 10" 10° 100 107 10
(a) (b) (©)

media/file7.png
10°

1

10

(0@s)awil |

(0es)awi |

10°

2

1

1

10

(08s)awi |

(08s)awi |

GESEININE

10°

1 2

1

10

(0as)awil |

d)

(

media/file9.png
Number of non-zeros

L

10

104

N DERED 2 SRS

No. of grid points
(a)

10

No. of grid points

(b)

10°

No. of grid points
(¢)

media/file5.png
100 o

Stock 2

250

200 |

150

300

Stock 2

Stock 2

Stock 1

Stock 1

Stock 1

300

StOCk 2 StOCk 1

StOCk 2 0" o StOCk 1

300

StOCk 2 StOCk 1

media/file12.png

media/file3.png
Number of iterations

16000

14000

12000

10000

8000

6000

4000

2000

T T T
—©6— symmetric %
- —%— - non-symmetric -/
............. S S
5 2
: /o
f /
......................... /_
-/
=
_________________________ S
s
/)
______________________ R
/
,
,
............. /_
"
/
........... /_

0 500

1000 1500
Number of time steps (M)

(a)

2000

Number of iterations

16000

14000

12000

10000

8000

6000

4000

2000

0 i
0 500

T T T T
—6— symmetric f f *
- —%— - non-symmetric : : /)
.......... T A A
f f _
: : va
f f /
---------- R RV AR R
f f f 1
: : -
.......... S A
f f 2
: : /"
f f /-
---------- /_
5 -
: -/
.......... S A R A
f /0
: *
7
.......... /_
v
7

1000 1500 2000
Number of spatial discretization (N)

(b)

2500

media/file4.jpg

media/file0.jpg

media/file2.jpg
Number of iterations

16000

§

—o— symmetic .
—+— non-symmetc] /

Nomber o oratons

i 8§

g 8

—o— symmetic)
—=_non-symmetic s

E I
Number of tme seps (M)

@

200

1000
Number of spataldscotizaion (V)

®

500 1500 2000 2500

