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Abstract: A similarity measure is a measure evaluating the degree of similarity between two fuzzy
data sets and has become an essential tool in many applications including data mining, pattern
recognition, and clustering. In this paper, we propose a similarity measure capable of handling
non-overlapped data as well as overlapped data and analyze its characteristics on data distributions.
We first design the similarity measure based on a distance measure and apply it to overlapped data
distributions. From the calculations for example data distributions, we find that, though the similarity
calculation is effective, the designed similarity measure cannot distinguish two non-overlapped data
distributions, thus resulting in the same value for both data sets. To obtain discriminative similarity
values for non-overlapped data, we consider two approaches. The first one is to use a conventional
similarity measure after preprocessing non-overlapped data. The second one is to take into account
neighbor data information in designing the similarity measure, where we consider the relation
to specific data and residual data information. Two artificial patterns of non-overlapped data are
analyzed in an illustrative example. The calculation results demonstrate that the proposed similarity
measures can discriminate non-overlapped data.

Keywords: similarity measure; overlapped data; non-overlapped data; neighbor data

1. Introduction

1.1. Background and Motivation

A fuzzy set was defined and summarized with respect to an ordinary set [1,2]; the fuzzy set theory
provides a fundamental background for controller design, signal processing, pattern recognition,
and other related areas [3–5]. Among the research on the fuzzy set theory, the analysis of data
uncertainties has been carried out by numerous researchers through fuzzy data sets [6–8]. Of those
researches based on fuzzy data sets, the similarity measure design problem—i.e., the design of
a measure evaluating the degree of similarity between two data sets [8–15]—has been attracting
an increasing amount of attention from the research community due to the increasing number of
applications, including data mining, pattern recognition, and clustering [16,17]. The design of the
similarity measure based on fuzzy numbers is convenient, but it can only use triangular or trapezoidal
fuzzy membership functions [11,12]. If we design a similarity measure based on a distance measure,
we can use a general fuzzy membership function without any limit on its shape [13–15].
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Note that most conventional similarity measures—whether based on fuzzy number or distance
measure—can be applied to overlapped data sets only [8,11,13,14,18–21]. By “overlapped data sets” we
mean data sets with the same support. Similarity measure design and investigations of its relation to
dissimilarity have been carried out in the literature. Some similarity measure results are designed based
on fuzzy numbers [11,12], and axiomatic similarity measures have been defined [18,19]. In addition,
some similarity measures have been designed to work with non-overlapped data sets as well [22–24].
However, research on non-overlapped data sets is increasingly becoming important in big data analysis,
especially in atypical data analysis [23,24].

In our previous research, analysis was carried out on overlapped and non-overlapped data,
and intuitionistic fuzzy sets were introduced with artificial data [20]. Similarity measure design based
on fuzzy numbers and similarity measure applications to intuitionistic fuzzy sets have also been
studied [21]. The obtained results were summarized in a follow-up paper, in which similarity measures
on intuitionistic fuzzy sets were proposed and proved [22].

In this paper, we present a methodology for the analysis of the similarity of non-overlapped
data distributions. If conventional similarity measures are applied, there is no discrimination on
different non-overlapped data distribution pairs, which results in the same value. We preprocessed
non-overlapped data distributions to obtain information relations as a new measure between
neighbor information. This represents information on how distributions are related to each other,
and it allows conventional similarity to be applied. This procedure is also effective for similarity
measures on overlapped data distributions. Another approach is to consider neighbor information,
where a similarity measure is derived and verified with an illustrative example.

The results of the similarity of non-overlapped data suggest that the measure can be applicable to
atypical data analysis. The approach is extensible to big data analysis based on the rationale that the
neighbor information of each data is closely related to the similarity of each data.

1.2. Data Description

We considered a sequence of data, each element of which can take either a continuous or a discrete
value. A data sequence provides information on facts. For each data sequence, its data distribution is
represented by various structures. We designed similarity measures for data that have been shown
as overlapped data in previous works [13–15]. In the following, we explain several types of data
with examples:

• Two data, f(xi) and g(yj) for xi, yjε X, X denotes a universe of discourse. f(xi) and g(yj) have
values at the same support xi = yj whether it is same or not. It means direct operation such as
summation or subtract is possible between two values.

• On the other hand, they are classified as non-overlapped data. It is rather difficult to attain
operation results between two data in different supports. In this paper, we propose a similarity
design for such non-overlapped data with the help of preprocessing.

• Atypicality is one of the characteristics in big data [23,24]. Huge amount of data constitute
different types of structure. Hence, it is challenging to analyze the similarity between different
structures of data, even though they have the same meaning and fact.

• In general, data—especially big data—provide a large amount of information, and groups of data
are located close to or far from each other geometrically. The information analysis on neighbor
data is used to design the non-overlapped data in this paper.

In this paper, we illustrate the usefulness of the proposed similarity measure on the non-overlapped
data with the example data. Data distribution can be continuous or discrete; in this paper, however,
only discrete data are considered for the ease of explanation of the computational procedure.

We begin with the review of the preliminary results on the similarity measure and distance measure
using two discrete data sets in Section 2. In Section 3, the similarity measure for non-overlapped data
is designed with neighbor information, and an explicit similarity measure is proposed and proved.
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In order to illustrate the usefulness of the proposed similarity measure, example data distributions are
introduced and analyzed. Section 4 concludes our work in this paper.

2. Preliminaries on Similarity Measure

The axiomatic definition of a similarity measure is given by Liu [8]; based on this definition,
a similarity measure can be designed explicitly using a distance measure such as the Manhattan
distance. From the definition, numerous properties for a similarity measure between data sets can
be derived.

Definition 1. [8] A real function s: F2 → R+ is called a similarity measure if s satisfies the following properties:

(S1) s(A, B) = s(B, A), for ∀A, B ∈ F(X)

(S2) s(D, DC) = 0, if and only if D ∈ P(X)

(S3) s(C, C) = maxA,B∈Fs(A, B), for ∀C ∈ F(X)

(S4) A, B, C ∈ F(X), if A ⊂ B ⊂ C, then s(A, B) ≥ s(A, C) and s(B, C) ≥ s(A, C)

where R+ = [0, ∞), X is the universal set, F(X) denotes the class of all fuzzy sets of X, P(X) is the class of
all crisp sets of X, and DC is the complement of D. From Definition 2.1, numerous similarity measures can
be derived.

Distance is needed to represent the similarity measure explicitly; Liu also introduced the distance measure
with axiomatic definition in [8].

Definition 2. [8] A real function d: F2 → R+ is called a distance measure on F if d satisfies the
following properties:

(D1) d(A, B) = d(B, A), for ∀A, B ∈ F(X)

(D2) d(A, A) = 0, A ∈ F(X)

(D3) d(D, DC) = maxA,B∈Fd(A, B), D ∈ F(X)

(D4) A, B, C ∈ F(X), if A ⊂ B ⊂ C, then d(A, B) ≤ d(A, C) and d(B, C) ≤ d(A, C).

Generally, Manhattan distance is commonly used as a distance measure between fuzzy sets A and B [22]:

d(A, B) =
1
n ∑n

i=1|µA(xi)− µB(xi)|

where X = {x1, x2, · · · , xn}, |k| is the absolute value of k, and µA(x) denotes the membership function of
A ∈ F(X). Conventional similarity measures are illustrated in the following theorems. Theorem 1 is a similarity
measure equation with Manhattan distance [22].

Theorem 1. ∀A, B ∈ F(X), if d is the Manhattan distance measure, then:

s(A, B) = 1− d(A, A ∩ B)− d(B, A ∩ B) (1)

is a normalized similarity measure between sets A and B.

Proof. The proof of Theorem 1 is given in Appendix A.
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is a normalized similarity measure between sets ܣ and ܤ. 

Proof. The proof of Theorem 1 is given in Appendix A. □ 

Besides the similarity measure given by Theorem 1, other similarity measures can be defined as 
well, which is illustrated in Theorem 2. 

Theorem 2. ∀ܣ, ܤ ∈ ,ܣ)ݏ :if ݀ satisfies the Manhattan distance measure, then (ܺ)ܨ (ܤ = 2 − ,(ܤ⋂ܣ))݀ [1]) − ,(ܤ⋃ܣ))݀ [0]) (2) 

is another normalized similarity measure between sets ܣ and ܤ; note that given sets A and B, Equation (2) 
results in the same measure value as Equation (1). 

Besides the similarity measure given by Theorem 1, other similarity measures can be defined as
well, which is illustrated in Theorem 2.

Theorem 2. ∀A, B ∈ F(X) if d satisfies the Manhattan distance measure, then:

s(A, B) = 2− d((A ∩ B), [1]X)− d((A ∩ B), [0]X) (2)

is another normalized similarity measure between sets A and B; note that given sets A and B, Equation (2)
results in the same measure value as Equation (1).
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Proof. The proof of Theorem 2 is given in Appendix B.
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Now we consider the overlapped discrete data distributions shown in Figure 1, where two data
sets X and Y are distributed over the same support in the universe of discourse with 12 data, each with
different magnitudes: X = {x(i): 0.5, 0.8, 0.6, 0.3, 0.5, 0.3, 0.2, 0.4, 0.4, 1.0, 0.6, 0.4} and Y = {y(i): 0.2,
0.2, 0.4, 0.4, 0.3, 0.6, 0.7, 0.2, 0.5, 0.8, 0.8, 0.6}, for i = 1, 2, . . . , 12. The similarity calculation between
diamond and circle data is carried out with Equations (1) and (2). We explain the computation results
in the following. For more details of the computation, readers are referred to [25].
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Figure 1. Overlapped discrete data distribution.

Applying the similarity measure Equation (1) to the data distributions in Figure 1, we obtain:

s(X, Y) = 1− d(X, X ∩Y)− d(Y, X ∩Y)
= 1− 1

12 (2.9) = 0.758
(3)

With the similarity measure in Equation (2), we obtain the same result as follows:

s(X, Y) = 2− d((X ∩Y), [1]X)− d((X ∪Y), [0]X)
= 2− 1

12 (7.5 + 7.4) = 0.758
(4)

The computational procedures are clear.
Hence, similarity measures in Equations (1) and (2) show their effectiveness.
For comparison, example non-overlapped data distributions are shown in Figure 2. Each of

twelve-member sets X and Y has six non-zero membership values, which are distributed differently
and without any overlap, but they have the same magnitude distributions as those in Figure 1.

Now, the similarity measure is applied to calculate similarity for non-overlapped data.
We demonstrate the usefulness of the similarity measure with examples. Consider the discrete data
shown in Figure 2, where two data sets X and Y are illustrated with different combinations as follows:

- Figure 2a: X = {x(i): 0.5, 0.8, 0.6, 0.0, 0.5, 0.0, 0.0, 0.4, 0.0, 1.0, 0.0, 0.0} and Y = {y(i): 0.0, 0.0, 0.0,
0.4, 0.0, 0.6, 0.7, 0.0, 0.5, 0.0, 0.8, 0.6}

- Figure 2b: X = {x(i): 0.5, 0.8, 0.6, 0.4, 0.5, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0} and Y = {y(i): 0.0, 0.0, 0.0,
0.0, 0.0, 0.6, 0.7, 0.0, 0.5, 1.0, 0.8, 0.6}

where there are no overlaps in positions between non-zero elements of X and Y. Next, the conventional
similarity measures in Equations (1) and (2) are applied to calculate the similarity between X and Y in
Figure 2.
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For the data shown in Figure 2a, the similarity calculation between X and Y is derived with
Equation (1) as follows:

s(X, Y) = 1− d(X, X ∩Y)− d(Y, X ∩Y)
= 1− d(X, [0]X)− d(Y, [0]X)

= 1− 1
12 ∑

i
height(x(i))− 1

12 ∑
i

height(y(i))
(5)

Note that the similarity calculation for the data shown in Figure 2b results in the same value as
that obtained for Figure 2a as long as the data magnitudes are the same.

Because there is no intersection between the two distributions, X ∩ Y = [0]X, the similarity
measure calculations using Equation (2) for the data shown in Figure 2 are the same as shown below:

s(X, Y) = 2− d((X ∩Y), [1]X) + d((X ∩Y), [0]X)
= 2− d([0]X , [1]X) + d((X ∩Y), [0]X) = 2− 1− d((X ∩Y), [0]X)
= 1− 1

12 ∑
i

height(x(i) + y(i))
(6)

Results in Equations (5) and (6) suggest that the similarity between the two non-overlapped data
sets is related to the summation of their magnitudes and the independence of their distributions.

Note that the similarity measures in Equations (1) and (2) do not discriminate between the two
different non-overlapping data distributions shown in Figure 2. This is because the operations in the
definitions of the similarity measures are based on minimum/maximum value comparison in the same
support such as A ∩ B or A ∪ B. Therefore, the design of the similarity measures on non-overlapped
data distributions requires a different approach.

3. Similarity Measure on Non-Overlapped Data

Two approaches for the similarity measure on non-overlapped data distributions are now
proposed. First, a conventional similarity measure approach is applied in a novel way to
non-overlapping data. In order to apply similarity measures given in Equations (1) or (2) to
non-overlapped data distribution (Figure 2), the original data distribution is expressed as an
information-related diagram with the proposed measure. Having obtained the information-related
graph, we can find the similarity measure between this and the original data distribution.

Second, a new design of a similarity measure on non-overlapping data is carried out. It is based
on neighbor information.
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3.1. Data Transformation and Application to Similarity Measure

In order to apply a conventional similarity measure to non-overlapped data, we consider both the
distance between two different patterns and the difference between two membership values, i.e., for
each x(i) > 0, i = 1, 2, . . . , 12:

∑
∀j∈[1,2,··· ,12] s.t. y(j)>0

1
|i− j|+ 1

(1− |x(i)− y(i)|) (7)

and for each y(i) > 0, i = 1, 2, . . . , 12 :

∑
∀j∈[1,2,···12] s.t. x(j)>0

1
|i− j|+ 1

(1− |x(j)− y(i)|) (8)

where each difference should be satisfied between different patterns. From calculations of the proposed
preprocessing, six data are obtained from Equations (7) and (8), respectively.

Following the calculation process described and applying it to each pattern in turn, we obtain the
information relationships between different patterns shown in Figure 3.
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Next, we apply the similarity measure between the previous pattern of Figure 2 and preprocessing
results of Figure 3. Here, the previous pattern is considered in terms of the whole distribution.

Now, conventional similarity measures given in Equations (1) and (2) can be applied to the newly
derived data distributions shown in Figure 4, i.e., the union of X and Y (i.e., the black bars in the figure
and denoted d below) and the preprocessing results from Figure 3 (i.e., the gray bars in the figure and
denoted p below). Equations (1) and (2) become Equations (9) and (10) as follows:

s(d, p) = 1− d(d, d∩ p)− d(p, d∩ p) (9)

s(d, p) = 2− d((d∩ p), [1]X) + d((d∩ p), [0]X) (10)

The calculation results of Equations (9) and (10) for Figure 4a are given by:

s(d, p) = 1− d(d, d∩ p) + d(p, d∩ p)
= 1− 1

12 (|0.5− 0.1232|+ |0.8− 0.1284|+ |0.6− 0.1912|+ |0.4− 0.2554|
+|0.5− 0.2632|+ |0.6− 0.2328|+ |0.7− 0.206|+ |0.4− 0.2628|+ |0.5− 0.2045|

+|1.0− 0.2004|+ |0.8− 0.1504|+ |0.6− 0.12|)
= 0.5782



Symmetry 2017, 9, 68 7 of 11

s(d, p) = 2− d((d∩ p), [1]X) + d((d∩ p), [0]X)
= 2− 1

12 (0.8768 + 0.8716 + 0.8088 + 0.7446 + 0.7368 + 0.7672 + 0.794 + 0.7372
+0.7955 + 0.7996 + 0.8496 + 0.88)

− 1
12 (0.5 + 0.8 + 0.6 + 0.4 + 0.5 + 0.6 + 0.7 + 0.4 + 0.5 + 1.0 + 0.8 + 0.6)= 0.5782

The same result is obtained for both cases.
Applying Equations (9) and (10), we obtain the similarity measure for Figure 4b as follows:

s(d, p) = 1− d(d, d∩ p)− d(p, d∩ p)
= 1− 1

12 (|0.5− 0.094|+ |0.8− 0.1099|+ |0.6− 0.1371|+ |0.4− 0.1354|
+|0.5− 0.2021|+ |0.6− 0.2572| + |0.7− 0.206|+ |0.4− 0.2517|
+|0.5− 0.1879|+ |1.0− 0.0813|+ |0.8− 0.0963|+ |0.6− 0.1015|)= 0.5384

s(d, p) = 2− d((d∩ p), [1]X) +−d((d∪ p), [0]X)
= 2− 1

12 (0.906 + 0.8901 + 0.8629 + 0.8646 + 0.7979 + 0.7428 + 0.794 + 0.7483
+0.8121 + 0.9187 + 0.9037 + 0.8985)− 1

12 (0.5 + 0.8 + 0.6 + 0.4
+0.5 + 0.6 + 0.7 + 0.4 + 0.5 + 1.0 + 0.8 + 0.6)= 0.5384

From a heuristic point of view, it is clear that the similarity between X and Y in Figure 2a is higher
than that in Figure 2b. The calculation results clearly show this similarity.
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3.2. Similarity Measure Design Using Neighbor Information

Here, we give a brief introduction of the similarity measure on non-overlapped data proposed
in [21,22] and compare its results with those obtained in Section 3.1. We assume that the similarity
measure is affected from neighbor data information as in Section 3.1. Theorem 3 provides a similarity
measure on non-overlapped data, which has been proved in [21,22].

Theorem 3. Given fuzzy sets A and B, let Ã and B̃ be their supports, respectively. If d is the Manhattan
distance measure, then:

s(A, B) = 1− |sÃ − sB̃| (11)

is a similarity measure between set A and B, where:

SÃ = d
((

Ã ∩ (A ∪ B)
)

, [1]X
)

and:
SB̃ = d

((
B̃ ∩ (A ∪ B)

)
, [1]X

)
The similarity measure given in Equation (10) is designed using a distance measure. Equation (10)

is applied to the non-overlapped data in Figure 2, and calculation results are given below.
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For the data distribution shown in Figure 2a:

s(A, B) = 1−
∣∣∣d((Ã ∩ (A ∪ B)

)
, [1]X

)
− d
((

B̃ ∩ (A ∪ B)
)

, [1]X
)∣∣∣ = 0.967 (12)

For the data distribution shown in Figure 2b:

s(A, B) = 1−
∣∣∣d((Ã ∩ (A ∪ B)

)
, [1]X

)
− d
((

B̃ ∩ (A ∪ B)
)

, [1]X
)∣∣∣ = 0.833 (13)

The calculation results show that the similarity measure designed for non-overlapped data gives
similar results; the value of the similarity measure on the data shown in Figure 4a is higher than that
on the data shown in Figure 4b, i.e., 0.967 versus 0.833. Calculation results are shown in Appendix C.
Therefore, the similarity measure given in Equation (10) enables the comparison of similarity on
non-overlapped data. Note that the first distribution pair shows a higher similarity even when we
decide it heuristically.

4. Conclusions

In this paper, we have designed similarity measures on non-overlapped data and demonstrated
their effectiveness with illustrative examples.

First, we presented conventional similarity measures on overlapped data and shown their
usefulness with an overlapped data distribution. Calculation results have shown that they are
effective for overlapped data. However, similarity calculation results on non-overlapped data are the
same even for different distribution pairs, which means that they cannot provide discrimination on
non-overlapped data. From the example, therefore, we have concluded that we cannot directly apply
those similarity measures designed for overlapped data to non-overlapped data.

Second, in order to utilize conventional similarity measures, we proposed a new measure with
nearest information and derived information relation. The result is illustrated in Figure 3. This makes
it possible to apply conventional similarity measures to non-overlapped data. Calculation results show
the difference for data distributions shown in Figure 2. We have also proposed another similarity
measure based on neighbor information. Its effectiveness is also demonstrated through an illustrative
example. Note that, even though the calculation results are not identical to those of the first approach,
they show a similar pattern in discriminating between two different data distributions.

The results from this paper show that it is possible to design a similarity measure applicable
to both overlapped and non-overlapped data, which can discriminate between two different data
distributions even in the case of non-overlapped data.

Note that our work reported in this paper could be extended for applications in the analysis of
big data in the future.
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Appendix A. Proof of Theorem 1

Because the detailed proof of Theorem 1 is given in [13], here we provide a brief summary of
the proof.

(S1): It is clear from Equation (1) itself, hence s(A, B) = s(B, A) is satisfied.
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(S2):
s(D, DC) = 1− d(D, D ∩ DC)− d(DC, D ∩ DC)

= 1− d(D, [0]X)− d(DC, [0]X) = 0

is clear. Hence, (S2) is satisfied.
(S3): It is also clear because:

s(C, C) = 1− d(C, C ∩ C)− d(C, C ∩ C)
= 1− d(C, C)− d(C, C) = 1.

(S4): From Equation (1), because:

d(A, A ∩ C) = d(A, A ∩ B) and d(C, A ∩ C) ≥ d(B, A ∩ B)

it is guaranteed that s(A, C) ≤ s(A, B).

Similarly, because:

d(A, A ∩ C) = d(B, B ∩ C) and d(C, A ∩ C) ≥ d(C, B ∩ C)

s(A, C) ≤ s(B, C) is also satisfied.

Appendix B. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1.

(S1) It is clear from Equation (2) itself, hence s(A, B) = s(B, A).
(S2) Because:

s(D, DC) = 2− d((D ∩ DC), [1]X)− d((D ∪ DC), [0]X)
= 2− d([0]X , [1]X)− d([1]X , [0]X) = 0

(S2) is satisfied.
(S3) This property is satisfied because:

s(C, C) = 2− d((C ∩ C), [1]X)− d((C ∪ C), [0]X)
s(C, C) = 2− d(C, [1]X)− d(C, [0]X)

= 2− 1 = 1.

(S4) From Equation (2), because:

d((A ∩ B), [1]X) = d((A ∩ C), [1]X) and d((A ∪ B), [0]X) ≤ d((A ∪ C), [0]X)

it is guaranteed that s(A, C) ≤ s(A, B). Similarly, because:

d((A ∩ C), [1]X) ≥ d((B ∩ C), [1]X) and d((A ∪ C), [0]X) = d((B ∪ C), [0]X)

s(A, C) ≤ s(B, C) is also satisfied.
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Appendix C. Derivation of Equations (12) and (13)

Note that the calculation procedures are provided in [22]. The computation result is as follows:

s(A, B) = 1−
∣∣∣d((Ã ∩ (A ∪ B)

)
, [1]X

)
− d
((

B̃ ∩ (A ∪ B)
)

, [1]X
)∣∣∣

= 1− 1/6 |((1− 0.5) + (1− 0.8) + (1− 0.6) + (1− 0.5) + (1− 0.4)
+(1− 1))− ((1− 0.4) + (1− 0.6) + (1− 0.7) + (1− 0.5) + (1− 0.8)

+(1− 0.6))|= 1− 1/6 |2.2− 2.4| = 0.967

s(A, B) = 1−
∣∣∣d((Ã ∩ (A ∪ B)

)
, [1]X

)
− d
((

B̃ ∩ (A ∪ B)
)

, [1]X
)∣∣∣

= 1− 1/6 |((1− 0.5) + (1− 0.8) + (1− 0.6) + (1− 0.4) + (1− 0.5)
+(1− 0.4))− ((1− 0.6) + (1− 0.7) + (1− 0.5) + (1− 1) + (1− 0.8)

+(1− 0.6))|= 1− 1/6 |2.8− 1.8| = 0.833.
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