On Brane Solutions with Intersection Rules Related to Lie Algebras
Abstract
:1. Introduction
2. The Model
2.1. The Action
2.2. Ansatz for Composite Branes
2.3. The Sigma Model
3. Solutions Governed by Harmonic Functions
3.1. Solutions with a Block-Orthogonal of and Ricci-Flat Factor-Spaces
3.2. Solutions Related to Non-Singular KM Algebras
3.2.1. Finite-Dimensional Lie Algebras [47]
3.2.2. Hyperbolic KM algebras
3.2.3. Generalized Majumdar–Papapetrou Solutions
3.3. Toda-Like Solutions
3.3.1. Toda-Like Lagrangian
3.3.2. The Solutions
4. Cosmological-Type, e.g., S-Brane, Solutions
4.1. Lagrange Dynamics
4.2. Solutions with
4.2.1. Solutions with Ricci-Flat Factor-Spaces
4.2.2. Solutions with One Curved Factor-Space
4.2.3. Special Solutions for Block-Orthogonal Set of Vectors
4.3. Examples of S-Brane Solutions
5. Black Brane Solutions
6. Fluxbrane Solutions
6.1. Preliminary Notes
6.2. The Choice of Parameters
6.3. The Main Solution
6.4. Fluxbrane Intersection Rules
6.5. Polynomial Structure of for Finite-Dimensional Semi-Simple Lie Algebras
6.6. Solutions for Lie Algebra
6.7. Examples of Fluxbrane Solutions
6.7.1. Solutions for Algebra
6.7.2. Solution for Algebra
6.7.3. Solutions for Algebra
6.8. Generalized Melvin Solution with Several Two-Forms
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Staniukovich, K.P.; Melnikov, V.N. Hydrodynamics, Fields and Constants in the Theory of Gravitation; Energoatomizdat: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Cremmer, E.; Julia, B.; Scherk, J. Supergravity theory in eleven dimensions. Phys. Lett. B 1978, 76, 409–412. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, P. Supergravity. Phys. Rep. 1981, 68, 189–398. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Hull, C.; Townsend, P. Unity of superstring dualities. Nucl. Phys. B 1995, 438, 109–137. [Google Scholar] [CrossRef]
- Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B 1995, 443, 85–126. [Google Scholar] [CrossRef]
- Stelle, K.S. Lectures on supergravity p-branes. arXiv, 1997; arXiv:hep-th/9701088. [Google Scholar]
- Kac, V.G. Simple irreducible graded Lie algebras of finite growth. Izv. Akad. Nauk SSSR. Ser. Math. 1968, 32, 1323–1367. [Google Scholar] [CrossRef]
- Moody, R.V. A new class of Lie algebras. J. Algebra 1968, 10, 211–230. [Google Scholar] [CrossRef]
- Kac, V.G. Infinite-Dimensional Lie Algebras; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Fuchs, J.; Schweigert, C. Symmetries, Lie Algebras and Representations. A Graduate Course for Physicists; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Nikulin, V.V. On classification of hyperbolic systems of roots of rank 3. Procee. Steklov Inst. Math. 2000, 230, 241. (in Russian). [Google Scholar]
- Henneaux, M.; Persson, D.; Spindel, P. Spacelike Singularities and Hidden Symmetries of Gravity. Living Rev. Relativ. 2008, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Saçlioğlu, C. Dynkin diagram for hyperbolic Kac-Moody algebras. J. Phys. A 1989, 22, 3753–3769. [Google Scholar] [CrossRef]
- De Buyl, S.; Schomblond, C. Hyperbolic Kac Moody algebras and Einstein biliards. J. Math. Phys. 2004, 45, 4464–4492. [Google Scholar] [CrossRef]
- Carbone, L.; Chung, S.; Cobbs, L.; McRae, R.; Nandi, D.; Naqvi, Y.; Penta, D. Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits. J. Phys. A Math. Theor. 2010, 43, 155209–155223. [Google Scholar] [CrossRef]
- Feingold, A.; Frenkel, I.B. A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 1983, 263, 87–144. [Google Scholar] [CrossRef]
- Julia, B. Lectures in Applied Mathematics. AMS-SIAM 1985, 21, 355. [Google Scholar]
- Mizoguchi, S. E10 Symmetry in One Dimensional Supergravity. Nucl. Phys. B 1998, 528, 238–264. [Google Scholar] [CrossRef]
- Nicolai, H. A hyperbolic Lie algebra from supergravity. Phys. Lett. B 1992, 276, 333–340. [Google Scholar] [CrossRef]
- Moore, G. String duality, automorphic forms, and generalized Kac-Moody algebras. Nucl. Phys. Proc. Suppl. 1998, 67, 56–67. [Google Scholar] [CrossRef]
- Damour, T.; Henneaux, M. E10, BE10 and Arithmetical Chaos in Superstring Cosmology. Phys. Rev. Lett. 2001, 86, 4749–4752. [Google Scholar] [CrossRef] [PubMed]
- Belinskii, V.A.; Lifshitz, E.M.; Khalatnikov, I.M. An oscillatory mode of approach to singularities in relativistic cosmology. Uspekhi Fiz. Nauk 1970, 102, 463. (In Russian); reprinted in Adv. Phys. 1982, 31, 639 [Google Scholar] [CrossRef]
- Damour, T.; Henneaux, M. Chaos in superstring cosmology. Phys. Rev. Lett. 2000, 85, 920. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Henneaux, M.; Julia, B.; Nicolai, H. Hyperbolic Kac-Moody Algebras and Chaos in Kaluza-Klein Models. Phys. Lett. B 2001, 509, 323–330. [Google Scholar] [CrossRef]
- Chitré, D.M. Investigation of Vanishing of a Horizon for Bianchi Type IX (Mixmaster) Universe. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1972. [Google Scholar]
- Ivashchuk, V.D.; Kirillov, A.A.; Melnikov, V.N. On Stochastic Properties of Multidimensional Cosmological Models near the Singular Point. Izv. Vuzov (Fiz.) 1994, 11, 107. (In Russian); reprinted in Russ. Phys. J. 1994, 37, 1102 [Google Scholar]
- Ivashchuk, V.D.; Kirillov, A.A.; Melnikov, V.N. On Stochastic Behaviour of Multidimensional Cosmological Models near the Singularity. Pis’ma ZhETF 1994, 60, 225. (In Russian); reprinted in JETP Lett. 1994, 60, 235 [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity. Class. Quantum Gravity 1995, 12, 809. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Billiard Representation for Pseudo-Euclidean Toda-like Systems of Cosmological Origin. Regul. Chaotic Dyn. 1996, 1, 23–35. [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity. J. Math. Phys. 2000, 41, 6341–6363. [Google Scholar] [CrossRef]
- Damour, T.; Henneaux, M. Oscillatory behaviour in homogeneous string cosmology models. Phys. Lett. B 2000, 488, 108–116. [Google Scholar] [CrossRef]
- Damour, T.; Henneaux, M.; Nicolai, H. Cosmological billiards. Class. Quantum Gravity 2003, 20, R145–R200. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. On billiard approach in multidimensional cosmological models. Gravit. Cosmol. 2009, 15, 49–58. [Google Scholar] [CrossRef]
- Damour, T.; Henneaux, M.; Nicolai, H. E10 and a small tension expansion of M-theory. Phys. Rev. Lett. 2002, 89, 221601. [Google Scholar] [CrossRef] [PubMed]
- Gaberdiel, M.; Olive, D.; West, P. A class of Lorentzian Kac-Moody algebras. Nucl. Phys. B 2002, 645, 403–437. [Google Scholar] [CrossRef]
- West, P. E11 and M theory. Class. Quantum Gravity 2001, 18, 4443. [Google Scholar] [CrossRef]
- Schnakenburg, I.; West, P. Kac-Moody symmetries of IIB supergravity. Phys. Lett. B 2001, 517, 421–428. [Google Scholar] [CrossRef]
- Lambert, N.D.; West, P.C. Coset symmetries in dimensionally reduced bosonic string theory. Nucl. Phys. B 2001, 615, 117–132. [Google Scholar] [CrossRef]
- Englert, F.; Houart, L.; Taormina, A.; West, P. The symmetry of M-theories. J. High Energy Phys. 2003, 2003, 020. [Google Scholar] [CrossRef]
- Englert, F.; Houart, L.; West, P. Intersection Rules, Dynamics and Symmetries. J. High Energy Phys. 2003, 2003, 025. [Google Scholar] [CrossRef]
- Kleinschmidt, A.; Schnakenburg, I.; West, P. Very-extended Kac-Moody algebras and their interpretation at low levels. Class. Quantum Gravity 2004, 21, 2493–2525. [Google Scholar] [CrossRef]
- Kleinschmidt, A. E11 as E10 representation at low levels. Nucl. Phys. B 2003, 677, 553–586. [Google Scholar] [CrossRef]
- Englert, F.; Houart, L. G+++ invariant formulation of gravity and M-theories: Exact intersecting brane solutions. J. High Energy Phys. 2004, 2004, 059. [Google Scholar] [CrossRef]
- Bossard, G.; Kleinschmidt, A.; Palmkvist, J.; Pope, C.N.; Sezgin, E. Beyond E11. J. High Energy Phys. 2017, 5, 020. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Majumdar-Papapetrou Type Solutions in Sigma-model and Intersecting p-branes. Class. Quantum Gravity 1999, 16, 849. [Google Scholar] [CrossRef]
- Grebeniuk, M.A.; Ivashchuk, V.D. Sigma-model solutions and intersecting p-branes related to Lie algebras. Phys. Lett. B 1998, 442, 125–135. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Kim, S.-W.; Melnikov, V.N. Hyperbolic Kac-Moody algebra from intersecting p-branes. J. Math. Phys. 1998, 40, 4072–4083, Erratum in 2001, 42, 11. [Google Scholar] [CrossRef] [Green Version]
- Ivashchuk, V.D.; Kim, S.-W. Solutions with intersecting p-branes related to Toda chains. J. Math. Phys. 2000, 41, 444–460. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. P-brane black Holes for General Intersections. Gravit. Cosmol. 1999, 5, 313–318. [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Black hole p-brane solutions for general intersection rules. Gravit. Cosmol. 2000, 6, 27–40. [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Toda p-brane black holes and polynomials related to Lie algebras. Class. Quantum Gravity 2000, 17, 2073–2092. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. Composite S-brane solutions related to Toda-type systems. Class. Quantum Gravity 2003, 20, 261–276. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Exact solutions in multidimensional gravity with antisymmetric forms. Class. Quantum Gravity 2001, 18, R82–R157. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multidimensional classical and quantum cosmology with intersecting p-branes. J. Math. Phys. 1998, 39, 2866–2889. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Sigma-model for the Generalized Composite p-branes. Class. Quantum Gravity 1997, 14, 3001–3029. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Intersecting p-Brane Solutions in Multidimensional Gravity and M-Theory. Gravit. Cosmol. 1996, 2, 297–305. [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Generalized intersecting p-brane solutions from the σ-model approach. Phys. Lett. B 1997, 403, 23–30. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Rainer, M. Multidimensional Sigma-Models with Composite Electric p-branes. Gravit. Cosmol. 1998, 4, 73–82. [Google Scholar]
- Aref’eva, I.Y.; Rytchkov, O.A. Incidence Matrix Description of Intersecting p-brane Solutions. Am. Math. Soc. Trans. 2000, 201, 19–38. [Google Scholar]
- Argurio, R.; Englert, F.; Hourant, L. Intersection rules for p-branes. Phys. Lett. B 1997, 398, 61–68. [Google Scholar] [CrossRef]
- Aref’eva, I.Y.; Ivanov, M.G.; Rytchkov, O.A. Properties of Intersecting p-branes in Various Dimensions. In Supersymmetry and Quantum Field Theory; Springer: Berlin/Heidelberg, Germany, 1998; pp. 25–41. [Google Scholar]
- Aref’eva, I.Y.; Ivanov, M.G.; Volovich, I.V. Non-extremal intersecting p-branes in various dimensions. Phys. Lett. B 1997, 406, 44–48. [Google Scholar] [CrossRef]
- Ohta, N. Intersection rules for non-extreme p-branes. Phys. Lett. B 1997, 403, 218–224. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Ivashchuk, V.D.; Melnikov, V.N. The Reissner-Nordström Problem for Intersecting Electric and Magnetic p-Branes. Gravit. Cosmol. 1997, 3, 203–212. [Google Scholar]
- Ivashchuk, V.D. On symmetries of Target Space for σ-model of p-brane Origin. Gravit. Cosmol. 1998, 4, 217–220. [Google Scholar]
- Gal’tsov, D.V.; Rytchkov, O.A. Generating Branes via Sigma models. Phys. Rev. D 1998, 58, 122001. [Google Scholar] [CrossRef]
- West, P. The IIA, IIB and eleven dimensional theories and their common E11 origin. Nucl. Phys. B 2004, 693, 76–102. [Google Scholar] [CrossRef]
- Tseytlin, A.A. Harmonic superposition of M-branes. Nucl. Phys. B 1996, 475, 149–163. [Google Scholar] [CrossRef]
- Gauntlett, J.P. Intersecting branes. In Proceedings of the February 97 APCTP Winter School on Dualities of Gauge and String Theories, Seoul, Korea, 17–28 February 1997. [Google Scholar]
- Bergshoeff, E.; de Roo, M.; Eyras, E.; Janssen, B.; van der Schaar, J.P. Multiple Intersections of D-branes and M-branes. Nucl. Phys. B 1997, 494, 119–143. [Google Scholar] [CrossRef]
- Tseytlin, A.A. “No-force” condition and BPS combinations of p-branes in 11 and 10 dimensions. Nucl. Phys. B 1997, 487, 141–154. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D 1977, 15, 2752. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Zhuk, A.I. On Wheeler-De Witt equation in multidimensional cosmology. Nuovo Cim. B 1989, 104, 575–587. [Google Scholar] [CrossRef]
- Nicolai, H.; Olive, D.I. The principal SO(1,2) subalgebra of a hyperbolic Kac-Moody algebra. Lett. Math. Phys. 2001, 58, 141–152. [Google Scholar] [CrossRef]
- Khviengia, N.; Khviengia, Z.; Lü, H.; Pope, C.N. Towards a field theory of F-theory. Class. Quantum Gravity 1998, 15, 759–773. [Google Scholar] [CrossRef]
- Vafa, C. Evidence for F-theory. Nucl. Phys. B 1996, 469, 403–415. [Google Scholar] [CrossRef]
- Majumdar, S.D. A Class of Exact Solutions of Einstein’s Field Equations. Phys. Rev. 1947, 72, 390. [Google Scholar] [CrossRef]
- Papapetrou, A. A static solution of the equations of the gravitational field for an. arbirtary charge distribution. Proc. R. Irish Acad. A 1947, 51, 191. [Google Scholar]
- Duff, M.; Stelle, K. Multimembrane solutions of D = 11 supergravity. Phys. Lett. B 1991, 253, 113–118. [Google Scholar] [CrossRef]
- Güven, R. Black p-brane solutions of D = 11 supergravity theory. Phys. Lett. B 1992, 276, 49–55. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Townsend, P.K. Intersecting M-branes. Phys. Lett. B 1996, 380, 273–279. [Google Scholar] [CrossRef]
- Gauntlett, J.P.; Kastor, D.A.; Traschen, J. Overlapping branes in M-theory. Nucl. Phys. B 1996, 478, 544–560. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. On supersymmetric solutions in D = 11 supergravity on product of Ricci-flat spaces. Gravit. Cosmol. 2000, 6, 344–350. [Google Scholar]
- Ivashchuk, V.D. More M-branes on product of Ricci-flat manifolds. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1250067–1250093. [Google Scholar] [CrossRef]
- Golubtsova, A.A.; Ivashchuk, V.D. Triple M-brane solutions and supersymmetry. Tomsk State Pedag. Univ. Bull. 2012, 128, 53–58. [Google Scholar]
- Golubtsova, A.A.; Ivashchuk, V.D. Triple M-brane configurations and supersymmetries. Nucl. Phys. B 2013, 872, 289–312. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. On Supersymmetric M-Brane Configurations with an R1,1/Z2 Submanifold. Gravit. Cosmol. 2016, 22, 32–35. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Perfect-fluid Type Solution in Multidimensional Cosmology. Phys. Lett. A 1989, 136, 465–467. [Google Scholar] [CrossRef]
- Gavrilov, V.R.; Melnikov, V.N. Toda Chains with Type Am Lie Algebra for Multidimensional Classical Cosmology with Intersecting p-branes. In Proceedings of the International Seminar “Curent Topics in Mathematical Cosmology”, Potsdam, Germany, 30 March–4 April 1998; Rainer, M., Schmidt, H.-J., Eds.; World Scientific: Singapore, 1998; p. 310. [Google Scholar]
- Gavrilov, V.R.; Melnikov, V.N. Toda Chains Associated with Lie Algebras Am in Multidimensional Gravitation and Cosmology with Intersecting p-branes. Theor. Math. Phys. 2000, 123, 374–394. (In Russian) [Google Scholar]
- Lü, H.; Mukherji, S.; Pope, C.N.; Xu, K.-W. Cosmological Solutions in String Theories. Phys. Rev. D 1997, 55, 7926–7935. [Google Scholar] [CrossRef]
- Lü, H.; Pope, C.N.; Xu, K.W. Liouville and Toda Solitons in M-Theory. Mod. Phys. Lett. A 1996, 11, 1785–1796. [Google Scholar] [CrossRef]
- Lü, H.; Maharana, J.; Mukherji, S.; Pope, C.N. Cosmological Solutions, p-branes and the Wheeler De Witt Equation. Phys. Rev. D 1997, 57, 2219–2229. [Google Scholar] [CrossRef]
- Gutperle, M.; Strominger, A. Spacelike branes. J. High Energy Phys. 2002, 2002, 018. [Google Scholar] [CrossRef]
- Chen, C.M.; Gal’tsov, D.M.; Gutperle, M. S-brane solutions in supergravity theories. Phys. Rev. D 2002, 66, 024043. [Google Scholar] [CrossRef]
- Kruczenski, M.; Myers, R.C.; Peet, A.W. Supergravity S-branes. J. High Energy Phys. 2002, 2002, 039. [Google Scholar] [CrossRef]
- Roy, S. On supergravity solutions of space-like Dp-branes. J. High Energy Phys. 2002, 2002, 025. [Google Scholar] [CrossRef]
- Degger, N.S.; Kaya, A. Intersecting S-brane solutions of D = 11 supergravity. J. High Energy Phys. 2002, 2002, 038. [Google Scholar] [CrossRef]
- Ohta, N. Intersection rules for S-branes. Phys. Lett. B 2003, 558, 213–220. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. On composite S-brane solutions with orthogonal intersection rules. arXiv, 2003; arXiv:hep-th/0309027. [Google Scholar]
- Ivashchuk, V.D. S-brane solutions with orthogonal intersection rules (invited paper to a fest of A. Garsia). Gen. Relativ. Gravit. 2012, 37, 751–758, Erratum in 2012, 44, 1101. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Selivanov, A.B. Composite S-brane solutions on product of Ricci-flat spaces. Gen. Relativ. Gravit. 2004, 36, 1593–1602. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Selivanov, A.B. Cosmological solutions in multidimensional model with multiple exponential potential. J. High Energy Phys. 2003, 2003, 059. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Kim, S.-W. S-brane solutions with acceleration, in models with forms and multiple exponential potential. arXiv, 2004; arXiv:hep-th/0405009. [Google Scholar]
- Ivashchuk, V.D.; Melnikov, V.N. Cosmological and Spherically Symmetric Solutions with Intersecting p-branes. J. Math. Phys. 1999, 40, 6558–6576. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multidimensional cosmological and spherically symmetric solutions with intersecting p-branes. In Lecture Notes in Physics, Proceedings of the Second Samos Meeting on Cosmology, Geometry and Relativity—Mathematical and Quantum Aspects of Relativity and Cosmology, Samos, Greece, 31 August–4 September 1998; Cotsakis, S., Gibbons, G.W., Eds.; Springer: Berlin, Germany, 2000; Volume 537. [Google Scholar]
- Bronnikov, K.A. Block-orthogonal Brane systems, Black Holes and Wormholes. Gravit. Cosmol. 1998, 4, 49–56. [Google Scholar]
- Toda, M. Waves in nonlinear lattice. Prog. Theor. Phys. 1970, 45, 174–200. [Google Scholar] [CrossRef]
- Bogoyavlensky, O.I. On perturbations of the periodic Toda lattice. Commun. Math. Phys. 1976, 51, 201–209. [Google Scholar] [CrossRef]
- Kostant, B. The solution to a generalized Toda lattice and representation theory. Adv. Math. 1979, 34, 195–338. [Google Scholar] [CrossRef]
- Olshanetsky, M.A.; Perelomov, A.M. Explicit solutions of classical generalized Toda models. Invent. Math. 1979, 54, 261–269. [Google Scholar] [CrossRef]
- Adler, M.; van Moerbeke, P. Kowalewski’s asymptotic method, Kac-Moody Lie algebras and regularization. Commun. Math. Phys. 1982, 83, 83–106. [Google Scholar] [CrossRef]
- Kozlov, V.V.; Treshchev, D.V. Polynomial integrals of Hamiltonian systems with exponential interaction. Math. USSR Izv. 1990, 34, 555–574. [Google Scholar] [CrossRef]
- Emel’yanov, K.V.; Tsygvintsev, A.V. Kovalevskaya exponents of systems with exponential interaction. Math. Sb. 2000, 191, 39–50. (In Russian) [Google Scholar] [CrossRef]
- Gebert, R.W.; Inami, T.; Mizoguchi, S. The Painleve Property, W Algebras and Toda Field Theories associated with Hyperbolic Kac-Moody Algebras. Int. J. Mod. Phys. A 1996, 11, 5479–5493. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. On brane solutions related to non-singular Kac-Moody algebras. SIGMA 2009, 5, 070–104. [Google Scholar] [CrossRef]
- Henneaux, M.; Leston, M.; Persson, D.; Spindel, P. Geometric Configurations, Regular Subalgebras of E10 and M-Theory Cosmology. J. High Energy Phys. 2006, 2006, 021. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multidimensional Classical and Quantum Cosmology with Perfect Fluid. Gravit. Cosmol. 1995, 1, 133–148. [Google Scholar]
- Alimi, J.-M.; Ivashchuk, V.D.; Kononogov, S.A.; Melnikov, V.N. Multidimensional cosmology with anisotropic fluid: Acceleration and variation of G. Gravit. Cosmol. 2006, 12, 173–178. [Google Scholar]
- Cotsakis, S.; Ivashchuk, V.D.; Melnikov, V.N. P-brane Black Holes and Post-Newtonian Approximation. Gravit. Cosmol. 1999, 5, 52–57. [Google Scholar]
- Cvetic, M.; Tseytlin, A. Non-extreme black holes from non-extreme intersecting M-branes. Nucl. Phys. B 1996, 478, 181–198. [Google Scholar] [CrossRef]
- Ohta, N.; Shimizu, T. Non-extreme Black Holes from Intersecting M-branes. Int. J. Mod. Phys. A 1998, 13, 1305–1328. [Google Scholar] [CrossRef]
- Grebeniuk, M.A.; Ivashchuk, V.D.; Kim, S.-W. Black-brane solutions for C2 algebra. J. Math. Phys. 2002, 43, 6016–6023. [Google Scholar] [CrossRef]
- Grebeniuk, M.A.; Ivashchuk, V.D.; Melnikov, V.N. Black-brane solution for A3 algebra. Phys. Lett. B 2002, 543, 98–106. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Shikin, G.N. On interacting fields in general relativity theory. Izv. Vuzov (Fiz.) 1977, 9, 25–30. (In Russian); reprinted in Russ. Phys. J. 1977, 20, 1138–1143 [Google Scholar] [CrossRef]
- Heinrich, O. Charged black holes in compactified higher-dimensional Einstein-Maxwell theory. Astron. Nachr. 1988, 309, 249–251. [Google Scholar] [CrossRef]
- Gibbons, G.; Maeda, K. Black holes and membranes in higher dimensional theories with dilaton fields. Nucl. Phys. B 1988, 298, 741–775. [Google Scholar] [CrossRef]
- Bleyer, U.; Bronnikov, K.A.; Fadeev, S.B.; Melnikov, V.N. Black hole stability in multidimensional gravity theory. Astron. Nachr. 1994, 315, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Bleyer, U.; Ivashchuk, V.D. Mass bounds for Multidimensional Charged Dilatonic Black Holes. Phys. Lett. B 1994, 332, 292–296. [Google Scholar] [CrossRef]
- Garfinkle, D.; Horowitz, G.; Strominger, A. Charged black holes in string theory. Phys. Rev. D 1992, 43, 3140. [Google Scholar] [CrossRef]
- Gibbons, G.W. Antigravitating black hole solutions with scalar hair in N = 4 supergravity. Nucl. Phys. B 1982, 207, 337–349. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Wiltshire, D.L. Spacetime as a membrane in higher dimensions. Nucl. Phys. B 1987, 287, 717–742. [Google Scholar] [CrossRef]
- Lee, S.-C. Kaluza-Klein dyons and the Toda lattice. Phys. Lett. B 1984, 149, 98–99. [Google Scholar] [CrossRef]
- Lü, H.; Yang, W. SL(n,R)-Toda Black Holes. Class. Quantum Gravity 2013, 30, 235021. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Black Brane Solutions Related to Non-Singular Kac-Moody Algebras. Gravit. Cosmol. 2011, 17, 7–17. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multi-temporal Generalization of the Tangherlini Solution. Class. Quantum Gravity 1994, 11, 1793–1805. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multitemporal Generalization of the Schwarzschild Solution. Int. J. Mod. Phys. D 1995, 4, 167–174. [Google Scholar] [CrossRef]
- Melvin, M.A. Pure magnetic and electric geons. Phys. Lett. 1964, 8, 65–68. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Static, cylindrically symmetric Einstein-Maxwell fields. In Problems in Gravitation Theory and Particle Theory (PGTPT); Atomizdat: Moscow, Russia, 1979; p. 37. (In Russian) [Google Scholar]
- Russo, J.G.; Tseytlin, A.A. Exactly solvable string models of curved space-time backgrounds. Nucl. Phys. B 1995, 449, 91–145. [Google Scholar] [CrossRef] [Green Version]
- Dowker, F.; Gauntlett, J.P.; Kastor, D.A.; Traschen, J. Pair creation of dilaton black holes. Phys. Rev. D 1994, 49, 2909–2917. [Google Scholar] [CrossRef]
- Dowker, F.; Gauntlett, J.P.; Giddings, S.B.; Horowitz, G.T. On pair creation of extremal black holes and Kaluza-Klein monopoles. Phys. Rev. D 1994, 50, 2662. [Google Scholar] [CrossRef]
- Dowker, F.; Gauntlett, J.P.; Gibbons, G.W.; Horowitz, G.T. The decay of magnetic fields in Kaluza-Klein theory. Phys. Rev. D 1994, 52, 6929. [Google Scholar] [CrossRef]
- Dowker, H.F.; Gauntlett, J.P.; Gibbons, G.W.; Horowitz, G.T. Nucleation of P-branes and fundamental strings. Phys. Rev. D 1994, 53, 7115. [Google Scholar] [CrossRef]
- Chen, C.-M.; Gal’tsov, D.V.; Sharakin, S.A. Intersecting M-fluxbranes. Gravit. Cosmol. 1999, 5, 45–48. [Google Scholar]
- Costa, M.S.; Gutperle, M. The Kaluza-Klein Melvin solution in M-theory. J. High Energy Phys. 2001, 2001, 027. [Google Scholar] [CrossRef]
- Saffin, P.M. Gravitating fluxbranes. Phys. Rev. D 2001, 64, 024014. [Google Scholar] [CrossRef]
- Gutperle, M.; Strominger, A. Fluxbranes in string theory. J. High Energy Phys. 2001, 2001, 035. [Google Scholar] [CrossRef]
- Costa, M.S.; Herdeiro, C.A.; Cornalba, L. Flux-branes and the dielectric effect in string theory. Nucl. Phys. B 2001, 619, 155–190. [Google Scholar] [CrossRef]
- Emparan, R. Tubular branes in fluxbranes. Nucl. Phys. B 2001, 610, 169–189. [Google Scholar] [CrossRef]
- Saffin, P.M. Fluxbranes from p-branes. Phys. Rev. D 2001, 64, 104008. [Google Scholar] [CrossRef]
- Brecher, D.; Saffin, P.M. A note on the supergravity description of dielectric branes. Nucl. Phys. B 2001, 613, 218–236. [Google Scholar] [CrossRef]
- Chen, C.M.; Gal’tsov, D.V.; Saffin, P.M. Supergravity fluxbranes in various dimensions. Phys. Rev. D 2002, 65, 084004. [Google Scholar] [CrossRef]
- Figueroa-O’Farrill, J.; Simon, J. Generalized supersymmetric fluxbranes. J. High Energy Phys. 2001, 12, 011. [Google Scholar] [CrossRef]
- Russo, J.G.; Tseytlin, A.A. Supersymmetric fluxbrane intersections and closed string tachyons. J. High Energy Phys. 2001, 2001, 065. [Google Scholar] [CrossRef]
- Figueroa-O’Farrill, J.M.; Papadopoulos, G. Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory. J. High Energy Phys. 2001, 2001, 036. [Google Scholar] [CrossRef]
- Empharan, R.; Gutperle, M. From p-branes to fluxbranes and back. J. High Energy Phys. 2002, 2001, 023. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. Composite fluxbranes with general intersections. Class. Quantum Gravity 2002, 19, 3033–3048. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multidimensional gravitational models: Fluxbrane and S-brane solutions with polynomials. In Proceedings of the AIP Conference, Vancouver, BC, Canada, 25–29 June 2007; pp. 411–422. [Google Scholar]
- Goncharenko, I.S.; Ivashchuk, V.D.; Melnikov, V.N. Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras. Gravit. Cosmol. 2007, 13, 262–266. [Google Scholar]
- Golubtsova, A.A.; Ivashchuk, V.D. On Multidimensional Analogs of Melvin’s Solution for Classical Series of Lie Algebras. Gravit. Cosmol. 2009, 15, 144–147. [Google Scholar] [CrossRef]
- Golubtsova, A.A.; Ivashchuk, V.D. Fluxbrane and S-brane solutions related to Lie algebras. Phys. Part. Nucl. 2012, 43, 720–722. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N. Multidimensional Gravity, Flux and Black Brane Solutions Governed by Polynomials. Gravit. Cosmol. 2014, 20, 182–189. [Google Scholar] [CrossRef]
- Ivashchuk, V.D. On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra. arXiv, 2017; arXiv:1706.07856. [Google Scholar]
- Ivashchuk, V.D. Black brane solutions governed by fluxbrane polynomials. J. Geom. Phys. 2014, 86, 101–111. [Google Scholar] [CrossRef]
- Golubtsova, A.A.; Ivashchuk, V.D. On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras. arXiv, 2008; arXiv:0804.0757. [Google Scholar]
- Bolokhov, S.V.; Ivashchuk, V.D. On generalized Melvin solution for the Lie algebra E6. arXiv, 2017; arXiv:1706.06621. [Google Scholar]
- Abishev, M.E.; Boshkayev, K.A.; Ivashchuk, V.D. Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields. Eur. Phys. J. C 2017, 77, 180. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Kastor, D.; London, L.A.J.; Townsend, P.K.; Traschen, J. Supersymmetric Self-Gravitating Solitons. Nucl. Phys. B 1994, 416, 850–880. [Google Scholar] [CrossRef]
- Poletti, S.J.; Twamley, J.; Wiltshire, D.L. Charged Dilaton Black Holes with a Cosmological Constant. Phys. Rev. D 1995, 51, 5720–5724. [Google Scholar] [CrossRef] [Green Version]
- Gal’tsov, D.; Khramtsov, M.; Orlov, D. “Triangular” extremal dilatonic dyons. Phys. Lett. B 2015, 743, 87–92. [Google Scholar] [CrossRef]
- Abishev, M.E.; Boshkayev, K.A.; Dzhunushaliev, V.D.; Ivashchuk, V.D. Dilatonic dyon black hole solutions. Class. Quantum Gravity 2015, 32, 165010. [Google Scholar] [CrossRef]
- Alimi, J.-M.; Ivashchuk, V.D.; Melnikov, V.N. An S-brane solution with acceleration and small enough variation of G. Gravit. Cosmol. 2007, 13, 137–141. [Google Scholar]
- Ivashchuk, V.D.; Kononogov, S.A.; Melnikov, V.N. Electric S-brane solutions corresponding to rank-2 Lie algebras: Acceleration and small variation of G. Gravit. Cosmol. 2008, 14, 235–240. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Singleton, D. Composite electric S-brane solutions with maximal number of branes. J. High Energy Phys. 2004, 2004, 061. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Singleton, D. On avoiding cosmological oscillating behavior for S-brane solutions with diagonal metrics. Phys. Rev. D 2005, 72, 103511. [Google Scholar] [CrossRef]
- Ivashchuk, V.D.; Melnikov, V.N.; Singleton, D. Electric S-brane solutions with parallel forms on Ricci-flat factor space. Gravit. Cosmol. 2006, 12, 315–320. [Google Scholar]
- Dehnen, H.; Ivashchuk, V.D.; Melnikov, V.N. S-brane solutions with (anti-)self-dual parallel charge density form on a Ricci-flat submanifold. Gravit. Cosmol. 2007, 13, 23–30. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivashchuk, V.D. On Brane Solutions with Intersection Rules Related to Lie Algebras. Symmetry 2017, 9, 155. https://doi.org/10.3390/sym9080155
Ivashchuk VD. On Brane Solutions with Intersection Rules Related to Lie Algebras. Symmetry. 2017; 9(8):155. https://doi.org/10.3390/sym9080155
Chicago/Turabian StyleIvashchuk, Vladimir D. 2017. "On Brane Solutions with Intersection Rules Related to Lie Algebras" Symmetry 9, no. 8: 155. https://doi.org/10.3390/sym9080155
APA StyleIvashchuk, V. D. (2017). On Brane Solutions with Intersection Rules Related to Lie Algebras. Symmetry, 9(8), 155. https://doi.org/10.3390/sym9080155