Next Issue
Volume 10, December
Previous Issue
Volume 10, October
 
 

Minerals, Volume 10, Issue 11 (November 2020) – 112 articles

Cover Story (view full-size image): Inherent morphology and wettability characteristic differences of organo-clay arrangements between hydrophilic and biwettable sub-2 μm clay aggregates can enable the formation and enhancement of solid-stabilized water-in-bitumen emulsions with differing extent of emulsion stability during aqueous extraction of oil sands and subsequently in the bitumen froth treatment process. This is caused by the spatial distribution and particle surfaces of <200 nm clay mineral platelets. Clay platelets stacked in an orderly manner arise in the hydrophilic fraction, whereas randomly oriented <200 nm clay platelets are found in the biwettable fraction. An organic coating that is inhomogeneous at nanometer-scale is revealed on <200 nm clay platelet surfaces in the biwettable fraction, and a much lower carbon content is observed on <200 nm clay platelets in the hydrophilic fraction. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
10 pages, 2899 KiB  
Article
Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping
by Haixia Chu, Guoxiang Chi and Chunji Xue
Minerals 2020, 10(11), 1043; https://doi.org/10.3390/min10111043 - 23 Nov 2020
Cited by 2 | Viewed by 2246
Abstract
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion [...] Read more.
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion composition. A method of point analysis using cryogenic Raman spectroscopy has been previously proposed to quantitatively estimate the solute composition of H2O-NaCl-CaCl2 solutions, but there are uncertainties related to heterogeneity of frozen fluid inclusions and potential bias in the processing of Raman spectra. A new method of quantitative analysis of solute composition of H2O-NaCl-CaCl2 solutions using Raman mapping technology is proposed in this study, which can overcome the problems encountered in the point analysis. It is shown that the NaCl/(NaCl + CaCl2) molar ratio of the solution, X(NaCl, m), can be related to the area fraction of hydrohalite over hydrohalite plus antarcticite, Fhydrohalite, by the equation X(NaCl, m) = 1.1435 Fhydrohalite − 0.0884, where Fhydrohalite = hydrohalite area/(hydrohalite area + antarcticite area). This equation suggests that the molar fraction of a salt component may be estimated from the fraction of the Raman peak area of the relevant hydrate. This study has established a new way of estimating solute composition of fluid inclusions using cryogenic Raman mapping technique, which may be extended to other solutions. Full article
Show Figures

Figure 1

24 pages, 11348 KiB  
Article
Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits
by Nikita V. Chukanov, Anatoly N. Sapozhnikov, Roman Yu. Shendrik, Marina F. Vigasina and Ralf Steudel
Minerals 2020, 10(11), 1042; https://doi.org/10.3390/min10111042 - 23 Nov 2020
Cited by 35 | Viewed by 5274
Abstract
Five samples of differently colored sodalite-group minerals from gem lazurite deposits were studied by means of electron microprobe and wet chemical analyses, infrared, Raman, electron spin resonance (ESR) and UV-Visible spectroscopy, and X-ray diffraction. Various extra-framework components (SO42−, S2− [...] Read more.
Five samples of differently colored sodalite-group minerals from gem lazurite deposits were studied by means of electron microprobe and wet chemical analyses, infrared, Raman, electron spin resonance (ESR) and UV-Visible spectroscopy, and X-ray diffraction. Various extra-framework components (SO42−, S2− and Cl anions, S3•−, S2•− and SO3•− radical anions, H2O, CO2, COS, cis- as well as trans- or gauche-S4 neutral molecules have been identified. It is shown that S3•− and S4 are the main blue and purple chromophores, respectively, whereas the S2•− yellow chromophore and SO3•− blue chromophore play a subordinate role. X-ray diffraction patterns of all samples of sodalite-group minerals from lazurite deposits studied in this work contain superstructure reflections which indicate different kinds of incommensurate modulation of the structures. Full article
(This article belongs to the Special Issue Vibrational (Infrared and Raman) Spectroscopy of Minerals)
Show Figures

Figure 1

10 pages, 3245 KiB  
Article
Prediction Models for Evaluating the Strength of Cemented Paste Backfill: A Comparative Study
by Jiandong Liu, Guichen Li, Sen Yang and Jiandong Huang
Minerals 2020, 10(11), 1041; https://doi.org/10.3390/min10111041 - 21 Nov 2020
Cited by 15 | Viewed by 2469
Abstract
Cemented paste backfill (CPB) is widely used in underground mining, and attracts more attention these years as it can reduce mining waste and avoid environmental pollution. Normally, to evaluate the functionality of CPB, the compressive strength (UCS) is necessary work, which is also [...] Read more.
Cemented paste backfill (CPB) is widely used in underground mining, and attracts more attention these years as it can reduce mining waste and avoid environmental pollution. Normally, to evaluate the functionality of CPB, the compressive strength (UCS) is necessary work, which is also time and money consuming. To address this issue, seven machine learning models were applied and evaluated in this study, in order to predict the UCS of CPB. In the laboratory, a series of tests were performed, and the dataset was constructed considering five key influencing variables, such as the tailings to cement ratio, curing time, solids to cement ratio, fine sand percentage and cement types. The results show that different variables have various effects on the strength of CPB. The optimum models for predicting the UCS of CPB are a support vector machine (SVM), decision tree (DT), random forest (RF) and back-propagation neural network (BPNN), which means that these models can be directly applied for UCS prediction in future work. Furthermore, the intelligent model reveals that the tailings to cement ratio has the most important influence on the strength of CPB. This research can boost CPB application in the field, and guide the artificial intelligence application in future mining. Full article
Show Figures

Figure 1

21 pages, 5950 KiB  
Article
Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth
by Martin Couillard, Daniel D. Tyo, David M. Kingston, Bussaraporn Patarachao, Andre Zborowski, Samson Ng and Patrick H. J. Mercier
Minerals 2020, 10(11), 1040; https://doi.org/10.3390/min10111040 - 21 Nov 2020
Cited by 2 | Viewed by 2342
Abstract
A primary concern of commercial mined oil sands operations is the extent to which one can minimize the content of water and solids contaminants in the solvent-diluted bitumen products resulting from the bitumen production processes. During bitumen production, particles of about 2 µm [...] Read more.
A primary concern of commercial mined oil sands operations is the extent to which one can minimize the content of water and solids contaminants in the solvent-diluted bitumen products resulting from the bitumen production processes. During bitumen production, particles of about 2 µm or less may be responsible for the stabilization of water-in-bitumen emulsions that form during aqueous extraction of bitumen and purification of bitumen froth subsequently during the froth treatment processes, thus leading to the presence of those contaminants in solvent-diluted bitumen products. In this study, we separate and analyze sub-2 µm clay solids isolated from typical bitumen froth fed to a froth treatment plant at a commercial mined oil sands operation. Analytical transmission electron microscopy (TEM) with spatially-resolved energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS) demonstrate key differences in morphology and composition between sub-2 µm clay aggregates with two distinct wettability characteristics: hydrophilic vs. biwettable particle surfaces. In particular, clay platelets with <200 nm lateral dimensions and thicknesses of a few atomic layers, which are intermixed within coarser sub-2 µm clay aggregates, are found to confer clear differences in morphological characteristics and wettability behaviors to the sub-2 µm clay aggregates. The <200 nm clay platelets found within sub-2 µm biwettable clays tend to arrange themselves with random orientations, whereas <200 nm clay platelets within sub-2 µm hydrophilic clays typically form well-ordered face-to-face stacks. Moreover, in biwettable sub-2 µm clay aggregates, <200 nm clay platelets often cover the surfaces of ~1–2 µm sized mineral particles, whereas similarly sized mineral particles in hydrophilic sub-2 µm clay aggregates, in contrast, generally have exposed surfaces without clay platelet coverage. These biwettable vs. hydrophilic behaviors are attributed to a difference in the surface characteristics of the <200 nm clay platelets caused by toluene-unextractable organic carbon coatings. Nanometer-scale carbon mapping reveals an inhomogeneous toluene-unextractable organic carbon coating on the surfaces of <200 nm platelets in biwettable clays. In contrast, hydrophilic clays have a significantly lower amount of toluene-unextractable organic carbon, which tends to be concentrated at steps or near metal oxide nanoparticles on clay particle surfaces. Mixing surface-active organic species, such as asphaltene, resin, or carboxylic organic acids of various types with inorganic solids can lead to a dramatically enhanced emulsion stability. Consequently, understanding the origin and characteristics of sub-2 µm clay solids in bitumen froth is important to (i) clarify their potential role in the formation of stable water-in-oil emulsions during bitumen production and (ii) improve froth treatment process performance to further reduce contaminant solids in solvent-diluted bitumen products. We discuss the implications of our results from these two perspectives. Full article
(This article belongs to the Special Issue Mineral-Organic Interactions Related to Oil Sands Processing)
Show Figures

Figure 1

19 pages, 16714 KiB  
Article
Reconstruction of 16th–17th Century Lead Smelting Processes on the Basis of Slag Properties: A Case Study from Sławków, Poland
by Rafał Warchulski, Monika Szczuka and Krzysztof Kupczak
Minerals 2020, 10(11), 1039; https://doi.org/10.3390/min10111039 - 20 Nov 2020
Cited by 11 | Viewed by 4044
Abstract
The study focuses on the reconstruction of the technological process in the 16th–17th century lead smelter in Sławków based on chemical and petrographic analyzes of slags. There are three main types of material at the landfill: glassy, crystalline, and weathered. Glassy slags are [...] Read more.
The study focuses on the reconstruction of the technological process in the 16th–17th century lead smelter in Sławków based on chemical and petrographic analyzes of slags. There are three main types of material at the landfill: glassy, crystalline, and weathered. Glassy slags are made of amorphous phase in which crystals of pyroxene, willemite, olivine, wüstite, and lead oxide appear. Crystalline slags are composed of wollastonite, rankinite, melilite, anorthite, quartz, and Fe oxides. Weathered slags have a composition similar to glassy slags, but they also contain secondary phases: anglesite and cerussite. Chemical analyzes confirmed that the smelter used sulphide ores, which were roasted, and the main addition to the charge was quartz sand. The smelting process took place in a brick-built furnace, under reducing conditions, with varied oxygen fugacity ranging from WM to MH buffer. The slag characteristics show a knowledge of the workers in the field of smelting methods. The addition of SiO2 allowed for the binding of elements that could contaminate the obtained lead, and at the same time, the low melting point of the material (1150 °C) and the melt viscosity (logη = 1.34 for 1150 °C) was maintained, enabling the effective separation of liquid lead. Full article
(This article belongs to the Special Issue Mineralogy, Trace Elements and Isotopic Tracers in Archaeometallurgy)
Show Figures

Figure 1

18 pages, 5116 KiB  
Article
Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China
by Jie Deng, Kecheng Zhang, Dongsheng He, Hengqin Zhao, Rachid Hakkou and Mostafa Benzaazoua
Minerals 2020, 10(11), 1038; https://doi.org/10.3390/min10111038 - 20 Nov 2020
Cited by 7 | Viewed by 2586
Abstract
Checking the presence of sesquioxide (Fe2O3, Al2O3) is helpful for its removal in advance. Therefore, the occurrence of sesquioxide in a mid-low grade calcareous-siliceous collophane ore (massive carbonate-apatite, also known as francolite) from Guizhou, China [...] Read more.
Checking the presence of sesquioxide (Fe2O3, Al2O3) is helpful for its removal in advance. Therefore, the occurrence of sesquioxide in a mid-low grade calcareous-siliceous collophane ore (massive carbonate-apatite, also known as francolite) from Guizhou, China was determined by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), field emission scanning electron microscope-energy dispersive X-ray spectrometry (FESEM-EDX) and Mineral Liberation Analyzer (MLA). The results show that iron mainly occurs as pyrite FeS2, goethite FeO(OH) and as substitution within dolomite Ca(Mg,Fe)(CO3)2, while aluminum is enriched in muscovite KAl2(AlSi3O10)(OH)2 and also found in apatite (F,CO3)CaPO4 and calcite CaCO3 due to isomorphism or adsorption. All these minerals are fine-grained, among which pyrite and goethite tend to be enriched in larger particles. Intergrowth is predominant in the six minerals’ locking. Pyrite is mainly intergrown with calcite, biotite and also included in apatite and muscovite, while the monomer pyrite appears as semi-automorphic fine grain with the liberation of 56.1%. Apatite particles are mainly intergrown with quartz and calcite. Most of goethite, dolomite, muscovite and calcite form intergrowth with apatite, with contents of 21.7%, 11.1%, 19.5% and 41%, respectively. The removal of pyrite, goethite, dolomite, muscovite and calcite in the ore is the key to reduce the contents of Fe2O3 and Al2O3. In the subsequent beneficiation, the ore must be fully ground. In addition to flotation, magnetic separation can also be considered to remove part of iron in ore. For the removal of aluminum from apatite, leaching method can be considered. Full article
(This article belongs to the Special Issue Crystallography and Mineralogy of Phosphates)
Show Figures

Figure 1

51 pages, 19219 KiB  
Review
Mineralogy, Geochemistry and Genesis of Agate—A Review
by Jens Götze, Robert Möckel and Yuanming Pan
Minerals 2020, 10(11), 1037; https://doi.org/10.3390/min10111037 - 20 Nov 2020
Cited by 44 | Viewed by 18228
Abstract
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of [...] Read more.
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of mineral inclusions and water as both interstitial molecular H2O and silanol groups. Most agate occurrences worldwide are related to SiO2-rich (rhyolites, rhyodacites) and SiO2-poor (andesites, basalts) volcanic rocks, but can also be formed as hydrothermal vein varieties or as silica accumulation during diagenesis in sedimentary rocks. It is assumed that the supply of silica for agate formation is often associated with late- or post-volcanic alteration of the volcanic host rocks. Evidence can be found in association with typical secondary minerals such as clay minerals, zeolites or iron oxides/hydroxides, frequent pseudomorphs (e.g., after carbonates or sulfates) as well as the chemical composition of the agates. For instance, elements of the volcanic rock matrix (Al, Ca, Fe, Na, K) are enriched, but extraordinary high contents of Ge (>90 ppm), B (>40 ppm) and U (>20 ppm) have also been detected. Calculations based on fluid inclusion and oxygen isotope studies point to a range between 20 and 230 °C for agate formation temperatures. The accumulation and condensation of silicic acid result in the formation of silica sols and proposed amorphous silica as precursors for the development of the typical agate micro-structure. The process of crystallisation often starts with spherulitic growth of chalcedony continuing into chalcedony fibers. High concentrations of lattice defects (oxygen and silicon vacancies, silanol groups) detected by cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopy indicate a rapid crystallisation via an amorphous silica precursor under non-equilibrium conditions. It is assumed that the formation of the typical agate microstructure is governed by processes of self-organization. The resulting differences in crystallite size, porosity, kind of silica phase and incorporated color pigments finally cause the characteristic agate banding and colors. Full article
(This article belongs to the Special Issue Agates: Types, Mineralogy, Deposits, Host Rocks, Ages and Genesis)
Show Figures

Figure 1

18 pages, 3339 KiB  
Article
Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
by Lia Kogarko and Troels F. D. Nielsen
Minerals 2020, 10(11), 1036; https://doi.org/10.3390/min10111036 - 20 Nov 2020
Cited by 13 | Viewed by 4169
Abstract
Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase [...] Read more.
Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore. Nor is the neighboring Khibiny complex despite a bulk content of 531 ppm of Zr. Khibiny only has interstitial and anhedral EGM. The evolution of the Lovozero magma is recorded in the compositions EGM up through a stratigraphy of 2400 m in Phase II and III of the complex, and distinct in elements like rare earth elements (REE), Sr, Ba, Th, U, Rb, Mn, Fe. The compositional evolution reflects primarily fractional crystallization processes within the magma chamber itself in combination with convective magma flow and layering by precipitation of minerals with different settling velocities. The suggested mechanism for the formation of the EGM deposits is flotation of very small, suspended EGM crystals in the convective magma and concentration below the roof of the magma chamber. Phase III EGM is enriched in total REE (1.3%) and in HREE (Ce/Yt = 8.8) and constitutes a world class deposit of REE in the million tons of Phase III eudialyte lujavrites. Full article
(This article belongs to the Special Issue Study of the Eudialyte Group Minerals)
Show Figures

Figure 1

3 pages, 156 KiB  
Editorial
Editorial for Special Issue “Chemical, Mineralogical and Isotopic Studies of Diagenesis of Carbonate and Clastic Sediments”
by Ihsan S. Al-Aasm and Howri Mansurbeg
Minerals 2020, 10(11), 1035; https://doi.org/10.3390/min10111035 - 20 Nov 2020
Cited by 1 | Viewed by 2087
Abstract
Diagenesis of carbonates and clastic sediments encompasses the biochemical, mechanical and chemical changes that occur in sediments after deposition and prior to low-grade metamorphism [...] Full article
31 pages, 5094 KiB  
Article
Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield
by Pentti Hölttä, Tiia Kivisaari, Hannu Huhma, Gavyn Rollinson, Matti Kurhila and Alan R. Butcher
Minerals 2020, 10(11), 1034; https://doi.org/10.3390/min10111034 - 19 Nov 2020
Cited by 4 | Viewed by 4005
Abstract
The Tuntsa Suite is a polymetamorphic Archean complex mainly consisting of metasedimentary gneisses. At least two strong metamorphic events can be distinguished in the area. The first took place at high temperatures in the Neoarchean at around 2.70–2.64 Ga, indicated by migmatisation and [...] Read more.
The Tuntsa Suite is a polymetamorphic Archean complex mainly consisting of metasedimentary gneisses. At least two strong metamorphic events can be distinguished in the area. The first took place at high temperatures in the Neoarchean at around 2.70–2.64 Ga, indicated by migmatisation and U-Pb ages of metamorphic zircon. During the Paleoproterozoic, metasedimentary gneisses were penetratively deformed and recrystallized under medium pressures producing staurolite, kyanite and garnet-bearing mineral assemblages. The suggested Paleoproterozoic PT path was clockwise where the temperature and pressure first increased to 540–550 °C and 6 kbar, crystallizing high Ca/low Mg garnet cores. The mineral compositions show that commonly garnet core was not in chemical equilibrium with staurolite but crystallized earlier, although garnet-staurolite-kyanite assemblages are common. The temperature and pressure increased to c. 650 °C and 8 kbars where staurolite and kyanite coexist. This was followed by decompression down to c. 550–600 °C and 3–4 kbars, shown by andalusite crystallization and cordierite formed in the breakdown of staurolite and biotite + kyanite. The observed garnet zoning where Mg increases and Ca decreases from the core to the rim was developed with both increasing and decreasing pressure, depending on the effective bulk composition. The U-Pb and Sm-Nd age determinations for monazite and garnet show that the Paleoproterozoic metamorphic cycle took place at 1.84–1.79 Ga, related with thrusting of the Lapland granulites onto the adjacent terranes and subsequent exhumation. Full article
Show Figures

Figure 1

13 pages, 1208 KiB  
Article
Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+
by Mathew Dzingai, Malibongwe Manono and Kirsten Corin
Minerals 2020, 10(11), 1033; https://doi.org/10.3390/min10111033 - 19 Nov 2020
Cited by 18 | Viewed by 2913
Abstract
Froth flotation is a multifaceted complex process which is water intensive. The use of recycled water as an alternative source of water to meet water demands of the process may introduce deleterious inorganic ions that affect the mineral surface, pulp chemistry, and reagent [...] Read more.
Froth flotation is a multifaceted complex process which is water intensive. The use of recycled water as an alternative source of water to meet water demands of the process may introduce deleterious inorganic ions that affect the mineral surface, pulp chemistry, and reagent action, hence the need to establish whether threshold ion concentrations exist beyond which flotation performance will be adversely affected. This is of paramount importance in informing appropriate recycle streams and allowing simple, cost-effective water treatment methods to be applied. Here we report that increasing ionic strengths of synthetic plant water (SPW); 3, 5, and 10 SPW respectively, resulted in an increase in water recovery in the order 0.073 mol·dm−3 (3 SPW) < 0.121 mol·dm−3 (5 SPW) < 0.242 mol·dm−3 (10 SPW), indicating an increase in froth stability as higher water recoveries are linked to increased froth stabilities. This behavior is linked to the action of inorganic electrolytes on bubble coalescence which is reported in literature. There was, however, no significant effect on the valuable mineral recovery. Spiking 3 SPW to 400 mg/L Ca2+ resulted in higher copper and nickel grades compared to 3 SPW, 5 SPW, and 10 SPW and was deemed to be the Ca2+ ion threshold concentration for this study since 3 SPW spiked with further Ca2+ to a concentration of 800 mg/L resulted in a decrease in the concentrate grade. The spiking of 3 SPW with Mg2+ resulted in higher copper and nickel grades compared to all other synthetic plant water conditions tested in this study. Full article
(This article belongs to the Special Issue Water within Minerals Processing)
Show Figures

Graphical abstract

22 pages, 7685 KiB  
Article
Sulfate-Dependent Shear Behavior of Cementing Fiber-Reinforced Tailings and Rock
by Xiangqian Xu, Weilv Wu and Wenbin Xu
Minerals 2020, 10(11), 1032; https://doi.org/10.3390/min10111032 - 19 Nov 2020
Cited by 7 | Viewed by 2328
Abstract
A better understanding of the shear behavior of the interface between cemented paste backfill (CPB) and the surrounding rock is critical for constructing cost-effective, durable, and reliable CPB structures. In practice, CPBs suffer sulfate attack during their service life, and as a typical [...] Read more.
A better understanding of the shear behavior of the interface between cemented paste backfill (CPB) and the surrounding rock is critical for constructing cost-effective, durable, and reliable CPB structures. In practice, CPBs suffer sulfate attack during their service life, and as a typical cementitious material, the CPB itself has disadvantages, such as high brittleness, easy cracking, and insufficient durability, which restrict the further popularization and application of CPB technology. Thus, in this study, direct shear tests, electrical conductivity (EC) and thermal gravity/differential thermal gravimetric (TG/DTG) analyses were conducted to research the effects of different amounts of monofilament polypropylene fibers (0%, 0.1%, 0.3%, and 0.5%; by mass of the sum of the dry tailings and cement) and initial sulfate concentrations (0 mg/L, 5000 mg/L and 25,000 mg/L) on the shear behavior of the fiber-reinforced CPBs and rock (FR-CPB/rock) interface, and the Mohr–Coulomb shear envelop was used to fit the shear strength of specimens with various periods (1 day, 3 days, 7 days, and 28 days) under various stresses (50 kPa, 100 kPa, 150 kPa). The experimental testing results indicated that the fibers generally enhance the performance of the shear behavior of the FR-CPB/rock interface and the optimal fiber content correlates to the initial sulfate concentration. For the same treatment time (7 days), a fiber content of 0.1% contributes to the best shear performance for the FR-CPB/rock interface with a sulfate concentration of 5000 mg/L. For the sulfate-free and 25,000 mg/L concentration specimens, 0.3% is the optimal fiber content. Furthermore, for the studied interface specimens, sulfate content can play a positive (the refinement of the pore structure) or negative (the sulfate retardation effect) role in the interface shear behavior between the FR-CPB and rock, depending on the treatment time, the initial sulfate concentration, and the fiber content. For the specimens treated for 7 days and 28 days, the specimens with initial sulfate concentrations of 5000 mg/L and 25,000 mg/L achieved the highest peak shear strengths, respectively. The outcomes of this paper present a substantial reference for the design and optimization of underground FR-CPB structures under sulfate attack. Full article
Show Figures

Figure 1

11 pages, 2743 KiB  
Article
Influence of Sodium Phosphate Salts with Different Chain Length on the Flotation Behavior of Magnesite and Dolomite
by Junzhi Bai, Jizhen Wang, Wanzhong Yin and Xiangxiang Chen
Minerals 2020, 10(11), 1031; https://doi.org/10.3390/min10111031 - 19 Nov 2020
Cited by 8 | Viewed by 2591
Abstract
This paper analyzes the influence of sodium phosphate salts with different chain lengths as depressants on the flotation behavior of magnesite and dolomite through single mineral flotation test, contact angle test, and theoretical analysis. Flotation tests show that depressants should be added for [...] Read more.
This paper analyzes the influence of sodium phosphate salts with different chain lengths as depressants on the flotation behavior of magnesite and dolomite through single mineral flotation test, contact angle test, and theoretical analysis. Flotation tests show that depressants should be added for the flotation separation of magnesite and dolomite. The inhibition of sodium phosphate salts on dolomite is significantly stronger than magnesite, and the flotation difference of minerals is affected by the chain length of phosphate depressants. The order of flotation separation enhancement of different sodium phosphate depressants is sodium hexametaphosphate ≈ sodium tetrapolyphosphate > sodium tripolyphosphate > sodium pyrophosphate. This result could also be supported by the contact angle measurement. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 6225 KiB  
Article
Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province
by Zhi Shang and Yongqing Chen
Minerals 2020, 10(11), 1030; https://doi.org/10.3390/min10111030 - 18 Nov 2020
Cited by 5 | Viewed by 3424
Abstract
The Gejiu Anisian alkaline basalts (GAAB), distributed in the southern part of the Emeishan large igneous province (ELIP), are crucial to understand the tectonomagmatic activity during the Triassic. Geochronological, geochemical, and Sr-Nd-Pb isotopic analyses were systematically applied to explore the origin, petrogenesis, and [...] Read more.
The Gejiu Anisian alkaline basalts (GAAB), distributed in the southern part of the Emeishan large igneous province (ELIP), are crucial to understand the tectonomagmatic activity during the Triassic. Geochronological, geochemical, and Sr-Nd-Pb isotopic analyses were systematically applied to explore the origin, petrogenesis, and tectonic setting of the GAAB, and how they relate to the ELIP. Zircon U-Pb dating set the eruption date at 244 Ma. Most of the samples belonged to alkaline basalts and had high TiO2 (2.14–3.23 wt.%) and MgO (4.43–19.58 wt.%) contents. Large ion lithophile elements (LILEs) were enriched relative to high field strength elements (HFSEs). The rare earth elements (REEs) and trace element signatures in the normalized diagrams were similar to oceanic island basalts (OIB) and Emeishan high-Ti basalts. These samples had consistent Sr-Nd isotope compositions: the initial 87Sr/86Sr values ranged from 0.7044 to 0.7048 and εNd(t) = 3.25–4.92. The Pb isotopes were more complex, the (206Pb/204Pb)t, (207Pb/204Pb)t, (208Pb/204Pb)t ratios were 17.493–18.197, 15.530–15.722, and 37.713–38.853, respectively. Our results indicate that the GAAB originated from the deeper enriched mantle with 5% to 15% partial melting of garnet lherzolite and a segregation depth of 2 to 4 GPa (60–120 km). During the formation of the GAAB, clinopyroxene and Ti-Fe oxides were fractionally crystallized with insignificant crustal contamination. The GAAB were formed in a extensional regime that was related to the Gejiu-Napo rift event in the Triassic. Full article
Show Figures

Figure 1

26 pages, 11905 KiB  
Article
The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source
by Dmitry R. Zozulya, Kåre Kullerud, Enrico Ribacki, Uwe Altenberger, Masafumi Sudo and Yevgeny E. Savchenko
Minerals 2020, 10(11), 1029; https://doi.org/10.3390/min10111029 - 18 Nov 2020
Cited by 6 | Viewed by 4526
Abstract
During the period 750–600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern [...] Read more.
During the period 750–600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern Norway, the 580 Ma old Fen carbonatite-ultramafic complex is a representative of this type of rocks. In this paper, we report the occurrence of an ultramafic lamprophyre dyke which possibly is linked to the Fen complex, although 40Ar/39Ar data from phenocrystic phlogopite from the dyke gave an age of 686 ± 9 Ma. The lamprophyre dyke was recently discovered in one of the Kongsberg silver mines at Vinoren, Norway. Whole rock geochemistry, geochronological and mineralogical data from the ultramafic lamprophyre dyke are presented aiming to elucidate its origin and possible geodynamic setting. From the whole-rock composition of the Vinoren dyke, the rock could be recognized as transitional between carbonatite and kimberlite-II (orangeite). From its diagnostic mineralogy, the rock is classified as aillikite. The compositions and xenocrystic nature of several of the major and accessory minerals from the Vinoren aillikite are characteristic for diamondiferous rocks (kimberlites/lamproites/UML): Phlogopite with kinoshitalite-rich rims, chromite-spinel-ulvöspinel series, Mg- and Mn-rich ilmenites, rutile and lucasite-(Ce). We suggest that the aillikite melt formed during partial melting of a MARID (mica-amphibole-rutile-ilmenite-diopside)-like source under CO2 fluxing. The pre-rifting geodynamic setting of the Vinoren aillikite before the Rodinia supercontinent breakup suggests a relatively thick SCLM (Subcontinental Lithospheric Mantle) during this stage and might indicate a diamond-bearing source for the parental melt. This is in contrast to the about 100 Ma younger Fen complex, which were derived from a thin SCLM. Full article
(This article belongs to the Special Issue Petrology and Ores of Igneous Alkaline Rocks and Carbonatites)
Show Figures

Figure 1

11 pages, 1947 KiB  
Article
Crystal Structure Refinements of Four Monazite Samples from Different Localities
by M. Mashrur Zaman and Sytle M. Antao
Minerals 2020, 10(11), 1028; https://doi.org/10.3390/min10111028 - 18 Nov 2020
Cited by 8 | Viewed by 3565
Abstract
This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The [...] Read more.
This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron. Full article
Show Figures

Figure 1

15 pages, 3016 KiB  
Article
Derivation of Flotation Kinetic Model for Activated and Depressed Copper Sulfide Minerals
by Hidekazu Matsuoka, Kohei Mitsuhashi, Masanobu Kawata and Chiharu Tokoro
Minerals 2020, 10(11), 1027; https://doi.org/10.3390/min10111027 - 18 Nov 2020
Cited by 6 | Viewed by 2734
Abstract
The wettability and floatability of oxidized chalcocite, bornite, and chalcopyrite with the conditions of sodium hydrosulfide (NaHS) dosages and pHs were studied by contact angle measurements, and single and mixture mineral flotation tests. To evaluate the results of the flotation, the flotation kinetic [...] Read more.
The wettability and floatability of oxidized chalcocite, bornite, and chalcopyrite with the conditions of sodium hydrosulfide (NaHS) dosages and pHs were studied by contact angle measurements, and single and mixture mineral flotation tests. To evaluate the results of the flotation, the flotation kinetic model for copper sulfide minerals treated by NaHS was derived. In this study, we focused on the activation and depression by NaHS, a well-known activator and depressant of copper minerals. The flotation results showed that there can be a threshold NaHS dosage to activate the mineral surfaces, as evidenced by the depression of the minerals and reduction of recoveries at higher dosages of NaHS. Chalcocite recoveries increased with an increase of NaHS dosage. Bornite recoveries tended to be depressed with a smaller amount of NaHS as pH increased. The recoveries of chalcopyrite increased as pH increased at an optimum NaHS dosage. Moreover, the flotation kinetic model that includes the surface properties and the reaction rate constant between the copper sulfide minerals and NaHS was derived. The trends of the flotation rate constants and mass fractions with NaHS dosages and pHs could quantitatively well-explain the flotation results. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

49 pages, 16933 KiB  
Review
Gravity Concentration in Artisanal Gold Mining
by Marcello M. Veiga and Aaron J. Gunson
Minerals 2020, 10(11), 1026; https://doi.org/10.3390/min10111026 - 18 Nov 2020
Cited by 40 | Viewed by 17993
Abstract
Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either [...] Read more.
Worldwide there are over 43 million artisanal miners in virtually all developing countries extracting at least 30 different minerals. Gold, due to its increasing value, is the main mineral extracted by at least half of these miners. The large majority use amalgamation either as the final process to extract gold from gravity concentrates or from the whole ore. This latter method has been causing large losses of mercury to the environment and the most relevant world’s mercury pollution. For years, international agencies and researchers have been promoting gravity concentration methods as a way to eventually avoid the use of mercury or to reduce the mass of material to be amalgamated. This article reviews typical gravity concentration methods used by artisanal miners in developing countries, based on numerous field trips of the authors to more than 35 countries where artisanal gold mining is common. Full article
(This article belongs to the Special Issue Gravity Concentration)
Show Figures

Figure 1

19 pages, 2801 KiB  
Article
Utilizing Temperature and Brine Inflow Measurements to Constrain Reservoir Parameters During a Salt Heater Test
by Richard S. Jayne and Kristopher L. Kuhlman
Minerals 2020, 10(11), 1025; https://doi.org/10.3390/min10111025 - 18 Nov 2020
Cited by 4 | Viewed by 2704
Abstract
Brine availability in salt has multiple implications for the safety and design of a nuclear waste storage facility. Brine availability includes both the distribution and transport of brine through a damaged zone around boreholes or drifts excavated into the salt. Coupled thermal, hydrological, [...] Read more.
Brine availability in salt has multiple implications for the safety and design of a nuclear waste storage facility. Brine availability includes both the distribution and transport of brine through a damaged zone around boreholes or drifts excavated into the salt. Coupled thermal, hydrological, mechanical, and chemical processes taking place within heated bedded salt are complex; as part of DECOVALEX 2023 Task E this study takes a parsimonious modeling approach utilizing analytical and numerical one-dimensional simulations to match field measurements of temperature and brine inflow around a heater. The one-dimensional modeling results presented arrive at best-fit thermal conductivity of intact salt, and the permeability and porosity of damaged salt of 5.74 W/m·K, 1017 m2, and ≈ 0.02, respectively. Full article
(This article belongs to the Special Issue The Hydro-Mechanics of Crystalline Rocks)
Show Figures

Figure 1

18 pages, 32375 KiB  
Article
Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China
by Xiao-Xia Duan, Ying-Fu Ju, Bin Chen and Zhi-Qiang Wang
Minerals 2020, 10(11), 1024; https://doi.org/10.3390/min10111024 - 17 Nov 2020
Cited by 9 | Viewed by 3991
Abstract
A newly discovered tungsten ore district containing more than 300,000 tons of WO3 in southern Anhui Province has attracted great attention. The Zhuxiling W (Mo) deposit in the district is dominated by skarn tungsten mineralization. This paper conducted in suit EPMA and [...] Read more.
A newly discovered tungsten ore district containing more than 300,000 tons of WO3 in southern Anhui Province has attracted great attention. The Zhuxiling W (Mo) deposit in the district is dominated by skarn tungsten mineralization. This paper conducted in suit EPMA and LA-ICPMS spot and mapping analysis of the skarn mineral garnet to reveal the evolution of fluids, metasomatic dynamics, and formation conditions of skarn. Two generations of garnet have been identified for Zhuxiling W (Mo) skarn: 1) Gt-I generation garnet is isotropic, Al-rich grossular without zoning. As a further subdivision, Gt-IB garnet (Adr19-46Grs49-77 (Sps+Pyr+Alm)4-5) contains significantly high content of Ti and Mn compared with Gt-IA garnet (Adr3-42Grs53-96 (Sps+Pyr+Alm)1-5). 2) Gt-II generation garnet is anisotropic, Fe-rich andradite with oscillatory zoning. Gt-II garnet displays compositional changes with a decrease of Fe and an increase of Mn from proximal skarn (Gt-IIA) to distal skarn (Gt-IIB) with the presence of subcalcic garnet for Gt-IIB type (Sps+Pyr+Alm = 56–68). The presence of pyrrhotite associated with subcalcic garnet indicates a relatively reduced skarn system. Gt-I grossular is overall enriched in Cr, Zr, Y, Nb, and Ta compared with the Gt-II andradite, and both W and Sn strongly favor Fe-rich garnet compared with Al-rich garnet. Gt-IA grossular garnet presents a REE trend with an upward-facing parabola peaking at Pr and Nd in contrast to low and flat HREE, and Gt-IB grossular garnet has a distinct REE pattern with enriched HREE. Gt-IIA andradite garnet displays a right-dipping REE pattern (enriched LREE and depleted HREE) with a prominent positive Eu anomaly (Eu/Eu* = 3.6–15.3). In contrast, Gt-IIB andradite garnet shows depleted LREE and enriched HREE with a weak positive Eu anomaly (Eu/Eu* = 0–6.0). The incorporation and fractionation of REE in garnet are collectively controlled by crystal chemistry and extrinsic factors, such as P–T–X conditions of fluids, fluid/rock ratios, and mineral growth kinetics. Major and trace elements of two generations of garnet combined with optical and textural characteristics suggest that Gt-I Al-rich grossular garnets grow slowly through diffusive metasomatism under a closed system, whereas Gt-II Fe-rich andradite represent rapid growth garnet formed by the infiltration metasomatism of magmatic fluids in an open system. The Mn-rich garnet implies active fluid–rock interaction with Mn-rich dolomitic limestone of the Lantian Group in the district. Full article
Show Figures

Figure 1

19 pages, 7504 KiB  
Article
Relationships between Alluvial Facies/Depositional Environments, Detrital Zircon U-Pb Geochronology, and Bulk-Rock Geochemistry in the Cretaceous Neungju Basin (Southwest Korea)
by Hyojong Lee, Min Gyu Kwon, Seungwon Shin, Hyeongseong Cho, Jong-Sun Kim, Yul Roh, Min Huh and Taejin Choi
Minerals 2020, 10(11), 1023; https://doi.org/10.3390/min10111023 - 17 Nov 2020
Cited by 7 | Viewed by 2659
Abstract
Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated [...] Read more.
Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated volcanism. Detrital zircon age distributions of the Neungju Basin reveal that the source rocks surrounding the basin supplied sediments into the basin from all directions, making different zircon age populations according to the depositional environments. Mudstone geochemistry with support of detrital zircon U-Pb age data reveals how the heterogeneity affects the geochemical characteristics of tectonic setting and weathering intensity. The sediments in the proximal (alluvial fan to sandflat) and distal (playa lake) environments differ compositionally because sediment mixing occurred exclusively in the distal environment. The proximal deposits show a passive margin signature, reflecting their derivation from the adjacent metamorphic and granitic basement rocks. The distal deposits properly indicate an active continental margin setting due to the additional supply of reworked volcaniclastic sediments. The proximal deposits indicate a minor degree of chemical weathering corresponding to fossil and sedimentological records of the basin, whereas the distal deposits show lower weathering intensity by reworking of unaltered volcaniclastic detritus from unstable volcanic and volcaniclastic terranes. Overall, this study highlights that compositional data obtained from a specific location and depositional environments may not describe the overall characteristic of the basin. Full article
Show Figures

Figure 1

18 pages, 12458 KiB  
Article
Mineralogical and Leaching Characteristics of Altered Ilmenite Beach Placer Sands
by Munyadziwa Mercy Ramakokovhu, Peter Apata Olubambi, Richard Kady Kadiambuji Mbaya, Tajudeen Mojisola and Moipone Linda Teffo
Minerals 2020, 10(11), 1022; https://doi.org/10.3390/min10111022 - 17 Nov 2020
Cited by 9 | Viewed by 3412
Abstract
In order to have a good understanding of the treatment process and improvement on the market value of ilmenite beach placer sands, knowledge of its mineral composition and phase distribution is fundamental. In this study, a combination of characterization techniques including high-resolution scanning [...] Read more.
In order to have a good understanding of the treatment process and improvement on the market value of ilmenite beach placer sands, knowledge of its mineral composition and phase distribution is fundamental. In this study, a combination of characterization techniques including high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron (HR-TEM) microscope, and X-ray diffraction (XRD) techniques was used to understand the mineralogical characteristics of ilmenite beach placer sands obtained from Richards Bay, South Africa. The mineral phase constituents of the ilmenite beach placer sands were studied before pre-oxidation and additive leaching in a chloride environment. During observations using XRD and HR-SEM, the ilmenite beach placer sands exhibited signature rhombohedral crystal form and crescentic pits with evidence of alteration phases. The characterized pre-oxidized ilmenite showed the presence of a ferric oxide film deposit of the particles. The leaching characteristics of both raw and pre-oxidized ilmenite was studied in the presence of additives. The leaching efficiency of the pre-oxidized ilmenite in the presence of additives increased by 20% at atmospheric conditions. The characterized residues show the improved amenability of pre-oxidized leach in chloride media. The formation of new phases containing pseudo-rutile indicated crystallographic disintegration by the movement of atoms during dissolution. Some particles retained the crescentic pit and the subangular grain structure; however, the phase changes were observed at the grain boundaries and grain edges. The leached residue’s EDS results still indicated the presence of pseudo-rutile and some minor unreacted oxides such as SiO2, Al2O3, and other trace metals. The trace metals impurities present in the as-received ilmenite were reduced by 80% in the final residue after the leaching. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 7319 KiB  
Article
Geochemical Features of Redox-Sensitive Trace Metals in Sediments under Oxygen-Depleted Marine Environments
by Moei Yano, Kazutaka Yasukawa, Kentaro Nakamura, Minoru Ikehara and Yasuhiro Kato
Minerals 2020, 10(11), 1021; https://doi.org/10.3390/min10111021 - 17 Nov 2020
Cited by 15 | Viewed by 5014
Abstract
Organic- and sulfide-rich sediments have formed in oxygen-depleted environments throughout Earth’s history. The fact that they are generally enriched in redox-sensitive elements reflects the sedimentary environment at the time of deposition. Although the modern ocean is well oxidized, oxygen depletion occurs in certain [...] Read more.
Organic- and sulfide-rich sediments have formed in oxygen-depleted environments throughout Earth’s history. The fact that they are generally enriched in redox-sensitive elements reflects the sedimentary environment at the time of deposition. Although the modern ocean is well oxidized, oxygen depletion occurs in certain areas such as restricted basins and high-productivity zones. We measured bulk chemical compositions (major and trace elements, total organic carbon, and total sulfur) of organic- and sulfide-rich sediments collected from eight areas having oxygen-depleted water to discuss relationships between geochemical features and sedimentary environments. Major elemental compositions generally show mixtures of terrigenous detritus and biogenic carbonate. Some redox-sensitive elements might be controlled by organic matter content, whereas others could be contained in sulfide minerals in sediments. In particular, Mo and U show a characteristic trend; areas with higher Mo and U—at least partially owing to a depositional process called the “particulate shuttle”—generally correspond to regions influenced by the open ocean. In contrast, areas with lower Mo and U are more restricted marine environments. This suggests that the degree of Mo and U enrichment reflects the geography in terms of proximity to the open ocean, or the degree of the supply of these elements from the open ocean. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

11 pages, 1217 KiB  
Article
Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings
by Pamela Lazo and Andrea Lazo
Minerals 2020, 10(11), 1020; https://doi.org/10.3390/min10111020 - 17 Nov 2020
Cited by 8 | Viewed by 3007
Abstract
In Chile, 85% of tailings impoundments are inactive or abandoned and many of them do not have a program of treatment or afforestation. The phytoremediation of tailings with Oxalis gigantea, Cistanthe grandiflora, Puya berteroniana and Solidago chilensis have been tested in [...] Read more.
In Chile, 85% of tailings impoundments are inactive or abandoned and many of them do not have a program of treatment or afforestation. The phytoremediation of tailings with Oxalis gigantea, Cistanthe grandiflora, Puya berteroniana and Solidago chilensis have been tested in order to find plants with ornamental value and low water requirements, which enable reductions in molybdenum (Mo), copper (Cu) or lead (Pb) concentrations creating an environmentally friendly surrounding. Ex-situ phytoremediation experiments were carried out for seven months and Mo, Cu and Pb were measured at the beginning and at the end of the growth period. The capacity of these species to phyto-remedy was evaluated using the bioconcentration and translocation factors, along with assessing removal efficiency. Solidago chilensis showed the ability to phytoextract Mo while Puya berteroniana showed potential for Cu and Mo stabilization. The highest removal efficiencies were obtained for Mo, followed by Cu and Pb. The maximum values of removal efficiency for Mo, Cu and Pb were 28.7% with Solidago chilensis, 15.6% with Puya berteroniana and 8.8% with Cistanthe grandiflora, respectively. Therefore, the most noticeable results were obtained with Solidago chilensis for phytoextraction of Mo. Full article
Show Figures

Figure 1

17 pages, 1385 KiB  
Article
Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China
by Yuji Sakai, Masataka Nakamura and Chang Wang
Minerals 2020, 10(11), 1019; https://doi.org/10.3390/min10111019 - 16 Nov 2020
Cited by 3 | Viewed by 2609
Abstract
Increasing soil carbon storage and biomass utilization is an effective process for mitigating global warming. Coal bio-briquettes (CBB) are made using two low-ranked coals with high sulfur content, corn stalks, and calcium hydroxide, and the combustion ash can ameliorate the physicochemical properties in [...] Read more.
Increasing soil carbon storage and biomass utilization is an effective process for mitigating global warming. Coal bio-briquettes (CBB) are made using two low-ranked coals with high sulfur content, corn stalks, and calcium hydroxide, and the combustion ash can ameliorate the physicochemical properties in salt-affected soil. CBB ash contains mainly calcium compounds, such as calcium sulfate, calcium hydroxide, and calcium carbonate, and coal fly ash and biomass ash. In this paper, changes in soil carbon and nitrogen content through salt-affected soil amelioration during 5 months using two CBB ashes and pig manure were examined in Northeast China. Application rates of CBB ash were 0 tha−1 (control), 11.6 tha−1, 23.2 tha−1, 46.4 tha−1, and 69.6 tha−1. Consequently, total carbon content in topsoil (0–0.15 m) after harvest of maize in all test fields indicated a range between 27.7 tCha−1 and 50.2 tCha−1, and showed increased levels compared to untreated salt-affected soil. In a 3.0% (69.6 tha−1) application plot of only CBB ash with higher carbon and higher exchangeable Ca2+, the carbon content increased by 51.5% compared to control plot, and changes in carbon sequestration compared to untreated soil was roughly twice that of the control plot. CBB ash contributed to carbon application and pig manure supply as a form of N fertilization in the case of all test plots. Changes in carbon content due to soil amelioration have a significant relationship with changes in corn production and soil chemical properties, such as pH, Na+, Cl, sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP). Therefore, CBB production from low-ranked coal and waste biomass, and the use of CBB ash in agriculture is advocated as an effective means for sequestering carbon. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Magnetic Susceptibility of Spider Webs and Dust: Preliminary Study in Wrocław, Poland
by Radosław Rutkowski, Jan Stefan Bihałowicz, Marzena Rachwał, Wioletta Rogula-Kozłowska and Justyna Rybak
Minerals 2020, 10(11), 1018; https://doi.org/10.3390/min10111018 - 16 Nov 2020
Cited by 7 | Viewed by 3507
Abstract
Previous studies have proven that spider webs can be a reliable tool for magnetic biomonitoring. This study aims to present the magnetic susceptibility values of urban road dust (URD) settled indoors and outdoors, and compare these values with spider webs exposed to indoor [...] Read more.
Previous studies have proven that spider webs can be a reliable tool for magnetic biomonitoring. This study aims to present the magnetic susceptibility values of urban road dust (URD) settled indoors and outdoors, and compare these values with spider webs exposed to indoor and outdoor pollutants, and therefore to discuss their potential environmental implications. The webs of Eratigena atrica, Tegenaria ferruginea, and Agelena labyrinthica (Agelenidae) spiders from outdoor and indoor study sites were investigated, along with dust deposited on filters (indoors) and dust collected from the surrounding neighborhood (outdoors). Magnetic measurements revealed elevated levels of magnetic pollutants at all investigated sites in the city of Wrocław. The indoor/outdoor ratios of mass-specific magnetic susceptibility for the studied samples suggested a prevalence of indoor pollution sources at two of the sites (prosthetic laboratory and environmental science laboratory), whereas the third site (tenement house neighborhood) was dominated by material that presumably originated from predominantly outdoor sources. The indoor/outdoor ratios of magnetic susceptibility for the investigated matrices at the examined sites were highly comparable, which is promising for the utilization of spider webs in magnetic monitoring. Full article
(This article belongs to the Special Issue Natural and Technogenic Magnetic Particles in the Environment)
Show Figures

Figure 1

15 pages, 6782 KiB  
Article
Rare-Metal Pegmatite Deposits of the Kalba Region, Eastern Kazakhstan: Age, Composition and Petrogenetic Implications
by Sergey V. Khromykh, Tatiana A. Oitseva, Pavel D. Kotler, Boris A. D’yachkov, Sergey Z. Smirnov, Alexey V. Travin, Alexander G. Vladimirov, Ekaterina N. Sokolova, Oxana N. Kuzmina, Marina A. Mizernaya and Bakytgul’ B. Agaliyeva
Minerals 2020, 10(11), 1017; https://doi.org/10.3390/min10111017 - 16 Nov 2020
Cited by 16 | Viewed by 7550
Abstract
The paper presents new geological, mineralogical, and isotope geochronological data for rare-metal pegmatites in the Kalba granitic batholith (Eastern Kazakhstan). Mineralization is especially abundant in the Central-Kalba ore district, where pegmatite bodies occur at the top of large granite plutons and at intersections [...] Read more.
The paper presents new geological, mineralogical, and isotope geochronological data for rare-metal pegmatites in the Kalba granitic batholith (Eastern Kazakhstan). Mineralization is especially abundant in the Central-Kalba ore district, where pegmatite bodies occur at the top of large granite plutons and at intersections of deep faults. The pegmatites contain several successive mineral assemblages from barren quartz-microcline and quartz-microcline-albite to Li-Cs-Ta-Nb-Be-Sn-bearing cleavelandite-lepidolite-spodumene. Ar-Ar muscovite and lepidolite ages bracket the metallogenic event between 291 and 286 Ma. The pegmatite mineral deposits formed synchronously with the emplacement of the phase 1 Kalba granites during the evolution of hydrous silicate rare-metal magmas that are produced by the differentiation of granite magma at large sources with possible inputs of F and rare metals with fluids. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Graphical abstract

20 pages, 4894 KiB  
Article
Structure and Composition of Micro-Manganese Nodules in Deep-Sea Carbonate from the Zhaoshu Plateau, North of the South China Sea
by Hengchao Xu, Xiaotong Peng, Kaiwen Ta, Taoran Song, Mengran Du, Jiwei Li, Shun Chen and Zhiguo Qu
Minerals 2020, 10(11), 1016; https://doi.org/10.3390/min10111016 - 15 Nov 2020
Cited by 6 | Viewed by 4013
Abstract
The occurrence of deep-sea ferromanganese nodules and crusts on the seafloor is widespread, providing an important resource for numerous metals such as Ni, Co, and Cu. Although they have been intensively studied in the past, the formation of micro-manganese nodules within carbonate rocks [...] Read more.
The occurrence of deep-sea ferromanganese nodules and crusts on the seafloor is widespread, providing an important resource for numerous metals such as Ni, Co, and Cu. Although they have been intensively studied in the past, the formation of micro-manganese nodules within carbonate rocks has received less attention, despite the considerable amounts of manganese released from the dissolution of the calcareous framework. The micro-petrographic and geochemical characteristics of reef carbonate rocks recovered from the Zhaoshu plateau in the Xisha uplift, north of the South China Sea, were studied using optical microscopy, scanning electron microscopy, confocal Raman spectrometry, and an electron probe micro-analyzer. The carbonate rocks are composed of biogenic debris, including frameworks of coralline algae and chambers of foraminifer, both of which are suffering strong micritization. Within the calcite micrite, numerous micro-manganese nodules were identified with laminated patterns. Mineral and elemental evidence showed that the Mn oxides in the carbonates are mixed with 10 Å vernadite, 7 Å vernadite and todorokite, both of which are closely associated with the carbonate matrix. The micro-nodules were found to have high Mn/Fe ratios, enriched in Ni and Cu and depleted in Co. We infer that theses nodules are mixed type with early diagenetic growth under oxic–suboxic conditions. The re-distribution of manganite within the rocks is likely influenced by micritization of the calcareous framework. We deduce that microbial-associated reduction of manganite induces the formation of diagenetic todorokite similar to nodules buried in marine sediments. Full article
(This article belongs to the Special Issue Biogenic Iron and Manganese Minerals)
Show Figures

Figure 1

3 pages, 172 KiB  
Editorial
Editorial for Special Issue “Sustainable Use of Abandoned Mines”
by Melida Gutierrez
Minerals 2020, 10(11), 1015; https://doi.org/10.3390/min10111015 - 15 Nov 2020
Cited by 5 | Viewed by 2640
Abstract
Abandoned mines are an abundant and widespread feature [...] Full article
(This article belongs to the Special Issue Sustainable Use of Abandoned Mines)
26 pages, 12125 KiB  
Article
Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits
by Dong-Guang Yang, Jian-Hua Wu, Feng-Jun Nie, Christophe Bonnetti, Fei Xia, Zhao-Bin Yan, Jian-Fang Cai, Chang-Dong Wang and Hai-Tao Wang
Minerals 2020, 10(11), 1014; https://doi.org/10.3390/min10111014 - 14 Nov 2020
Cited by 15 | Viewed by 6198
Abstract
The tectonic inversion of the Songliao Basin during the Cenozoic may have played an important role in controlling the development of sandstone-type uranium deposits. The widely distributed mafic intrusions in the host sandstones of the Qianjiadian U ore deposits provided new insights to [...] Read more.
The tectonic inversion of the Songliao Basin during the Cenozoic may have played an important role in controlling the development of sandstone-type uranium deposits. The widely distributed mafic intrusions in the host sandstones of the Qianjiadian U ore deposits provided new insights to constrain the regional tectonic evolution and the genesis of the U mineralization. In this study, zircon U-Pb dating, whole-rock geochemistry, Sr-Nd-Pb isotope analysis, and mineral chemical compositions were presented for the mafic rocks from the Qianjiadian area. The mafic rocks display low SiO2 (44.91–52.05 wt.%), high TFe2O3 contents (9.97–16.46 wt.%), variable MgO (4.59–15.87 wt.%), and moderate K2O + Na2O (3.19–6.52 wt.%), and can be subdivided into AB group (including basanites and alkali olivine basaltic rocks) and TB group (mainly tholeiitic basaltic rocks). They are characterized by homogenous isotopic compositions (εNd (t) = 3.47–5.89 and 87Sr/86Sr = 0.7032–0.7042) and relatively high radiogenic 206Pb/204Pb (18.13–18.34) and Nb/U ratios (23.0–45.6), similar to the nearby Shuangliao basalts, suggesting a common asthenospheric origin enriched with slab-derived components prior to melting. Zircon U-Pb and previous Ar-Ar dating show that the AB group formed earlier (51–47 Ma) than the TB group (42–40 Ma). Compared to the TB group, the AB group has higher TiO2, Na2O, K2O, P2O5, Ce, and HREE contents and Ta/Yb and Sr/Yb ratios, which may have resulted from variable depth of partial melting in association with lithospheric thinning. Combined with previous research, the Songliao Basin experienced: (1) Eocene (~50–40 Ma) lithospheric thinning and crustal extension during which mafic rocks intruded into the host sandstones of the Qianjiadian deposit, (2) a tectonic inversion from extension to tectonic uplift attributed to the subduction of the Pacific Plate occurring at ~40 Ma, and (3) Oligo–Miocene (~40–10 Ma) tectonic uplift, which is temporally associated with U mineralization. Finally, the close spatial relation between mafic intrusions and the U mineralization, dike-related secondary reduction, and secondary oxidation of the mafic rocks in the Qianjiadian area suggest that Eocene mafic rocks and their alteration halo in the Songliao Basin may have played a role as a reducing barrier for the U mineralization. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop