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Abstract:



In this paper, we introduce the concept of (pair-wise) domination graphs for hypergraphs endowed with a choice function on edges. We are interested, for instance, in minimal numbers of edges for associated domination graphs. Theorems regarding the existence of balanced (zero-edge) domination graphs are presented. Several open questions are posed.
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1. Introduction


In this paper, we introduce the concept of pair-wise domination for hypergraphs endowed with a choice function on edges. A hypergraph is a pair [image: there is no content], where [image: there is no content] is a set of n vertices (or nodes) and [image: there is no content] is a set of m non-empty subsets of V called hyperedges or edges (see for instance [1]). A k-hypertournament is a complete k-hypergraph [image: there is no content] (i.e., E consists of all the [image: there is no content] possible k-subsets), with each k-edge endowed with an orientation. Here we are interested in hypergraphs where each edge, e, has a chosen element [image: there is no content] (in place of a complete orientation). We will refer to the pair [image: there is no content] as a (complete) k-hypergraph with choice (or an [image: there is no content] choice-hypergraph). For various considerations of choice functions, see for instance [2,3]. For some recent work related to choice in the context of Cayley graphs, see [4].



In the case [image: there is no content], both k-hypertournaments and hypergraphs with choice reduce to standard tournaments. For discussion of tournaments, see for instance [5,6,7]. The following is an example of a standard tournament with [image: there is no content] vertices.



Example 1.

Consider the complete 2-hypertournament with five nodes and ten edges, depicted via the table in Figure 1a. Here, for instance, vertex 1 is chosen in the presence of vertices 2 and 4 (the first and third lines in the table). In fact, in this particular instance, each vertex is chosen for exactly two of the [image: there is no content] edges. Figure 1b gives a graphical display with a directed edge from vertex v to vertex w whenever vertex v is chosen in the presence of w.

Figure 1. (a) An example of a standard tournament with five vertices; and (b) an associated graphical display with a directed edge from vertex v to vertex w whenever vertex v is chosen in the presence of w.



[image: Symmetry 09 00046 g001]









In the next example, we consider a complete 3-hypergraph with choice.



Example 2.

Consider the complete 3-hypergraph with choice with five vertices and 10 edges, depicted in the table in Figure 2a. Here, vertex 1 is chosen once in the presence of vertices 2 and 4 (for edges [image: there is no content] and [image: there is no content], respectively), twice in the presence of vertex 3 (again edges [image: there is no content] and [image: there is no content]) and never in the presence of vertex 5. Note that again, as in Example 1, each node is chosen in the case of exactly two edges.

Figure 2. (a) An example of a possible (5,3) choice-hypergraph; (b) with a possible graph summarizing pair-wise domination.



[image: Symmetry 09 00046 g002]







In considering possible analogues to Figure 1b, summarizing domination, one might include a directed edge from vertex v to vertex w, if and only if, for edges that include both v and w, the tally of wins for v exceeds that of w. The resulting graph is depicted in Figure 2b. Note that there is a directed edge from vertex 1 to vertex 2, since vertex 1 is chosen for edge [image: there is no content], while there is no edge, e, where vertex 2 is chosen when [image: there is no content]. It may be noted that in this case the associated graph is path connected.





Now, define the function [image: there is no content] via:


[image: there is no content]



(1)




i.e., [image: there is no content] is the number of edges for which v is chosen in the presence of w.



Example 2 leads to consideration of potential appropriate graphs on n vertices reflecting domination properties among vertices. Here, we mention three possibilities.



	(i)

	
There is a directed edge from vertex v to vertex w if:


[image: there is no content]



(2)




i.e., if vertex w is never chosen in the presence of vertex v.




	(ii)

	
There is a directed edge from vertex v to vertex w if:


[image: there is no content]



(3)




i.e., among the edges containing both v and w, v is chosen with greater frequency.




	(iii)

	
There is a directed edge from vertex v to vertex w if:


[image: there is no content]



(4)




i.e., v is chosen for a majority of the edges containing both v and w.







We will restrict attention henceforth to Option (ii), above, unless stated otherwise. It should be noted that for a standard tournament graph (i.e., [image: there is no content]) all three formulations are equivalent; furthermore, Option (iii) is a stricter requirement than Option (ii). For discussion of ranking for vertices in hypertournaments, see for instance [8].



We refer to graphs as in Figure 2b and Figure 3 (below) as [image: there is no content]-choice-domination graphs or simply [image: there is no content]-domination graphs. When n and k are clear from context, we will at times simply refer to these as domination graphs. As with tournaments, domination graphs could be valuable in considerations of individual dominance in competitive settings, as may arise for instance in biology, game theory or decision analysis. Note that hypergraphs with choice allow for analysis of scenarios wherein selection (but not full orientation) information is available.


Figure 3. Domination graphs arising from choice-hypergraphs with choice functions (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; and (d) [image: there is no content] as in Table 1.



Table 1. Four possible [image: there is no content] choice-hypergraphs.







	

	
e

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
{1, 2, 3}

	
1

	
1

	
1

	
1




	
2

	
{1, 2, 4}

	
4

	
1

	
2

	
2




	
3

	
{1, 2, 5}

	
5

	
5

	
5

	
5




	
4

	
{1, 3, 4}

	
1

	
3

	
4

	
4




	
5

	
{1, 3, 5}

	
3

	
5

	
3

	
3




	
6

	
{1, 4, 5}

	
4

	
4

	
1

	
1




	
7

	
{2, 3, 4}

	
3

	
2

	
3

	
4




	
8

	
{2, 3, 5}

	
2

	
2

	
2

	
2




	
9

	
{2, 4, 5}

	
2

	
4

	
4

	
4




	
10

	
{3, 4, 5}

	
5

	
3

	
5

	
3










[image: Symmetry 09 00046 g003]






Example 3.

Table 1 gives a 3-hypergraph with [image: there is no content] vertices and [image: there is no content] edges, along with four possible choice functions, [image: there is no content] (from Example 2), [image: there is no content], [image: there is no content] and [image: there is no content] on E, while Figure 3 includes the associated domination graphs, for comparison.





For fixed n and k, many natural questions arise as to the properties of the resulting domination graphs; for instance:

	
What are the maximal and minimal number of edges possible for an [image: there is no content]-domination graph?



	
What proportion of [image: there is no content]-domination graphs are strongly path connected (for example, Figure 3a,b?



	
What is the distribution of the number of edges in the domination graph for a uniformly selected choice function on the edges of a k-hypergraph on n vertices?



	
What is the number of non-isomorphic [image: there is no content]-domination graphs?








Example 4.

([image: there is no content] domination graphs.) For [image: there is no content], we have that [image: there is no content] and the number of distinct choice functions on E is [image: there is no content]. Table 2 and Table 3 give frequency tables for the number of choice functions leading to domination graphs with a given number of edges, and a given number of strongly connected components, respectively. Note that 3348 choice functions result in strongly connected domination graphs. There are 225 non-isomorphic [image: there is no content]-domination graphs (of which 21 are strongly connected); plots of these are provided in the Supplementary Materials; Table 4 gives the frequencies for these graphs. The two most frequent domination graphs (each occurring for 1560 distinct choice functions, C), are given in Figure 4a,b respectively; the most frequently occurring strongly connected domination graph is given in Figure 4c.

Figure 4. Three frequently occurring [image: there is no content]-domination graphs. The two most frequent domination graphs are given in (a,b). The most frequently occurring strongly connected domination graph is given in (c).



[image: Symmetry 09 00046 g004]






Table 2. Edge distribution for (5,3)-domination graphs.







	
Edges

	
0

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
Frequency

	
6

	
60

	
120

	
1035

	
3324

	
10080

	
15180

	
16920

	
9180

	
3144










Table 3. Component distribution for (5,3)-domination graphs.







	
Components

	
1

	
2

	
3

	
5




	
Frequency

	
3348

	
6630

	
11760

	
37311










Table 4. Frequency distribution for non-isomorphic [image: there is no content]-domination graphs.







	
Ind.

	
Freq.

	
Ind.

	
Freq.

	
Ind.

	
Freq.

	
Ind.

	
Freq.

	
Ind.

	
Freq.

	
Ind.

	
Freq.

	
Ind.

	
Freq.






	
1

	
1560

	
2

	
510

	
3

	
360

	
4

	
300

	
5

	
840

	
6

	
480

	
7

	
240




	
8

	
480

	
9

	
120

	
10

	
600

	
11

	
840

	
12

	
240

	
13

	
960

	
14

	
120




	
15

	
720

	
16

	
120

	
17

	
480

	
18

	
360

	
19

	
240

	
20

	
120

	
21

	
420




	
22

	
840

	
23

	
240

	
24

	
120

	
25

	
120

	
26

	
960

	
27

	
180

	
28

	
180




	
29

	
180

	
30

	
120

	
31

	
120

	
32

	
240

	
33

	
120

	
34

	
840

	
35

	
240




	
36

	
480

	
37

	
240

	
38

	
120

	
39

	
600

	
40

	
120

	
41

	
240

	
42

	
360




	
43

	
600

	
44

	
180

	
45

	
360

	
46

	
300

	
47

	
15

	
48

	
180

	
49

	
1200




	
50

	
720

	
51

	
1560

	
52

	
240

	
53

	
960

	
54

	
480

	
55

	
120

	
56

	
360




	
57

	
600

	
58

	
240

	
59

	
120

	
60

	
240

	
61

	
240

	
62

	
840

	
63

	
360




	
64

	
840

	
65

	
480

	
66

	
840

	
67

	
360

	
68

	
120

	
69

	
240

	
70

	
720




	
71

	
480

	
72

	
360

	
73

	
240

	
74

	
240

	
75

	
480

	
76

	
240

	
77

	
480




	
78

	
360

	
79

	
120

	
80

	
240

	
81

	
120

	
82

	
240

	
83

	
120

	
84

	
120




	
85

	
240

	
86

	
240

	
87

	
120

	
88

	
120

	
89

	
240

	
90

	
360

	
91

	
480




	
92

	
360

	
93

	
480

	
94

	
120

	
95

	
240

	
96

	
240

	
97

	
120

	
98

	
120




	
99

	
120

	
100

	
240

	
101

	
360

	
102

	
360

	
103

	
120

	
104

	
120

	
105

	
720




	
106

	
240

	
107

	
120

	
108

	
210

	
109

	
120

	
110

	
240

	
111

	
120

	
112

	
120




	
113

	
120

	
114

	
600

	
115

	
120

	
116

	
360

	
117

	
360

	
118

	
120

	
119

	
240




	
120

	
360

	
121

	
120

	
122

	
120

	
123

	
120

	
124

	
120

	
125

	
240

	
126

	
120




	
127

	
360

	
128

	
240

	
129

	
240

	
130

	
120

	
131

	
120

	
132

	
120

	
133

	
360




	
134

	
120

	
135

	
240

	
136

	
300

	
137

	
120

	
138

	
120

	
139

	
120

	
140

	
60




	
141

	
360

	
142

	
120

	
143

	
120

	
144

	
120

	
145

	
60

	
146

	
120

	
147

	
300




	
148

	
240

	
149

	
120

	
150

	
120

	
151

	
360

	
152

	
240

	
153

	
240

	
154

	
120




	
155

	
120

	
156

	
120

	
157

	
120

	
158

	
120

	
159

	
120

	
160

	
120

	
161

	
120




	
162

	
120

	
163

	
240

	
164

	
120

	
165

	
480

	
166

	
120

	
167

	
240

	
168

	
240




	
169

	
120

	
170

	
240

	
171

	
120

	
172

	
120

	
173

	
240

	
174

	
120

	
175

	
120




	
176

	
120

	
177

	
240

	
178

	
120

	
179

	
120

	
180

	
120

	
181

	
240

	
182

	
120




	
183

	
120

	
184

	
120

	
185

	
240

	
186

	
120

	
187

	
120

	
188

	
120

	
189

	
120




	
190

	
120

	
191

	
120

	
192

	
120

	
193

	
120

	
194

	
120

	
195

	
120

	
196

	
120




	
197

	
120

	
198

	
120

	
199

	
120

	
200

	
120

	
201

	
120

	
202

	
120

	
203

	
120




	
204

	
120

	
205

	
120

	
206

	
120

	
207

	
120

	
208

	
120

	
209

	
120

	
210

	
60




	
211

	
360

	
212

	
120

	
213

	
120

	
214

	
120

	
215

	
120

	
216

	
24

	
217

	
120




	
218

	
120

	
219

	
120

	
220

	
120

	
221

	
120

	
222

	
240

	
223

	
120

	
224

	
24




	
225

	
6

	

	

	

	

	

	

	

	

	

	

	

	













In reference to Question 1 above, in Section 2 below, we will prove the following two results.



Theorem 1.

Suppose [image: there is no content] and [image: there is no content] is a complete k-hypergraph on n vertices. If k is odd and [image: there is no content], then there exists a choice function, C, on E resulting in a zero-edge domination graph.





Theorem 2.

If [image: there is no content] is a choice-hypergraph with a zero-edge domination graph, then for all [image: there is no content]:


[image: there is no content]



(5)




that is, each vertex is chosen for an equal number of edges, in E.





The question of minimal edges in associated domination graphs may be of interest in instances where notions of “fairness” and equitable distribution are of importance, such as in resource allocation, decision theory, data and network processing, and clinical trials. Fairness and choice have been considered in the past, notably in the context of social welfare and information processing. The interested reader might like to consult, for instance [2,3,4,9,10,11,12,13].



Figure 5 provides an example of a [image: there is no content] choice-hypergraph with vertex set [image: there is no content], possessing a zero edge domination graph (employing the construction in the proof of Theorem 1). Note that [image: there is no content], and [image: there is no content] (as highlighted in red; [image: there is no content] for [image: there is no content] satisfying [image: there is no content] are indicated in bold). It may also be verified that [image: there is no content], as required by Theorem 2.


Figure 5. A (9,5)-choice hypergraph resulting in a zero-edge domination graph. For a given [image: there is no content], the value of [image: there is no content] is listed to the right of the five elements of e in a demarcated column.



[image: Symmetry 09 00046 g005]






Before turning to the proofs of Theorems 1 and 2, we will briefly mention some recent related work on hypertournaments, which carry over to choice-hypergraphs. Recall that a k-hypertournament is a complete k-hypergraph [image: there is no content], with each edge endowed with an orientation. We will refer to the oriented edges as arcs.



One concept considered extensively in the literature is score sequences (see for instance [6,7,14,15,16,17,18]). In particular, for a given [image: there is no content] define the score, [image: there is no content] of a vertex [image: there is no content] of a k-hypertournament on [image: there is no content] as the number of arcs containing [image: there is no content] in which [image: there is no content] is not the last element (this is with a complete orientation on the edges, rather than a choice function solely selecting a single element). Similarly, define the losing score, [image: there is no content] as the number of arcs containing [image: there is no content] in which [image: there is no content] is the last element. The total score, [image: there is no content], is then given by [image: there is no content]. Finally, we obtain the score sequences [image: there is no content], [image: there is no content] and [image: there is no content]. Guofei et al. proved the following results regarding the existence of score sequences (see also [16,19]).



Theorem 3.

(Guofei et al. [14]) Given two non-negative integers n and k with [image: there is no content], a non-decreasing sequence [image: there is no content] of non-negative integers is a losing score sequence of some k-hypertournament if and only if for each j ([image: there is no content]):


[image: there is no content]



(6)




with equality when [image: there is no content].





Theorem 4.

(Guofei et al. [14]) Given two non-negative integers n and k with [image: there is no content], a non-decreasing sequence [image: there is no content] of non-negative integers is a score-sequence of some k-hypertournament if and only if for each j ([image: there is no content]):


[image: there is no content]



(7)




with equality when [image: there is no content].





A k-hypertournament is said to be regular if for each vertex, v, the tally of arcs containing v as the last element is [image: there is no content]. Koh and Ree [16] proved the following.



Theorem 5.

(Koh and Ree, [16]) A regular [image: there is no content] hypertournament exists if and only if [image: there is no content].





For alternative considerations of regularity, see [8,20].



Compare Theorem 5 with Theorems 1 and 2, above. Note that symmetry in domination (i.e., the existence of choice functions resulting in zero-edge domination graphs) is a stronger requirement than regularity. To see this, simply note that all standard tournaments have [image: there is no content]-edge domination graphs.



For further work on hypertournaments or score sequences, see for instance Pirizda et al. [15], Landau [18], Marshall [8], Khan et al. [6], Guofei et al. [14], Gunderson et al. [21], Li et al. [22], Guo and Surmacs [23], and Chou and Guofei [24].



In the next section, we prove Theorems 1 and 2.




2. Proof of Theorems 1 and 2


Before moving on to the proofs of Theorems 1 and 2, we introduce some preliminary notation. First, suppose [image: there is no content] are fixed and [image: there is no content] is an [image: there is no content]-hypergraph with choice, where [image: there is no content] is a complete k-hypergraph on n vertices. Without loss of generality, we assume that [image: there is no content]. Similar to in [16], define the rotation operator [image: there is no content], via P(e)=e+1(modn), i.e., P acts on k-subsets of V by shifting the elements (cyclically) to the right by one. Here, [image: there is no content] indicates [image: there is no content].g For [image: there is no content] and [image: there is no content], define [image: there is no content] as the j-fold iteration of P and the order of e, [image: there is no content], via:


[image: there is no content]



(8)







We will denote the set of equivalence classes under successive application of P by [image: there is no content]. Note that for [image: there is no content], [image: there is no content] is the order of each [image: there is no content]. We will refer to elements of [image: there is no content] as rotation classes of H.



In general, addition of the form [image: there is no content] for [image: there is no content] and [image: there is no content], will be modulo n, unless stated otherwise.



The set [image: there is no content] is said to be symmetric if −e=e(modn), and more generally [image: there is no content] is symmetric if, for all [image: there is no content], [image: there is no content]. Note that if for some [image: there is no content], [image: there is no content], then for [image: there is no content], [image: there is no content], and hence if [image: there is no content] is symmetric, then R is symmetric. If R is not symmetric, then there exists an [image: there is no content] such that [image: there is no content] implies [image: there is no content].



Let [image: there is no content] be the set of all [image: there is no content]-choice hypergraphs for fixed [image: there is no content] and [image: there is no content] be the set of all directed graphs on n vertices. Suppose a domination scheme, D is fixed (see (i)–(iii), above, for examples) and define [image: there is no content], where [image: there is no content] is the domination graph for choice-hypergraph [image: there is no content] under domination scheme D.



We have the following elementary lemma:



Lemma 1.

Suppose H is a k-hypertournament on n vertices with [image: there is no content]. Then, for any [image: there is no content], [image: there is no content].





Proof. 

Suppose [image: there is no content], and [image: there is no content] for some [image: there is no content]. For any [image: there is no content] and any [image: there is no content], set [image: there is no content] and represent e as a binary vector [image: there is no content]. We then have, with [image: there is no content] and [image: there is no content]:


k=ba,n=bα.



(9)









Now, suppose [image: there is no content], with [image: there is no content] and [image: there is no content]. Then:


[image: there is no content]



(10)







Since α is minimal, we have [image: there is no content] and hence [image: there is no content]. Thus, since [image: there is no content], (9) gives that [image: there is no content], [image: there is no content] and finally [image: there is no content]. ☐



For convenience of notation, as in (1), define the function [image: there is no content] via:


[image: there is no content]



(11)




i.e., [image: there is no content] is the number of edges in the rotation class [image: there is no content] for which v is chosen in the presence of w. Note that


[image: there is no content]



(12)







Lemma 2.

Suppose [image: there is no content] with k odd, [image: there is no content] is a complete k-hypergraph on n vertices, and [image: there is no content]. If R is symmetric and [image: there is no content], then there exists a [image: there is no content] and [image: there is no content], such that [image: there is no content], and [image: there is no content] implies [image: there is no content].





Proof. 

Suppose that R is symmetric and [image: there is no content]. Then, there exists an i such that [image: there is no content], and hence a permutation [image: there is no content] of [image: there is no content] such that:


xjq+i=−xq,1≤q≤k.



(13)









Since k is odd, there exists a Q such that:


[image: there is no content]



(14)




and taking differences, (13) and (14) imply:


xjq−xQ=xQ−xq=−(xq−xQ),1≤q≤k.



(15)







The result follows upon setting [image: there is no content], and [image: there is no content]. □



We will now prove Theorem 1 regarding the existence of choice functions with symmetry in domination.



Proof of Theorem 1.

Suppose [image: there is no content], k is odd, and [image: there is no content] is an [image: there is no content]-choice hypergraph. Consider E, the set of all edges in H, and let [image: there is no content] be the set of all rotation classes of H, where, by Lemma 1, for [image: there is no content], [image: there is no content], and [image: there is no content]. Fix [image: there is no content], with [image: there is no content], and choose some [image: there is no content].





Suppose R is symmetric and fix an [image: there is no content]. Then, by Lemma 2, [image: there is no content], where [image: there is no content] and [image: there is no content] is closed under additive inverses. For [image: there is no content], set [image: there is no content]. Suppose [image: there is no content] and [image: there is no content] for [image: there is no content]. For [image: there is no content], [image: there is no content] implies [image: there is no content] and [image: there is no content] implies [image: there is no content]. Note that [image: there is no content] if and only if [image: there is no content]. Similarly, [image: there is no content] if and only if [image: there is no content]. Since [image: there is no content] is closed under inverses, we have:


τR(v,w)=|{e∈R:v,w∈e and C(e)=v}|=|{e∈R:v,w∈e and C(e)=w}|=τR(w,v).



(16)







Suppose R is not symmetric, and consider [image: there is no content], and note that [image: there is no content]. Fix an [image: there is no content] and [image: there is no content], and write [image: there is no content] (note that [image: there is no content] is not closed under inverses). For [image: there is no content], set:


[image: there is no content]



(17)







Now, suppose [image: there is no content] and [image: there is no content]. For [image: there is no content], [image: there is no content] implies [image: there is no content] or [image: there is no content], and [image: there is no content] implies [image: there is no content] or [image: there is no content]. Note that [image: there is no content] if and only if [image: there is no content], and [image: there is no content] if and only if [image: there is no content] (i.e., [image: there is no content]). Similarly, [image: there is no content] if and only if [image: there is no content], and [image: there is no content] if and only if [image: there is no content] (i.e., [image: there is no content]). Thus:


τR∪R′(v,w)=|{f∈R∪R′:v,w∈f and C(f)=v}|=|{f∈R∪R′:v,w∈f and C(f)=w}|=τR∪R′(w,v).



(18)







Employing (16), (18) and (12), the result follows. □



We will now prove Theorem 2.



Proof of Theorem 2.

Suppose [image: there is no content] is a choice-hypergraph with a zero-edge domination graph, where [image: there is no content] is a complete k-hypergraph on n vertices. For a fixed vertex [image: there is no content], define [image: there is no content] and [image: there is no content], i.e., [image: there is no content] is the set of edges to which v belongs and [image: there is no content] is the set of edges for which v is selected. Note that:


[image: there is no content]



(19)









Assume [image: there is no content]. Since [image: there is no content] has a zero-edge domination graph, [image: there is no content] for all [image: there is no content] and hence:


[image: there is no content]



(20)






<k1nnk=n−1k−1.



(21)







Thus, [image: there is no content] for all [image: there is no content]. The result follows upon noting that:


[image: there is no content]



(22)




 ☐
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