Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Plant Water Preparation
2.2. Ore Preparation
2.3. Batch Flotation
2.4. Electrical Conductivity Measurements
3. Results
3.1. Effect of Increased Ca2+ and Mg2+ Concentration in Process Water on Solids and Water Recoveries: Implications on the Stability of the Froth
3.2. Effect of Increased Ca2+ and Mg2+ Concentration in Process Water on Copper Recoveries and Grades
3.3. Effect of Increased Ca2+ and Mg2+ Concentration in Process Water on Nickel Recoveries and Grades
3.4. Relating the Effect of Spiking Ca2+ and Mg2+ on the Electrical Conductivity (EC) to Flotation Performance
4. Discussion
4.1. Effect of Increased Ca2+ and Mg2+ Concentration in Process Water on Flotation Performance
4.2. Relating the Effect of Ca2+ and Mg2+ on the Electrical Conductivity (EC) to Flotation Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradshaw, D.J. Synergistic Effects between Thiol Collectors Used in Flotation of Pyrite. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1997. [Google Scholar]
- Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Melo, F.; Laskowski, J.S. Fundamental properties of flotation frothers and their effect on flotation. Miner. Eng. 2006, 19, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, D.J.; Harris, P.J.; Connor, C.T.O. Synergistic interactions between reagents in sulphide flotation. J. S. Afr. Inst. Miner. Metall. 1998, 98, 187–192. [Google Scholar]
- Davis, F.; Hyatt, D.; Cox, C. Environmental Problems of Flotation Reagents in Mineral Processing Plant Tailings Water Mineral Processing Plant Tailings Water; U.S. Department of the Interior: Washington, DC, USA, 1975.
- Wiese, J.G. Investigating Depressant Behaviour in the Flotation of Selected Merensky Ores. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2009. [Google Scholar]
- Ikumapayi, F.; Rao, K.H. Recycling Process Water in Complex Sulfide Ore Flotation: Effect of Calcium and Sulfate on Sulfide Minerals Recovery. Miner. Process. Extr. Metall. Rev. 2014, 36, 45–64. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Handbook of Flotation Reagents; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Corin, K.C.; Corin, K.C.; Reddy, A.; Miyen, L.; Wiese, J.G.; Harris, P.J. The effect of ionic strength of plant water on valuable mineral and gangue recovery in a platinum bearing ore from the Merensky reef. Miner. Eng. 2011, 24, 131–137. [Google Scholar] [CrossRef]
- Craig, V.; Ninham, B.; Pashley, R. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 1993, 39, 10192–10197. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Castro, S. Hydrolysis of metallic ions in mineral processing circuits and its effect on flotation. In Proceedings of the COM Conference of Metallurgists, Vancouver, BC, Canada, 27–30 August 2017. [Google Scholar] [CrossRef]
- Levay, G.; Smart, R.; Skinner, W. The impact of water quality on flotation performance. J. S. Afr. Inst. Miner. Metall. 2001, 1, 69–76. [Google Scholar] [CrossRef]
- Manono, M.S.; Corin, K.C.; Wiese, J.G. An investigation into the effect of various ions and their ionic strength on the flotation performance of a platinum bearing ore from the Merensky reef. Miner. Eng. 2012, 36–38, 231–236. [Google Scholar] [CrossRef]
- Manono, M.; Corin, K.; Wiese, J. Perspectives from literature on the influence of inorganic electrolytes present in plant water on flotation performance. Physicochem. Probl. Miner. Process. 2018, 54, 1191–1214. [Google Scholar]
- Muzenda, E. An Investigation into the Effect of Water Quality on Flotation Performance. World Acad. Sci. Eng. Technol. 2010, 70, 237–241. [Google Scholar]
- Haggard, E.L.; Sheridan, C.M.; Harding, K.G. Quantification of water usage at a South African platinum processing plant. Water SA 2015, 41, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Muzinda, I.; Schreithofer, N. Water quality effects on flotation: Impacts and control of residual xanthates. Miner. Eng. 2018, 125, 34–41. [Google Scholar] [CrossRef]
- Schreithofer, N.; Muzinda, I. Boliden Kevitsa Mine Report; NI 43-101; New Boliden: Sodankylä, Finland, 2017. [Google Scholar]
- Slatter, K.A.; De Vaux, D.; Plint, N.D.; Cole, M.; Dilsook, V.; Palm, Oostendorp, B. Water management in anglo platinum process operations: Effects of water quality on process operations. In Proceedings of the The International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 46–55. [Google Scholar]
- Li, Y.; Li, W.; Xiao, Q.; He, N.; Ren, Z.; Lartey, C.; Gerson, A. The Influence of Common Monovalent and Divalent Chlorides on Chalcopyrite Flotation. Minerals 2017, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Gungoren, C.; Islek, E.; Baktarhan, Y.; Unver, I.K.; Ozdemir, O. A novel technique to investigate the bubble coalescence in the presence of surfactant (MIBC) and electrolytes (NaCl and CaCl2). Physicochem. Probl. Miner. Process. 2018, 54, 1215–1222, ISSN 1643-1049. [Google Scholar]
- Manono, M.S.; Corin, K.C.; Wiese, J.G. The effect of ionic strength of plant water on foam stability: A 2-phase flotation study. Miner. Eng. 2013, 40, 42–47. [Google Scholar] [CrossRef]
- Corin, K.C.; Wiese, J.G. Investigating froth stability: A comparative study of ionic strength and frother dosage. Miner. Eng. 2014, 66–68, 130–134. [Google Scholar] [CrossRef]
- Liu, W.; Moran, C.J.; Vink, S. A review of the effect of water quality on flotation. Miner. Eng. 2013, 53, 91–100. [Google Scholar] [CrossRef]
- October, L.; Corin, K.; Schreithofer, N.; Manono, M.; Wiese, J. Considering the Ionic Strength and pH of Process Water on Bubble-Particle Attachment of Sulfide Minerals: Implications for Froth Flotation in Saline Water. In Mine Water-Technological and Ecological Challenges; Khayrulina, E., Wolkersdorfer, C.H., Polyakova, S., Bogush, A., Eds.; Perm State University: Perm, Russia, 2019; pp. 437–445. [Google Scholar]
- Manono, M.S.; Matibidi, K.; Thubakgale, C.K.; Corin, K.C.; Wiese, J.G. Water Quality in PGM Ore Flotation: The effect of Ionic Strength and pH. In Proceedings of the IMWA 2017—Mine Water & Circular Economy, Lappenranta, Finland, 25–30 June 2017; pp. 777–784. [Google Scholar]
- Ikumapayi, F.; Makitalo, M.; Johansson, B.; Hanumantha, K. Recycling of process water in sulphide flotation. Effect of calcium and sulphate ions on flotation of galena. Miner. Eng. 2012, 39, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Hirajima, T.; Suyantara, G.P.W.; Ichikawa, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng. 2016, 96–97, 83–93. [Google Scholar] [CrossRef]
- Kirjavainen, V.; Heiskanen, K. Some factors that affect beneficiation of sulphide nickel—copper ores. Miner. Eng. 2007, 20, 629–633. [Google Scholar] [CrossRef]
- Musuku, B.; Muzinda, I.; Lumsden, B. Cu-Ni processing improvements at First Quantum’s Kevitsa mine. Miner. Eng. 2016, 88, 9–17. [Google Scholar] [CrossRef]
- Muzenda, E.; Afolabi, A.S.; Abdulkareem, A.S.; Ntuli, F. Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2011. [Google Scholar]
- Manono, M.S.; Corin, K.C.; Wiese, J.G. The influence of electrolytes present in process water on the flotation behaviour of a Cu-Ni containing ore. Miner. Eng. 2016, 96–97, 99–107. [Google Scholar] [CrossRef]
- Clarke, P.; Fornasiero, D.; Ralston, J.; Smart, R.S.C. A study of the removal of oxidation products from sulfide mineral surfaces. Miner. Eng. 1995, 8, 1347–1357. [Google Scholar] [CrossRef]
- Wiese, J.; Harris, P.; Bradshaw, D. The influence of the reagent suite on the flotation of ores from the Merensky reef. Miner. Eng. 2005, 18, 189–198. [Google Scholar] [CrossRef]
Water Type | Ca2+ (mg/L) | Mg2+ (mg/L) | Na+ (mg/L) | Cl− (mg/L) | SO42− (mg/L) | NO3− (mg/L) | CO32− (mg/L) | TDS (mg/L) | I.S [M] |
---|---|---|---|---|---|---|---|---|---|
1 SPW | 80 | 70 | 153 | 287 | 240 | 176 | 17 | 1023 | 0.021 |
3 SPW | 240 | 210 | 459 | 861 | 720 | 528 | 51 | 3069 | 0.073 |
5 SPW | 400 | 350 | 765 | 1435 | 1200 | 880 | 85 | 5115 | 0.121 |
10 SPW | 800 | 700 | 1530 | 2870 | 2400 | 1760 | 170 | 10,230 | 0.242 |
Spiked Waters | |||||||||
3 SPW + 160 mg/L Ca2+ | 400 | 210 | 459 | 1141 | 720 | 528 | 51 | 3509 | 0.085 |
3 SPW + 560 mg/L Ca2+ | 800 | 210 | 459 | 1851 | 720 | 528 | 51 | 4619 | 0.115 |
3 SPW + 140 mg/L Mg2+ | 240 | 350 | 459 | 1050 | 720 | 528 | 51 | 3398 | 0.087 |
3 SPW + 490 mg/L Mg2+ | 240 | 700 | 459 | 1531 | 720 | 528 | 51 | 4229 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzingai, M.; Manono, M.; Corin, K. Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+. Minerals 2020, 10, 1033. https://doi.org/10.3390/min10111033
Dzingai M, Manono M, Corin K. Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+. Minerals. 2020; 10(11):1033. https://doi.org/10.3390/min10111033
Chicago/Turabian StyleDzingai, Mathew, Malibongwe Manono, and Kirsten Corin. 2020. "Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+" Minerals 10, no. 11: 1033. https://doi.org/10.3390/min10111033
APA StyleDzingai, M., Manono, M., & Corin, K. (2020). Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+. Minerals, 10(11), 1033. https://doi.org/10.3390/min10111033