Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province
Abstract
:1. Introduction
2. Geologic Background and Petrography
3. Methods
3.1. Zircon LA–ICP–MS Analyses
3.2. Major and Trace Element Analyses
3.3. Whole Rock Sr–Nd–Pb Isotopic Analyses
4. Results
4.1. Zircon U–Pb Dating
4.2. Whole Rock Geochemistry
4.3. Sr–Nd–Pb Isotopic Geochemistry
5. Discussion
5.1. Magma Source
5.2. Petrogenesis
5.3. Tectonic Setting
5.4. Relationship with the ELIP
6. Conclusions
- Zircon U-Pb dating results showed that the GAAB were formed in 244 Ma (MSWD = 4.9, n = 22).
- The GAAB, similar to OIB and Emeishan high-Ti basalts, displayed enriched LREE patterns, with LILEs enriched relative to HFSEs. The GAAB had consistent Sr-Nd isotope compositions: the (87Sr/86Sr) = 0.7044–0.7048, and εNd(t) = 3.25–4.92. The Pb isotopes were more complex, the (206Pb/204Pb)t = 17.493–18.197, (207Pb/204Pb)t = 15.530–15.722, (208Pb/204Pb)t = 37.713–38.853, respectively.
- The GAAB originated from deeper enriched mantle material with 5% to 15% partial melting of garnet lherzolite and a segregation depth between 2 and 4 GPa (60–120 km). During the formation of the GAAB, clinopyroxene and Ti-Fe oxides were fractionally crystallized with insignificant crustal contamination.
- The GAAB were the product of the decompressive melting of the deeper enriched mantle in a extensional environment that was related to the Gejiu-Napo rift event formed in a post-collisional setting after the South China-Indochina coillision.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Condie, K.C. Secular variation in the composition of basalts, an index to mantle evolution. J. Petrol. 1985, 26, 545–563. [Google Scholar] [CrossRef]
- Condie, K.C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos 1989, 23, 1–18. [Google Scholar] [CrossRef]
- Zhang, J.W.; Huang, Z.L.; Luo, T.Y.; Qian, Z.K.; Zhang, Y. Origin of early Triassic rift-related alkaline basalts from Southwest China: Age, isotope, and trace-element constraints. Int. Geol. Rev. 2013, 55, 1162–1178. [Google Scholar] [CrossRef]
- Zhou, M.F.; Malpas, J.; Song, X.Y.; Robinson, P.T.; Sun, M.; Kennedy, A.K.; Lesher, C.M.; Keays, R.R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Lesher, C.M.; Keays, R.R.; Zhang, C.J.; Malpas, J. Geochemistry, petrogenesis, and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V-oxide deposits, Sichuan Province, SW China. J. Petrol. 2005, 46, 2253–2280. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhao, J.H.; Qi, L.; Su, W.; Hu, R.Z. Zircon U–Pb geochronology and elemental and Sr–Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib. Mineral. Petrol. 2006, 151, 1–19. [Google Scholar] [CrossRef]
- Zhou, M.F.; Arndt, N.T.; Malpas, J.; Wang, C.Y.; Kennedy, A.K. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos 2008, 103, 352–368. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.; Wang, Y.; Li, C. When did the Emeishan mantle plume activity start? Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China. Int. Geol. Rev. 2004, 46, 226–234. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, W.G. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Miner. Depos. 2006, 41, 599–606. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, M.F.; Keays, R.R. Geochemical constraints on the origin of the Permian Baimazhai mafic–ultramafic intrusion, SW China. Contrib. Mineral. Petrol. 2006, 152, 309–321. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Huang, X.; Luo, Z.; Shi, Y.; Yang, Q.; Yu, S. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett. 2007, 255, 306–323. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Zhou, M.F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem. Geol. 2007, 243, 286–316. [Google Scholar] [CrossRef]
- Wang, X.K. The geological and geochemical characteristics of the basic volcanic rocks of Kafang deposit in Gejiu district. J. Kunming Univ. Sci. Technol. 1993, 18, 1–9. (In Chinese) [Google Scholar]
- Zheng, S.H. An Analysis of the genesis of Cu deposit of Meta–Basic rock type Cu deposit of east Gejiu. Yunnan Geol. 2012, 31, 315–330. (In Chinese) [Google Scholar]
- Zhang, X.L. Geochemical characteristics of basic volcanic rock in Indo-Chinese epoch in Gejiu, Yunnan, and its geotectonic background. Miner. Resour. Geol. 2011, 25, 429–435. (In Chinese) [Google Scholar]
- Zhang, G.S.; Fang, W.X.; Peng, R.; Zheng, H.Y. Zircon U-Pb Chronology, Origin and Tectonic Significance of the Triassic High Potassic Volcanic Rock from Gejiu, Yunnan, Southwestern China. Geotecton. Metallog. 2019, 43, 1219–1235. (In Chinese) [Google Scholar]
- Fang, W.X.; Jia, R.X. Characteristics of the Alkaline Picritic Volcanic Rocks in the Gejiu Superlarge Tin-Copper Deposit and their Continental Dynamic Implications. Geotecton. Metallog. 2011, 35, 137–148, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.S.; Qin, D.X.; Guo, N.N. Geotectonic setting and mineralization significance of indochina epoch basalt in eastern Gejiu of Yunnan. Nonferrous Met. 2009, 61, 104–109. (In Chinese) [Google Scholar]
- Zhang, H.; Fang, W.X.; Du, Y.L. Geochemical Characteristics and Geological Significance of the Kafang Alkaline Volcanic Rocks in Gejiu Area, Yunnan Province. Geotecton. Metallog. 2014, 38, 885–897. (In Chinese) [Google Scholar]
- Zhang, J.W.; Huang, Z.L.; Luo, T.Y.; Yan, Z.F. LA-ICP-MS zircon geochronology and platinum-group elements characteristics of the Triassic basalts, SW China: Implications for post-Emeishan large igneous province magmatism. J. Asian Earth Sci. 2014, 87, 69–78. [Google Scholar] [CrossRef]
- Zhang, J.W.; Dai, C.G.; Huang, Z.L.; Luo, T.Y.; Qian, Z.K.; Zhang, Y. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin-polymetallic district, SW China. Ore Geol. Rev. 2015, 69, 403–416. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Carl, S.; Mao, J.W. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two-stage mixing of crust- and mantle-derived magmas. Contrib. Mineral. Petrol. 2012, 164, 659–676. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Chu, Y.; Lepvrier, C. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing. Tectonophysics 2016, 683, 27–42. [Google Scholar] [CrossRef]
- Wang, X.; Metcalfe, I.; Jian, P.; He, L.; Wang, C. The Jinshajiang–Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution. J. Asian Earth Sci. 2000, 18, 675–690. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, J.; Li, C.; Li, G.; Yu, L.; Qiao, L. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondw. Res. 2014, 26, 438–448. [Google Scholar] [CrossRef]
- Faure, M.; Nguyen, V.V.; Hoai, L.T.T.; Lepvrier, C. Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam). J. Asian Earth Sci. 2018, 166, 162–180. [Google Scholar] [CrossRef]
- Xu, Y.G.; He, B.; Chung, S.L.; Menzies, M.A.; Frey, F.A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 2004, 32, 917–920. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Special Publication No. 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–71. [Google Scholar]
- Gao, S.; Liu, X.M.; Yuan, H.L.; Hattendorf, B.; Günther, D.; Chen, L.; Hu, S. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Newsl. 2002, 26, 181–196. [Google Scholar] [CrossRef]
- Yan, Q.R.; Wang, Z.Q.; Liu, S.W. Opening of the Tethys in southwest China and its significance to the breakup of East Gondwanaland in late Paleozoic: Evidence from SHRIMP U-Pb zircon analyses for the Garzê ophiolite block. Chin. Sci. Bull. 2005, 50, 256–264. [Google Scholar] [CrossRef]
- Zhang, H.F.; Sun, M.; Zhou, X.H.; Fan, W.M.; Zhai, M.G.; Yin, J.F. Mesozoic lithosphere destruction beneath the North China craton: Evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol. 2002, 144, 241–253. [Google Scholar] [CrossRef]
- Belshawet, N.S.; Freedman, P.A.; O’Nions, R.K.; Frank, M.; Guo, Y. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes. Int. J. Mass Spectrom. 1998, 181, 51–58. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chung, S.L.; Jahn, B.M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Geological Society London Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- Yang, Z.X.; Mao, J.W.; Chen, M.H.; Cheng, Y.B.; Chang, Y. Geology, geochemistry and genesis of Kafang copper deposit in Gejiu, Yunnan Province. Acta Petrol. Sin. 2010, 26, 830–844, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.T.; Liu, J.Q.; Guo, Z.F. Permian basaltic rocks in the Tarim basin, NW China: Implications for plume–lithosphere interaction. Gondwana Res. 2010, 18, 596–610. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, Z.C.; Wang, L.J.; Lv, L.S.; Li, H.B. Geochemical characteristics of Permian basalt from Hutiaoxia and Jin’an area of the Emeishan Large Igneous Province and constraints on their source region. Acta Petrol. Sin. 2013, 29, 4387–4403, (In Chinese with English Abstract). [Google Scholar]
- Jung, S.; Hoernes, S. The major and trace element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhon area (central Germany): Petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions. J. Volcanol. Geotherm. Res. 2000, 99, 27–53. [Google Scholar] [CrossRef]
- Condie, K.C. Incompatible element ratios in oceanic basalts and komatiites, tracking deep mantle sources and continental growth rates with time. Geochem. Geophys. Geosyst. 2003, 4, 1005. [Google Scholar] [CrossRef]
- Zhu, D.C.; Mo, X.X.; Wang, L.Q.; Zhao, Z.D.; Liao, Z.L. Hotspot-ridge interaction for the evolution of Neo-Tethys: Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet. Acta Petrol. Sin. 2008, 24, 225–237. (In Chinese) [Google Scholar]
- Fitton, J.G.; Saunders, A.D.; Norry, M.J.; Hardarson, B.S.; Talor, R.N. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 1997, 153, 197–208. [Google Scholar] [CrossRef]
- Staudigel, H.; Hart, S.R. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust–seawater budget. Geochim. Cosmochim. Acta. 1983, 47, 337–350. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, M.F.; Qi, L. Permian flood basalts and magmatic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chem. Geol. 2007, 243, 317–343. [Google Scholar] [CrossRef]
- Zhang, B.L.; Lv, G.X.; Su, J.; Shen, X.L.; Liu, R.L.; Liu, J.G.; Hai, L.F.; Zhang, G.L. A study of the tectono-lithofacies mineralization regularities of the Gejiu tin polymetallic orefield, Yunnan, and prospecting in its western part. Earth Sci. Front. 2015, 22, 078–087. (In Chinese) [Google Scholar]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Yang, G.X.; Li, Y.J.; Tong, L.L.; Li, G.Y.; Shen, R.; Li, Z.; Wu, L. Geochronology, geochemistry and petrogenesis of pillow basalts from Mayile region in West Junggar. Actor Petrol. Sin. 2016, 32, 522–536. (In Chinese) [Google Scholar]
- Qi, L.; Zhou, M.F. Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem. Geol. 2008, 248, 83–103. [Google Scholar] [CrossRef]
- Shaw, D.M. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 1970, 34, 237–243. [Google Scholar] [CrossRef]
- Saunders, A.D.; Storey, M.; Kent, R.W.; Norry, M.J. Consequences of plume-lithosphere interactions. In Magmatism and the Causes of Continental Break-up; Storey, B.C., Alabaster, T., Pankhurst, R.J., Eds.; Geological Society: London, UK, 1992; Volume 68, pp. 41–60. [Google Scholar]
- Song, Y.; Frey, F.A.; Zhi, X. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chem. Geol. 1990, 85, 35–52. [Google Scholar] [CrossRef]
- Basu, A.R.; Wang, J.W.; Huang, W.K.; Xie, G.H.; Tatsumoto, M. Major element, REE and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implication for their origin from suboceanic type mantle reservoirs. Earth Planet. Sci. Lett. 1991, 105, 149–169. [Google Scholar] [CrossRef]
- Tatsumoto, M.; Nakamura, Y. DUPAL anomaly in the Sea of Japan: Lead, neodymium, and strontium isotopic variations at the eastern Eurasian continental margin. Geochim. Cosmochim. Acta 1991, 55, 3697–3708. [Google Scholar] [CrossRef]
- Brenhin, K.; Blair, S. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 2018, 481, 290–304. [Google Scholar]
- Zhou, P.B.; Mukasa, S.B. Nd-Sr-Pb isotopic, and major and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand: Sources and petrogenesis. Chem. Geol. 1997, 137, 175–193. [Google Scholar] [CrossRef]
- Jaques, A.L.; Green, D.H. Anhydrous melting of peridotite at 0—15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 1980, 73, 287–310. [Google Scholar] [CrossRef]
- Takahashi, E.; Kushiro, I. Melting of a dry peridotite at high pressures and basalt magma genesis. Am. Miner. 1983, 68, 859–879. [Google Scholar]
- Derakhshi, M.; Ghasemi, H.; Miao, L.C. Geochemistry and petrogenesis of Soltan Maidan basalts (E Alborz, Iran): Implications for asthenosphere-lithosphere interaction and rifting along the N margin of Gondwana. Geochemistry 2017, 77, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. 1992, 97, 4521–4540. [Google Scholar] [CrossRef]
- Herzberg, C. Generation of plume magmas through time: An experimental perspective. Chem. Geol. 1995, 126, 1–16. [Google Scholar] [CrossRef]
- DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Lemdjou, Y.B.; Zhang, D.; Jean, P.T.; Hu, J.X.; Nicaise, B.T.N.; Landry, S.T.; Yuan, Y. Elemental and Sr–Nd–Pb isotopic compositions, and K–Ar ages of transitional and alkaline plateau basalts from the eastern edge of the West Cameroon Highlands (Cameroon Volcanic Line). Lithos 2020, 105–414. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Hart, W.K.; WoldeGabriel, G.; Walter, R.C.; Mertzman, S.A. Basaltic volcanism in Ethiopia: Constraints on continental rifting and mantle interactions. J. Geophys. Res. Solid Earth 1989, 94, 7731–7748. [Google Scholar] [CrossRef]
- Zhu, D.C.; Pan, G.T.; Mo, X.X.; Wang, L.Q.; Zhao, Z.D.; Liao, Z.L.; Geng, Q.R.; Dong, G.C. Identification for the Mesozoic OIB-type Basalts in Central Qinghai-Tibetan Plateau: Geochronology, Geochemistry and Their Tectonic Setting. Acta Geol. Sin. 2006, 80, 1312–1328, (In Chinese with English Abstract). [Google Scholar]
- Li, X.H.; Li, Z.X.; Zhou, H.W.; Liu, Y.; Kinny, P.D. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res. 2002, 113, 135–154. [Google Scholar] [CrossRef]
- Niu, Y.L. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin. Sci. Bull. 2009, 54, 4148–4160. [Google Scholar] [CrossRef]
- Hofmann, A.W. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219–229. [Google Scholar] [CrossRef]
- Maruyama, S.; Santosh, M.; Zhao, D. Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Res. 2007, 11, 7–37. [Google Scholar] [CrossRef]
- Davies, G.F. Mantle Convection for Geologists; Cambridge University Press: Cambridge, UK, 2011; p. 240. [Google Scholar]
- Safonova, I.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Safonova, I.; Kojima, S.; Nakae, S.; Romer, R.L.; Seltmann, R.; Sano, H.; Onoue, T. Oceanic island basalts in accretionary complexes of SW Japan: Tectonic and petrogenetic implications. J. Asian Earth Sci. 2015, 113, 508–523. [Google Scholar] [CrossRef]
- Fang, W.X.; Zhang, H.; Jia, R.X. Dynamics of Triassic Back-Arc Rift Basin and its Metallogenic Sequence in Gejiu of Yunnan Province to Napo of Guangxi Zhuang Autonomous Region, China. Geotecton. Metallog. 2011, 35, 552–566, (In Chinese with English Abstract). [Google Scholar]
- Meschede, M. A method of discrimination between different types of mid–ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Denyszyn, S.W.; Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 2012, 22, 118–126. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Lai, C.K.; Meffre, S.; Crawford, A.J.; Zaw, K.; Xue, C.D.; Halpin, J.A. The Western Ailaoshan Volcanic Belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Res. 2014, 26, 52–74. [Google Scholar] [CrossRef]
- Liu, J.; Tran, M.D.; Tang, Y.; Nguyen, Q.L.; Tran, T.H.; Wu, W.; Chen, J.; Zhang, Z.; Zhao, Z. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Res. 2012, 22, 628–644. [Google Scholar] [CrossRef]
- Lepvrier, C.; Maluski, H.; Tich, V.V.; Leyreloup, A.; Thi, P.T.; Nguyen, V.V. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 2004, 393, 87–118. [Google Scholar] [CrossRef]
- Yan, D.P.; Zhou, M.F.; Wang, C.Y.; Xia, B. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. J. Asian Earth Sci. 2006, 28, 332–353. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Zhou, M.F.; Yan, D.P.; Wang, Y. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geol. Mag. 2008, 145, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Qian, X.; Cawood, P.A.; Liu, H.C.; Feng, Q.L.; Zhao, G.C.; Zhang, Y.H.; He, H.Y.; Zhang, P.Z. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragment. Earth Sci. Rev. 2018, 186, 195–230. [Google Scholar] [CrossRef]
- Lai, C.K.; Meffre, S.; Crawford, A.J.; Zaw, K.; Halpin, J.A.; Xue, C.D.; Salam, A. The Central Ailaoshan ophiolite and modern analogs. Gondwana Res. 2014, 26, 75–88. [Google Scholar] [CrossRef]
- Zaw, K.; Meffre, S.; Lai, C.K.; Burrett, C.; Santosh, M.; Graham, I.; Ml, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland Southeast Asia—A review and contribution. Gondwana Res. 2014, 26, 5–30. [Google Scholar]
- Xu, J.; Xia, X.; Huang, C.; Cai, K.; Yin, C.; Lai, C.-K. Changes of provenance of Permian and Triassic sedimentary rocks from the Ailaoshan suture zone (SW China) with implications for the closure of the eastern Paleotethys. J. Asian Earth Sci. 2019, 170, 234–248. [Google Scholar] [CrossRef]
- Liu, C.; Deng, J.F.; Liu, J.L.; Shi, Y.L. Characteristics of volcanic rocks from Late Permian to Early Traissic in Ailaoshan tectonomagmatic belt and implications for tectonic settings. Acta Petrol. Sin. 2011, 27, 3590–3602, (in Chinese with English abstract). [Google Scholar]
- Zi, J.W.; Cawood, P.A.; Fan, W.M.; Wang, Y.J.; Tohver, E.; McCuaig, T.C.; Peng, T.P. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos 2012, 144, 145–160. [Google Scholar] [CrossRef]
- Roger, F.; Maluski, H.; Lepvrier, C.; Van, T.V.; Paquette, J.L. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam-geodynamical implications. J. Asian Earth Sci. 2012, 48, 72–82. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Meffre, S.; Thompson, J.; Corfu, F.; Vadim, S.; Kamenetsky, M.B.; Demonterova, E.I. Timing and genesis of the Karoo-Ferrar large igneous province: New high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse. Chem. Geol. 2017, 455, 32–43. [Google Scholar] [CrossRef]
- Svensen, H.; Corfu, F.; Polteau, S.; Hammer, O.; Planke, S. Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet. Sci. Lett. 2012, 325–326, 1–9. [Google Scholar] [CrossRef]
- Augland, L.E.; Ryabov, V.V.; Vernikovsky, V.A.; Planke, S.; Polozov, A.G.; Callegaro, S.; Jerram, D.A.; Svensen, H.H. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 2019, 18723. [Google Scholar] [CrossRef] [Green Version]
- Michael, P.E.; Blair, S.; Kyle, M.S.; Gerta, K.; Thierry, A.; Syed, F.R.K. U-Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province, Malwa Plateau, India. Earth Planet. Sci. Lett. 2020, 540, 116249. [Google Scholar]
- Shellnutt, J.G.; Jahn, B.M. Origin of late Permian Emeishan basaltic rocks from the Panxi region (SW China): Implications for the Ti-classification and spatial–compositional distribution of the Emeishan flood basalts. J. Volcanol. Geotherm. Res. 2011, 199, 85–95. [Google Scholar] [CrossRef]
- Lo, C.H.; Chung, S.L.; Lee, T.Y.; Wu, G. Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. Earth Planet. Sci. Lett. 2002, 198, 449–458. [Google Scholar] [CrossRef]
- Boven, A.; Pasteels, P.; Punzalan, L.E.; Liu, J.; Luo, X.; Zhang, W.; Guo, Z.; Hertogen, J. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan volcanic province, southwest China. J. Asian Earth Sci. 2002, 20, 157–175. [Google Scholar] [CrossRef]
- Fan, W.; Wang, V.; Peng, T.; Miao, L.; Guo, F. Ar–Ar and U–Pb geochronology of late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. Chin. Sci. Bull. 2004, 49, 2318–2327. (In Chinese) [Google Scholar] [CrossRef]
Spot | Th (ppm) | U (ppm) | Th/U Ratio | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 206Pb/238U | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age | 1σ | ||||
KB1-1 | 198.92 | 184.46 | 0.9273075 | 0.05343 | 0.00316 | 0.27953 | 0.01568 | 0.03798 | 0.00069 | 240.3 | 4.3 |
KB1-2 | 41.16 | 97.41 | 2.3666181 | 0.04966 | 0.00452 | 0.25982 | 0.02294 | 0.03798 | 0.00084 | 240.3 | 5.19 |
KB1-3 | 55.46 | 143.07 | 2.5796971 | 0.05078 | 0.0038 | 0.27026 | 0.01945 | 0.03864 | 0.00077 | 244.4 | 4.77 |
KB1-4 | 175.69 | 170.82 | 0.9722807 | 0.05731 | 0.00345 | 0.30891 | 0.01764 | 0.03912 | 0.00073 | 247.4 | 4.52 |
KB1-5 | 318.8 | 289.82 | 0.9090966 | 0.05378 | 0.00258 | 0.29795 | 0.01329 | 0.04022 | 0.00067 | 254.2 | 4.14 |
KB1-6 | 48.42 | 79.03 | 1.6321768 | 0.05029 | 0.00514 | 0.27425 | 0.02729 | 0.03959 | 0.00094 | 250.3 | 5.82 |
KB1-7 | 40.24 | 80.26 | 1.9945328 | 0.05639 | 0.00597 | 0.29587 | 0.03048 | 0.03808 | 0.00095 | 240.9 | 5.91 |
KB1-8 | 182.34 | 280.02 | 1.5357025 | 0.05096 | 0.00251 | 0.27651 | 0.01273 | 0.03938 | 0.00065 | 249 | 4.04 |
KB1-9 | 50.75 | 97.65 | 1.9241379 | 0.04959 | 0.00457 | 0.26575 | 0.02376 | 0.03889 | 0.00086 | 246 | 5.35 |
KB1-10 | 37.2 | 77.65 | 2.0873656 | 0.03842 | 0.00561 | 0.20861 | 0.03004 | 0.03941 | 0.00095 | 249.1 | 5.88 |
KB1-11 | 36.38 | 71.73 | 1.9716877 | 0.04967 | 0.00543 | 0.27787 | 0.02968 | 0.04059 | 0.00099 | 256.5 | 6.12 |
KB1-12 | 50.71 | 139.24 | 2.7458095 | 0.05285 | 0.00389 | 0.28581 | 0.02024 | 0.03924 | 0.00078 | 248.1 | 4.86 |
KB1-13 | 41.08 | 109.27 | 2.6599318 | 0.04661 | 0.0042 | 0.25753 | 0.02254 | 0.04009 | 0.00086 | 253.4 | 5.36 |
KB1-14 | 391.5 | 337.49 | 0.8620434 | 0.05247 | 0.00231 | 0.28027 | 0.01134 | 0.03876 | 0.00062 | 245.1 | 3.83 |
KB1-15 | 53.54 | 134.48 | 2.5117669 | 0.05336 | 0.00384 | 0.28594 | 0.01977 | 0.03888 | 0.00076 | 245.9 | 4.74 |
KB1-16 | 57.97 | 143.68 | 2.4785234 | 0.05698 | 0.00373 | 0.30168 | 0.01882 | 0.03841 | 0.00075 | 243 | 4.68 |
KB1-17 | 50.91 | 130.35 | 2.5604007 | 0.05459 | 0.00377 | 0.29512 | 0.0195 | 0.03922 | 0.00076 | 248 | 4.72 |
KB1-18 | 41.88 | 81.05 | 1.9352913 | 0.04155 | 0.0055 | 0.21613 | 0.02815 | 0.03773 | 0.00089 | 238.8 | 5.56 |
KB1-19 | 112.93 | 137 | 1.2131409 | 0.04767 | 0.0039 | 0.24559 | 0.01947 | 0.03737 | 0.00075 | 236.5 | 4.68 |
KB1-20 | 57.63 | 148.17 | 2.5710567 | 0.04984 | 0.00356 | 0.26679 | 0.0183 | 0.03883 | 0.00075 | 245.6 | 4.64 |
KB1-21 | 47.7 | 123.4 | 2.5870021 | 0.05256 | 0.00389 | 0.28834 | 0.02049 | 0.03979 | 0.00082 | 251.5 | 5.08 |
KB1-22 | 669.17 | 721.1 | 1.0776036 | 0.05215 | 0.00177 | 0.27938 | 0.00836 | 0.03885 | 0.00057 | 245.7 | 3.52 |
KB1-23 | 48.31 | 92.96 | 1.9242393 | 0.06008 | 0.00467 | 0.32154 | 0.02398 | 0.03881 | 0.00086 | 245.5 | 5.32 |
KB1-24 | 109.27 | 141.25 | 1.2926695 | 0.04457 | 0.00337 | 0.23159 | 0.0169 | 0.03768 | 0.00072 | 238.5 | 4.47 |
KB1-25 | 45.9 | 120.01 | 2.614597 | 0.05587 | 0.00378 | 0.29842 | 0.01929 | 0.03873 | 0.00075 | 245 | 4.67 |
Sample | Age(Ma) | Rb(ppm) | Sr(ppm) | 87Sr/86Sr | (87Sr/86Sr)i | Sm(ppm) | Nd(ppm) | 143Nd/144Nd | (143Nd/144Nd)i | εNd(t) |
---|---|---|---|---|---|---|---|---|---|---|
Laochang-01 | 244 | 637 | 292.1 | 0.7263 | 0.7044 | 4.92 | 22.00 | 0.51272 | 0.51250 | 3.43 |
Laochang-02 | 244 | 710 | 83.0 | 0.7905 | 0.7048 | 5.46 | 24.61 | 0.51270 | 0.51249 | 3.25 |
Qilinshan-8 | 244 | 17 | 395.1 | 0.7052 | 0.7047 | 6.70 | 33.31 | 0.51276 | 0.51256 | 4.69 |
Qilinshan-9 | 244 | 13 | 549.0 | 0.7047 | 0.7044 | 6.56 | 31.07 | 0.51278 | 0.51257 | 4.92 |
Sample | Age (Ma) | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | (206Pb/204Pb)t | (207Pb/204Pb)t | (208Pb/204Pb)t | Φ | μ | Th/U |
---|---|---|---|---|---|---|---|---|---|---|
Laochang-01 | 244 | 18.554 ± 0.007 | 15.701 ± 0.005 | 39.106 ± 0.014 | 18.197 | 15.683 | 38.713 | 0.585 | 9.65 | 3.95 |
Laochang-02 | 244 | 18.658 ± 0.004 | 15.757 ± 0.004 | 39.252 ± 0.007 | 17.976 | 15.722 | 38.501 | 0.584 | 9.75 | 3.97 |
Qilinshan-08 | 244 | 18.780 ± 0.006 | 15.645 ± 0.006 | 39.282 ± 0.016 | 18.150 | 15.613 | 38.853 | 0.565 | 9.52 | 3.89 |
Qilinshan-09 | 244 | 18.859 ± 0.006 | 15.600 ± 0.005 | 39.145 ± 0.010 | 17.493 | 15.530 | 37.713 | 0.556 | 9.42 | 3.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Z.; Chen, Y. Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province. Minerals 2020, 10, 1030. https://doi.org/10.3390/min10111030
Shang Z, Chen Y. Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province. Minerals. 2020; 10(11):1030. https://doi.org/10.3390/min10111030
Chicago/Turabian StyleShang, Zhi, and Yongqing Chen. 2020. "Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province" Minerals 10, no. 11: 1030. https://doi.org/10.3390/min10111030
APA StyleShang, Z., & Chen, Y. (2020). Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Anisian Alkaline Basalts in Gejiu District, Yunnan Province. Minerals, 10(11), 1030. https://doi.org/10.3390/min10111030