Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield
Abstract
:1. Introduction
2. Geological Setting
2.1. Fennoscandia
2.2. Tuntsa
2.3. Deformation
3. Analytical Methods
3.1. Microprobe Analyses
3.2. Whole-Rock Analyses
3.3. SEM Analyses
3.4. QEMSCAN Imaging
3.5. Isotope Analyses
3.6. Mineral Equilibria Modelling
4. Samples
4.1. Samples for Zircon Analyses
4.2. Samples for SEM Imaging, PT Modelling and Monazite Analyses
5. Results
5.1. Petrography of the Metapelitic Gneisses
5.1.1. Textural and Paragenetic Relationships
Early Assemblages
Peak Assemblages
Late Assemblages
5.1.2. Mineral Chemistry
5.2. Zircon Geochronology
5.3. Monazite Geochronology
5.4. Sm-Nd
5.5. Mineral Equilibria Modelling
6. Discussion and Conclusions
6.1. PT Path
6.2. Age Determination Methods
6.3. Ages in Tuntsa
6.4. Tectonic Implications
7. Conclusions
- The Tuntsa Suite is a polymetamorphic Precambrian complex consisting mostly of metasedimentary rocks whose deposition took place in the early Neoarchean. It was metamorphosed twice, first at high grade around 2.70–2.64 Ga, related with the assembly of the Kenorland supercontinent. The second metamorphic cycle took place at 1.84–1.79 Ga when the Suite underwent a penetrative deformation and medium grade Barrovian style metamorphism, producing a clockwise PT path as a result of crustal thickening and subsequent exhumation.
- The Proterozoic metamorphism was caused by the thrusting of the Lapland granulites onto the adjacent areas. All metamorphic mineral assemblages, including monazite, are Proterozoic, the remnants of migmatites and metamorphic zircon witnessing the Archean metamorphism.
- Monazite and garnet record only the Proterozoic metamorphism.
- The Proterozoic pressure-temperature development is seen in garnet zoning, but the commonly observed zoning where Mg increases and Ca decreases from the core to the rim can develop with both increasing and decreasing pressure, depending on the effective bulk composition and Ca sequestering in early metamorphic minerals.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pajunen, M.; Poutiainen, M. Palaeoproterozoic prograde metasomatic-metamorphic overprint zones in Archaean tonalitic gneisses, eastern Finland. Bull. Geol. Soc. Finl. 1999, 71, 73–132. [Google Scholar] [CrossRef]
- Mänttäri, I.; Hölttä, P. U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi, central Finland: Evidence for multiple metamorphism and Neoarchean terrane accretion. Precambrian Res. 2002, 118, 101–131. [Google Scholar]
- Hölttä, P.; Lehtonen, E.; Lahaye, J.; Sorjonen-Ward, P. Metamorphic evolution of the Ilomantsi greenstone belt in the Archaean Karelia Province, eastern Finland. Geol. Soc. Lond. Spec. Publ. 2017, 449, 231–250. [Google Scholar] [CrossRef]
- Corfu, F.; Evins, P.M. Late Palaeoproterozoic monazite and titanite U–Pb ages in the Archaean Suomujärvi Complex, N-Finland. Precambrian Res. 2002, 116, 171–181. [Google Scholar] [CrossRef]
- Huhma, H.; Hanski, E.; Kontinen, A.; Vuollo, J.; Mänttäri, I.; Lahaye, Y. Sm–Nd and U–Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland. Bull. Geol. Soc. Finl. 2018, 405, 1–150. [Google Scholar]
- Larionova, Y.O.; Samsonov, A.V.; Shatagin, K.N.; Nosova, A.A. Isotopic Geochronological Evidence for the Paleoproterozoic Age of Gold Mineralization in Archean Greenstone Belts of Karelia, the Baltic Shield. Geol. Ore Depos. 2013, 55, 320–340. [Google Scholar] [CrossRef]
- Kontinen, A.; Paavola, J.; Lukkarinen, H. K-Ar ages of hornblende and biotite from late Archaean rocks of eastern Finland; interpretation and discussion of tectonic implications. Bull. Geol. Soc. Finl. 1992, 365, 5–31. [Google Scholar]
- Mertanen, S.; Halls, H.C.; Vuollo, J.I.; Pesonen, L.J.; Stepanov, V.S. Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield; implications for continental reconstructions. Precambrian Res. 1999, 98, 197–221. [Google Scholar] [CrossRef]
- Lahtinen, R.; Huhma, H. A revised geodynamic model for the Lapland-Kola orogen. Precambrian Res. 2019, 330, 1–19. [Google Scholar] [CrossRef]
- Bibikova, E.; Skiöld, T.; Bogdanova, S.; Gorbatschev, R.; Slabunov, A. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Res. 2001, 105, 315–330. [Google Scholar] [CrossRef]
- Balagansky, V.; Shchipansky, A.; Slabunov, A.I.; Gorbunov, I.; Mudruk, S.; Sidorov, M.; Azimov, P.; Egorova, S.; Stepanova, A.; Voloshin, A. Archaean Kuru-Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: Crustal architecture, timing, and tectonic implications. Int. Geol. Rev. 2015, 57, 1543–1565. [Google Scholar] [CrossRef]
- Dokukina, K.A.; Kaulina, T.V.; Konilov, A.N.; Mints, M.V.; Van, K.V.; Natapov, L.; Belousova, E.; Simakin, S.G.; Lepekhina, E.N. Archaean to Palaeoproterozoic high-grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Res. 2014, 25, 585–613. [Google Scholar] [CrossRef]
- Skiöld, T.; Bogdanova, S.; Gorbatschev, R.; Bibikova, E. Timing of late Palaeoproterozoic metamorphism in the northern Belomorian Belt, White Sea region; conclusions from U-Pb isotopic data and P-T evidence. Bull. Geol. Soc. Finl. 2001, 73, 59–73. [Google Scholar] [CrossRef]
- Gaál, G. 2200 million years of crustal evolution: The Baltic Shield. Bull. Geol. Soc. Finl. 1986, 58, 149–168. [Google Scholar] [CrossRef]
- Gaál, G.; Gorbatschev, R. An Outline of the Precambrian Evolution of the Baltic Shield. Precambrian Res. 1987, 35, 15–52. [Google Scholar] [CrossRef]
- Daly, J.S.; Balagansky, V.V.; Timmerman, M.J.; Whitehouse, M.J. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Geol. Soc. Mem. 2006, 32, 579–598. [Google Scholar] [CrossRef]
- Nironen, M. Guide to the Geological Map of Finland – Bedrock 1:1 000 000. Spec. Pap. Geol. Surv. Finl. 2017, 60, 40–74. [Google Scholar]
- Hölttä, P.; Balagansky, V.; Garde, A.A.; Mertanen, S.; Peltonen, P.; Slabunov, A.; Sorjonen-Ward, P.; Whitehouse, M. Archean of Greenland and Fennoscandia. Episodes 2008, 31, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Hölttä, P.; Heilimo, E.; Huhma, H.; Kontinen, A.; Mertanen, S.; Mikkola, P.; Paavola, J.; Peltonen, P.; Semprich, J.; Slabunov, A.; et al. The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield. In Evolution of Archean Crust and Early Life; Dilek, Y., Furnes, H., Eds.; Springer: Berlin, Germany, 2014; Volume 7, pp. 55–102. [Google Scholar]
- Hölttä, P.; Heilimo, E.; Huhma, H.; Kontinen, A.; Mertanen, S.; Mikkola, P.; Paavola, J.; Peltonen, P.; Semprich, J.; Slabunov, A.; et al. The Archaean of the Karelia Province in Finland. Spec. Pap. Geol. Surv. Finl. 2012, 2012, 21–73. [Google Scholar]
- Volodichev, O.I. Metamorphism of Kyanite Facies Gneisses (Example from the Belomorian Complex); Nauka: Leningrad, FL, USA, 1975; p. 170. [Google Scholar]
- Volodichev, O.I. The Belomorian Complex of Karelia: Geology and Petrology; Nauka: Leningrad, FL, USA, 1990; p. 248. [Google Scholar]
- Shchipansky, A.A.; Babarina, I.I.; Krylov, K.A.; Samsonov, A.V.; Bogina, M.M.; Bibikova, E.V.; Slabunov, A.I. The oldest ophiolites: The late Archean suprasubduction zone complex of the Iringora structure, north Karelian greenstone belt. Dokl. Earth Sci. 2001, 377 A, 283–287. [Google Scholar]
- Mints, M.V.; Berzin, R.G.; Andryushchenko, Y.N.; Zamozhnyaya, N.G.; Zlobin, V.L.; Konilov, A.N.; Stupak, V.M.; Suleimanov, A.K. The deep structure of the Karelian Craton along geotraverse 1-EB. Geotectonics 2004, 38, 329–342. [Google Scholar]
- Mints, M.; Berzin, R.G.; Suleimanov (Suleymanov), A.K.; Zamozhnyaya, N.G.; Stupak, V.M.; Konilov, A.N.; Zlobin, V.L.; Kaulina, T.V. The deep structure of the early Precambrian crust of the Karelian Craton, southeastern Fennoscandian Shield; results of investigation along CMP profile 4B. Geotectonics 2004, 38, 87–102. [Google Scholar]
- Sharov, N.V.; Kulikov, V.S.; Kulikova, V.V.; Isanina, E.V.; Krupnova, N.A. Crustal seismogeological characteristics in the southeastern Fennoscandian Shield (Russia). Geofiz. Zhurnal 2010, 32, 3–17. [Google Scholar] [CrossRef]
- Perchuk, A.L.; Morgunova, A.A. Variable P–T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: Petrological evidence and geodynamic implications. Gondwana Res. 2014, 25, 614–629. [Google Scholar] [CrossRef]
- Volodichev, O.I.; Slabunov, A.I.; Bibikova, E.V.; Konilov, A.N.; Kuzenko, T.I. Archean eclogites in the Belomorian mobile belt, baltic shield. Petrology 2004, 12, 540–560. [Google Scholar]
- Dokukina, K.A.; Mints, M.V.; Konilov, A.N. Melting of eclogite facies sedimentary rocks in the Belomorian Eclogite Province, Russia. J. Metamorph. Geol. 2017, 35, 435–451. [Google Scholar] [CrossRef]
- Mints, M.V.; Belousova, E.A.; Konilov, A.N.; Natapov, L.M.; Shchipansky, A.A.; Griffin, W.L.; O’Reilly, S.Y.; Dokukina, K.A.; Kaulina, T.V. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 2010, 38, 739–742. [Google Scholar] [CrossRef]
- Mints, M.V.; Dokukina, K.A.; Konilov, A.N. The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Res. 2014, 25, 561–584. [Google Scholar] [CrossRef]
- Shchipansky, A.A.; Khodorevskaya, L.I.; Konilov, A.N.; Slabunov, A.I. Eclogites from the Belomorian Mobile Belt (Kola Peninsula): Geology and petrology. Russ Geol Geophys. 2012, 53, 1–21. [Google Scholar] [CrossRef]
- Mints, M.V.; Konilov, A.N.; Dokukina, K.A.; Kaulina, T.V.; Belousova, E.A.; Natapov, L.M.; Griffin, W.L.; O’Reilly, S.Y. The Belomorian eclogite province: Unique evidence of Meso-Neoarchaean subduction and collision. Dokl. Earth Sci. 2010, 434, 1311–1316. [Google Scholar] [CrossRef]
- Dokukina, K.A.; Konilov, A.N.; Van, K.V.; Mints, M.V.; Simakin, S.G. Origin of early Paleoproterozoic zircons in rocks of the Archean eclogite association of Gridino (Belomorian eclogite province). Dokl. Earth Sci. 2012, 445, 832–839. [Google Scholar] [CrossRef]
- Kaulina, T.V.; Yapaskurt, V.O.; Presnyakov, S.L.; Savchenko, E.E.; Simakin, S.G. Metamorphic evolution of the Archaean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): Geochemical features of zircon, composition of inclusions, and age. Geochem. Int. 2010, 48, 871–890. [Google Scholar] [CrossRef]
- Mints, M.V.; Dokukina, K.A. Age of eclogites formed by the subduction of the Mesoarchaean oceanic crust (Salma, Belomorian Eclogite Province, eastern Fennoscandian Shield, Russia): A synthesis. Precambrian Res. 2020, 350, 105879. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Zhang, L.; Wei, C.; Bader, T. 1.9 Ga eclogite from the Archean-Paleoproterozoic Belomorian Province, Russia. Sci. Bull. 2017, 62, 239–241. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, L.; Li, X.; Slabunov, A.I.; Wei, C.; Bader, T. The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating. Precambrian Res. 2017, 289, 31–47. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Lanari, P.; Rubatto, D.; Li, X. Garnet Lu-Hf geochronology and P-T path of the Gridino-type eclogite in the Belomorian Province, Russia. Lithos 2019, 326–327, 313–326. [Google Scholar] [CrossRef]
- Skublov, S.G.; Balashov, Y.A.; Marin, Y.B.; Berezin, A.V.; Mel’nik, A.E.; Paderin, I.P. U-Pb age and geochemistry of zircons from Salma eclogites (Kuru-Vaara Deposit, Belomorian Belt). Dokl. Earth Sci. 2010, 432, 791–798. [Google Scholar] [CrossRef]
- Imayama, T.; Oh, C.; Baltybaev, S.K.; Park, C.Y.K.; Jung, H. Paleoproterozoic high-pressure metamorphic history of the Salma eclogite on the Kola Peninsula, Russia. Lithosphere 2017, 9, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Herwartz, D.; Skublov, S.G.; Berezin, A.V.; Melnik, A.E. First Lu–Hf Garnet Ages of Eclogites from the Belomorian Mobile Belt (Baltic Shield, Russia). Dokl. Earth Sci. 2012, 443, 377–380. [Google Scholar] [CrossRef]
- Berezin, A.V.; Travin, V.V.; Marin, Y.B.; Skublov, S.G.; Bogomolov, E.S. New U-Pb and Sm-Nd Ages and P-T Estimates for Eclogitization in the Fe-Rich Gabbro Dyke in Gridino Area (Belomorian Mobile Belt). Dokl. Earth Sci. 2012, 444, 760–765. [Google Scholar] [CrossRef]
- Dokukina, K.A.; Kaulina, T.V.; Konilov, A.N. Dating of key events in the Precambrian polystage complexes: An example from Archaen Belomorian Eclogite Province, Russia. Dokl. Earth Sci. 2009, 425, 296–301. [Google Scholar] [CrossRef]
- Travin, V.V.; Kozlova, N.E. Eclogitization of basites in early proterozoic shear zones in the area of the village of Gridino, western Belomorie. Petrology 2009, 17, 684–706. [Google Scholar] [CrossRef]
- Hanski, E.J.; Huhma, H.; Rastas, P.; Kamenetsky, V.S. The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland. J. Petrol. 2001, 42, 855–876. [Google Scholar] [CrossRef] [Green Version]
- Hanski, E.; Huhma, H. Central Lapland greenstone belt. In Precambrian Geology of Finland. Key to the Evolution of the Fennoscandian Shield; Lehtinen, M., Nurmi, P.A., Rämö, O.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 14, pp. 139–193. [Google Scholar]
- Hanski, E.; Melezhik, V.A. Litho- and chronostratigraphy of the Paleoproterozoic Karelian formations. In Reading the Archive of Earth’s Oxygenation, Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia—Drilling Early Earth Project; Melezhik, V.A., Prave, A.R., Fallick, A.E., Kump, L.R., Strauss, H., Lepland, A., Hanski, E.J., Eds.; Springer-Verlag: Berlin, Germany, 2013; pp. 39–110. [Google Scholar]
- Köykkä, J.; Lahtinen, R.; Huhma, H. Provenance evolution of the Paleoproterozoic metasedimentary cover sequences in northern Fennoscandia: Age distribution, geochemistry, and zircon morphology. Precambrian Res. 2019, 331, 105364. [Google Scholar] [CrossRef]
- Lahtinen, R.; Huhma, H.; Lahaye, Y.; Jonsson, E.; Manninen, T.; Lauri, L.S.; Bergman, S.; Hellström, F.; Niiranen, T.; Nironen, M. New geochronological and Sm–Nd constraints across the Pajala shear zone of northern Fennoscandia: Reactivation of a Paleoproterozoic suture. Precambrian Res. 2015, 256, 102–119. [Google Scholar] [CrossRef]
- Lahtinen, R.; Huhma, H.; Sayab, M.; Lauri, L.S.; Hölttä, P. Age and structural constraints on the tectonic evolution of the Paleoproterozoic Central Lapland Granitoid Complex in the Fennoscandian Shield. Tectonophysics 2018, 305–325. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Hanski, E.J. Palaeotectonic and Palaeogeographic evolution of Fennoscandia in the Palaeoproterozoic. In Reading the Archive of Earth’s Oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia—Drilling Early Earth Project; Melezhik, V.A., Prave, A.R., Fallick, A.E., Kump, L.R., Strauss, H., Lepland, A., Hanski, E.J., Eds.; Springer-Verlag: Berlin, Germany, 2013; pp. 111–178. [Google Scholar]
- Peltonen, P.; Mänttäri, I.; Huhma, H.; Kontinen, A. Archean zircons from the mantle: The Jormua ophiolite revisited. Geology 2003, 31, 645–648. [Google Scholar] [CrossRef]
- Peltonen, P.; Kontinen, A.; Huhma, H.; Kuronen, U. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits. Ore Geol. Rev. 2008, 33, 559–617. [Google Scholar] [CrossRef]
- Vuollo, J.; Huhma, H. Paleoproterozoic mafic dikes in NE Finland. In Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield; Lehtinen, M., Nurmi, P.A., Rämö, O.T., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 195–236. [Google Scholar]
- Ahtonen, N.; Hölttä, P.; Huhma, H. Intracratonic Palaeoproterozoic granitoids in northern Finland: Prolonged and episodic crustal melting events revealed by Nd isotopes and U-Pb ages on zircon. Bull. Geol. Soc. Finl. 2007, 79, 143–174. [Google Scholar] [CrossRef]
- Ranta, J.; Lauri, L.S.; Hanski, E.; Huhma, H.; Lahaye, Y.; Vanhanen, E. U–Pb and Sm–Nd isotopic constraints on the evolution of the Paleoproterozoic Peräpohja Belt, northern Finland. Precambrian Res. 2015, 246–259. [Google Scholar] [CrossRef]
- Juopperi, H. Kallioperäkartta 1:100,000-Maps of Pre-Quaternary Rocks, Sheets 3733 and 4711, Savukoski; Geological Survey of Finland: Espoo, Finland, 1986. [Google Scholar]
- Juopperi, H.; Vaasjoki, M. U-Pb mineral age determinations from Archean rocks in eastern Lapland. Spec. Pap. Geol. Surv. Finl. 2001, 33, 209–227. [Google Scholar]
- Sawyer, E.W. Working with migmatites: Nomenclature for the constituent parts. In Working with Migmatites; Sawyer, E.W., Brown, M., Eds.; Mineralogical Association of Canada: Quebec, QC, Canada, 2008; Volume 38, pp. 1–28. [Google Scholar]
- Juopperi, H.; Veki, A. The Archaean Tuntsa Supergroup in the Nuolusvaara area, northeastern Finland. Spec. Pap. Geol. Surv. Finl. 1988, 4, 145–149. [Google Scholar]
- Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25. [Google Scholar] [CrossRef]
- Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quanititative mineral and phase analysis using automated scanning electron microscopy (QEMSCAN); potential applications in forensic geoscience. Geol. Soc. Lond. Spec. Publ. 2004, 232, 123–136. [Google Scholar] [CrossRef]
- Goodall, W.R.; Scales, P.J.; Butcher, A.R. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Miner. Eng. 2005, 18, 877–886. [Google Scholar] [CrossRef]
- Pirrie, D.; Rollinson, G.K. Unlocking the applications of automated mineral analysis. Geol. Today 2011, 27, 226–235. [Google Scholar] [CrossRef]
- Rollinson, G.K.; Anderson, J.C.Ø.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Andersen, J.C.Ø.; Rollinson, G.K.; Snook, B.; Herrington, R.; Fairhurst, R.J. Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner. Eng. 2009, 22, 1119–1129. [Google Scholar] [CrossRef]
- Huhma, H.; Kontinen, A.; Mikkola, P.; Halkoaho, T.; Hokkanen, T.; Hölttä, P.; Juopperi, H.; Konnunaho, J.; Luukkonen, E.; Mutanen, T.; et al. Nd isotopic evidence for Archaean crustal growth in Finland. Spec. Pap. Geol. Surv. Finl. 2012, 54, 176–214. [Google Scholar]
- Huhma, H.; Mänttäri, I.; Peltonen, P.; Kontinen, A.; Halkoaho, T.; Hanski, E.; Hokkanen, T.; Holtta, P.; Juopperi, H.; Konnunaho, J.; et al. The age of the Archaean greenstone belts in Finland. Spec. Pap. Geol. Surv. Finl. 2012, 54, 74–175. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Mattinson, J.M. Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Whitehouse, M.J.; Kamber, B.S. Assigning dates on thin gneissic veins in high-grade metamorphic terranes; a cautionary tale from Akilia, southwest Greenland. J. Petrol. 2005, 46, 291–318. [Google Scholar] [CrossRef]
- Mueller, W.; Shelley, J.M.G.; Rasmussen, S.O. Direct analysis of ice cores by UV-laser ablation ICPMS. Geochim. Cosmochim. Acta 2009, 73, A915. [Google Scholar]
- Rosa, D.R.N.; Finch, A.A.; Andersen, T.; Inverno, C.M.C. U-Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian pyrite belt. Mineral. Petrol. 2009, 95, 47–69. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.; Jackson, S.; Griffin, W. Data reduction software for LA-ICP-MS. In Laser-Ablation ICPMS in the Earth Sciences–Principles and Applications; Sylvester, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2001; Volume 29, pp. 239–243. [Google Scholar]
- Ludwig, K.R. User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2012, 5, 1–75. [Google Scholar]
- Connolly, J.A.D.; Petrini, K. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol 2002, 20, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.A.D. The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 2009, 10, 19. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. Activity–composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Miner. Pet. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Kretz, R. Symbols for rock-forming minerals. Am. Miner. 1983, 68, 277–279. [Google Scholar]
- Bourdelle, F.; Cathelineau, M. Low-temperature chlorite geothermometry: A graphical representation based on a T–R2+–Si diagram. Eur. J. Miner. 2015, 27, 617–626. [Google Scholar] [CrossRef]
- Hölttä, P.; Huhma, H.; Lahaye, Y.; Mänttäri, I.; Lukkari, S.; O’Brien, H. Paleoproterozoic metamorphism in the northern Fennoscandian Shield: Age constraints revealed by monazite. Int. Geol. Rev. 2019, 61, 1–28. [Google Scholar] [CrossRef]
- Evans, T.P. A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry. J. Metamorph. Geol. 2004, 22, 547–557. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Hand, M. On ultrahigh temperature crustal metamorphism: Phase equilibria, bulk compositions, heat sources, timescales and tectonic settings. Geosci. Front. 2015, 6, 311–356. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.J.M.; Kirkland, C.L.; Clark, C. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos 2016, 264, 239–257. [Google Scholar] [CrossRef]
- Kohn, M.J.; Engi, M.; Lanari, P. Petrochronology: Methods and Applications. Rev. Miner. Geochem. 2017, 83, 1–575. [Google Scholar]
- Kohn, M.J.; Corrie, S.L.; Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 2015, 100, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Fornelli, A.; Langone, A.; Micheletti, F.; Piccareta, G. REE partition among zircon, orthopyroxene, amphibole and garnet in a high-grade metabasic system. Geol. Mag. 2018, 155, 1705–1726. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Miner. Pet. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono‑magmatic provenance using trace elements in igneous zircon. Contrib. Miner. Pet. 2015, 170, 1–26. [Google Scholar] [CrossRef]
- Engi, M. Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Rev. Miner. Geochem. 2017, 83, 365–418. [Google Scholar] [CrossRef]
- Catlos, E.J.; Gilley, L.D.; Harrison, T.M. Interpretation of monazite ages obtained via in situ analysis. Chem. Geol. 2002, 188, 193–215. [Google Scholar] [CrossRef]
- Kohn, M.J.; Malloy, M.A. Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations. Geochim. Cosmochim. Acta 2004, 68, 101–113. [Google Scholar] [CrossRef]
- Wing, B.A.; Ferry, J.M.; Harrison, T.M. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: Petrology and geochronology. Contrib. Miner. Pet. 2003, 145, 228–250. [Google Scholar] [CrossRef]
- Finger, F.; Broska, I.; Roberts, M.P.; Schermaier, A. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am. Mineral. 1998, 83, 248–258. [Google Scholar] [CrossRef]
- Townsend, K.J.; Miller, C.F.; D’Andrea, J.L.; Ayers, J.C.; Harrison, T.M.; Coath, C.D. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: Geochronological implications. Chem. Geol. 2001, 172, 95–112. [Google Scholar] [CrossRef]
- Johnson, T.E.; Clark, C.; Taylor, R.J.M.; Santosh, M.; Collins, A.S. Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geosci. Front. 2015, 6, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Seydoux-Guillaume, A.; Montel, J.; Bingen, B.; Bosse, V.; de Parseval, P.; Paquette, J.; Janots, E.; Wirth, R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem. Geol. 2012, 330–331, 140–158. [Google Scholar] [CrossRef]
- Budzyn, B.; Harlov, D.E.; Williams, M.L.; Jercinovic, M.J. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am. Mineral. 2011, 96, 1547–1567. [Google Scholar] [CrossRef]
- Sinders, S.; Gerdes, A.; Ronkin, Y.L.; Dziggel, A.; Hetzel, R.; Schulte, B.A. Monazite stability, composition and geochronology as tracers of Paleoproterozoic events at the eastern margin of the East European Craton (Taratash complex, Middle Urals). Lithos 2012, 132, 82–97. [Google Scholar] [CrossRef]
- Harlov, D.E.; Harlov, D.E.; Wirth, R.; Wirth, R.; Hetherington, C.J.; Hetherington, C.J. Fluid-mediated partial alteration in monazite: The role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib. Miner. Pet. 2011, 162, 329–348. [Google Scholar] [CrossRef]
- Hetherington, C.J.; Harlov, D.E.; Budzyń, B. Experimental metasomatism of monazite and xenotime: Mineral stability, REE mobility and fluid composition. Mineral. Petrol. 2010, 99, 165–184. [Google Scholar] [CrossRef]
- Tropper, P.; Manning, C.E.; Harlov, D.E. Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800 °C and 1GPa: Implications for REE and Y transport during high–grade metamorphism. Chem. Geol. 2011, 282, 58–66. [Google Scholar] [CrossRef]
- Williams, I.S. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian J. Earth Sci. 2001, 48, 557–580. [Google Scholar] [CrossRef]
- Rasmussen, B.; Muhling, J.R. Monazite begets monazite: Evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib. Miner. Pet. 2007, 154, 675–689. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Harlov, D.E.; Budzyn, B.; Hetherington, C.J. Resetting monazite ages during fluid-related alteration. Chem. Geol. 2011, 283, 218–225. [Google Scholar] [CrossRef]
- Pollington, A.D.; Baxter, E.F. High resolution Sm–Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth Planet. Sci. Lett. 2010, 293, 63–71. [Google Scholar] [CrossRef]
- Pollington, A.D.; Baxter, E.F. High precision microsampling and preparation of zoned garnet porphyroblasts for Sm–Nd geochronology. Chem. Geol. 2011, 281, 270–282. [Google Scholar] [CrossRef]
- Baxter, E.F.; Scherer, E.E. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements 2013, 9, 432–438. [Google Scholar] [CrossRef]
- Baxter, E.F.; Caddick, M.J.; Dragovic, B. Garnet: A Rock-Forming Mineral Petrochronometer. Rev. Mineral. Geochem. 2017, 83, 469–533. [Google Scholar] [CrossRef] [Green Version]
- Hölttä, P.; Huhma, H.; Mänttäri, I.; Paavola, J. P–T–t development of Archaean granulites in Varpaisjärvi, Central Finland. Lithos 2000, 50, 121–136. [Google Scholar]
- Käpyaho, A.; Hölttä, P.; Whitehouse, M.J. U-Pb zircon geochronology of selected Archaean migmatites in eastern Finland. Bull. Geol. Soc. Finl. 2007, 79, 95–115. [Google Scholar] [CrossRef]
- Mikkola, P.; Huhma, H.; Heilimo, E.; Whitehouse, M. Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia; constraints from geochemistry and isotopes of granitoids. Lithos 2011, 125, 287–307. [Google Scholar] [CrossRef]
- Mikkola, P.; Lauri, L.S.; Käpyaho, A. Neoarchean leucogranitoids of the Kianta Complex, Karelian Province, Finland; source characteristics and processes responsible for the observed heterogeneity. Precambrian Res. 2012, 206–207, 72–86. [Google Scholar]
- Lauri, L.S.; Andersen, T.; Holtta, P.; Huhma, H.; Graham, S. Evolution of the Archaean Karelian Province in the Fennoscandian Shield in the light of U-Pb zircon ages and Sm-Nd and Lu-Hf isotope systematics. J. Geol. Soc. Lond. 2011, 168, 201–218. [Google Scholar] [CrossRef]
- Lahtinen, R.; Sayab, M.; Karell, F. Near-orthogonal deformation successions in the polydeformed Paleoproterozoic Martimo belt: Implications for the tectonic evolution of Northern Fennoscandia. Precambrian Res. 2015, 270, 22–38. [Google Scholar] [CrossRef]
- Tuisku, P.; Mikkola, P.; Huhma, H. Evolution of Migmatitic Granulite Complexes: Implications from Lapland Granulite Belt, Part I: Metamorphic geology. Bull. Geol. Soc. Finl. 2006, 78, 71–105. [Google Scholar] [CrossRef]
- Tuisku, P.; Huhma, H. Evolution of Migmatitic Granulite Complexes: Implications from Lapland Granulite Belt, Part II: Isotopic dating. Bull. Geol. Soc. Finl. 2006, 78, 143–175. [Google Scholar] [CrossRef]
- Evins, P.M.; Laajoki, K. Early Proterozoic nappe formation; an example from Sodankyla, Finland, northern Baltic Shield. Geol. Mag. 2002, 139, 73–87. [Google Scholar] [CrossRef]
- Hölttä, P.; Väisänen, M.; Väänänen, J.; Manninen, T. Paleoproterozoic metamorphism and deformation in central Lapland, Finland. Spec. Pap. Geol. Surv. Finl. 2007, 44, 7–56. [Google Scholar]
- Hanski, E. Kallioperäkartta 1:100,000-Maps of Pre-Quaternary Rocks, Sheet 3614, Vikajärvi; Geological Survey of Finland: Espoo, Finland, 2002. [Google Scholar]
- Hölttä, P.; Heilimo, E. Metamorphic map of Finland. Spec. Pap. Geol. Surv. Finl. 2017, 60, 75–126. [Google Scholar]
- Perchuk, L.L.; Krotov, A.V. Petrology of the mica schists of the Tanaelv Belt in the southern tectonic framing of the Lapland Granulite Complex. Petrology 1997, 6, 149–179. [Google Scholar]
- Huhma, H. Isotope results from Lapland-Kola province in Finland. GTK Open File Res. Rep. 2019, 37, 44. [Google Scholar]
TTKI-2005-14.2 | TTKI-2005-59 | TTKI-2005-73 | TTKI-2005-32.2 | |
---|---|---|---|---|
subarea 1 | ||||
SiO2 | 55.53 | 66.17 | 68.75 | 47.72 |
iO2 | 0.76 | 0.72 | 0.61 | 0.75 |
Al2O3 | 14.84 | 11.91 | 11.18 | 14.40 |
FeO | 7.96 | 7.16 | 6.45 | 9.30 |
MnO | 0.43 | 0.14 | 0.07 | 0.23 |
MgO | 6.35 | 7.28 | 6.60 | 7.47 |
CaO | 2.63 | 1.81 | 2.05 | 0.40 |
Na2O | 3.29 | 2.68 | 2.88 | 0.71 |
K2O | 0.86 | 2.12 | 1.40 | 4.85 |
H2O(calc.) | 7.35 | 14.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hölttä, P.; Kivisaari, T.; Huhma, H.; Rollinson, G.; Kurhila, M.; Butcher, A.R. Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield. Minerals 2020, 10, 1034. https://doi.org/10.3390/min10111034
Hölttä P, Kivisaari T, Huhma H, Rollinson G, Kurhila M, Butcher AR. Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield. Minerals. 2020; 10(11):1034. https://doi.org/10.3390/min10111034
Chicago/Turabian StyleHölttä, Pentti, Tiia Kivisaari, Hannu Huhma, Gavyn Rollinson, Matti Kurhila, and Alan R. Butcher. 2020. "Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield" Minerals 10, no. 11: 1034. https://doi.org/10.3390/min10111034
APA StyleHölttä, P., Kivisaari, T., Huhma, H., Rollinson, G., Kurhila, M., & Butcher, A. R. (2020). Paleoproterozoic Metamorphism of the Archean Tuntsa Suite, Northern Fennoscandian Shield. Minerals, 10(11), 1034. https://doi.org/10.3390/min10111034