Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples Studied
2.2. Analytical Methods
3. Results and Discussion
3.1. Analytical Characterization of Sub-2 µm Total Clay Fraction of Contaminant Solids
3.2. Analytical Characterization of Sub-200 nm Ultrafines Fraction of Contaminant Solids
3.3. Morphology and Mineralogy of Hydrophilic vs. Biwettable Sub-2 µm Clay Aggregates
3.4. Interfacial Characteristics of <200 nm Clay Platelet Surfaces
3.5. Implications of Results for Emulsion Stabilization and Bitumen froth Treatment Process
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takamura, K. Microscopic structure of Athabasca oil sand. Can. J. Chem. Eng. 1982, 82, 538–545. [Google Scholar] [CrossRef]
- Gray, M.; Xu, Z.; Masliyah, J. Physics in the oil sands of Alberta. Physics Today 2009, 62, 31–35. [Google Scholar] [CrossRef]
- Masliyah, J.; Zhou, Z.; Xu, Z.; Czarnecki, J.; Hamza, H. Understanding water-based bitumen extraction from Athabasca oil sands. Can. J. Chem. Eng. 2004, 82, 628–654. [Google Scholar] [CrossRef]
- Shaw, R.C.; Schramm, L.L.; Czarnecki, J. Suspensions in the hot water flotation process for Canadian oil sands. In Suspensions: Fundamentals and Applications in the Petroleum Industry; Advances in Chemistry Series 251; American Chemical Society: Washington, DC, USA, 1996; pp. 639–656. [Google Scholar]
- Masliyah, J.; Czarnecki, J.; Xu, Z. Handbook of Theory and Practice of Bitumen Recovery from Athabasca Oil Sands; Theoretical Basis; Kingsley: Calgary, AB, Canada, 2011; Volume 1. [Google Scholar]
- Rao, F.; Liu, Q. Froth treatment in Athabasca oil sands bitumen recovery process: A review. Energy Fuels 2013, 27, 7199–7207. [Google Scholar] [CrossRef]
- Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Chung, K.H. Solids associated with the asphaltene fraction of oil sands bitumen. Energy Fuels 1999, 13, 346–350. [Google Scholar] [CrossRef]
- Yan, N.; Gray, M.R.; Masliyah, J.H. On water-in-oil emulsions stabilized by fine solids. Colloids Surf. A Physicochem. Eng. Asp. 2001, 193, 97–107. [Google Scholar] [CrossRef]
- Kilpatrick, P.K. Water-in-crude oil emulsion stabilization: Review and unanswered questions. Energy Fuels 2012, 26, 4017–4026. [Google Scholar] [CrossRef]
- McLean, J.D.; Kilpatrick, P.K. Effects of asphaltene solvency on stability of water-in-crude-oil emulsions. J. Colloid Interface Sci. 1997, 189, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.D.; Czarnecki, J.; Masliyah, J. Disjoining pressure isotherms of water-in-bitumen emulsion films. J. Colloid Interface Sci. 2002, 252, 149–160. [Google Scholar] [CrossRef]
- Saraka, C.; Xu, R.; Machado, M.B.; Bhattacharya, S.; Ng, S.; Kresta, S. Dewatering of Poor-Quality Bitumen Froth: Induction Time and Mixing Effects. Energy and Fuels 2018, 32, 9–10032. [Google Scholar] [CrossRef]
- Yang, F.; Tchoukov, P.; Pensini, E.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1: Interfacial behaviors. Energy Fuels 2014, 28, 6897–6904. [Google Scholar] [CrossRef]
- Kiran, S.K.; Ng, S.; Acosta, E.J. Impact of asphaltenes and naphthenic amphiphiles on the phase behavior of solvent− bitumen− water systems. Energy Fuels 2011, 25, 2223–2231. [Google Scholar] [CrossRef]
- Xu, Y.; Dabros, T.; Hamza, H.; Shefantook, W. Destabilization of water in bitumen emulsion by washing with water. Pet. Sci. Technol. 1999, 17, 1051–1070. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Q. Bitumen Coating on Oil Sands Clay Minerals: A Review. Energy Fuels 2019, 33, 5933–5943. [Google Scholar] [CrossRef]
- Yan, Z.; Elliot, J.A.; Masliyah, J.H. Roles of various bitumen components in the stability of water-in-diluted-bitumen emulsions. J. Colloid Interface Sci. 1999, 220, 329–337. [Google Scholar] [CrossRef]
- Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Raymond, S.; Le Page, Y.; Shelfantook, W. Distribution and types of solids associated with bitumen. Pet. Sci. Technol. 1998, 16, 1–19. [Google Scholar] [CrossRef]
- Gu, G.; Zhiang, Z.; Xu, Z.; Masliyah, J.H. Role of fine kaolinite clay in toluene-diluted bitumen/water emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2003, 215, 141–153. [Google Scholar] [CrossRef]
- Chen, Q.; Stricek, I.; Gray, M.R.; Liu, Q. Influence of hydrophobicity distribution of particle mixtures on emulsion stabilization. J. Colloid Interface Sci. 2017, 491, 179–189. [Google Scholar] [CrossRef]
- Sztukowski, D.M.; Yarranton, H.W. Oilfield solids and water-in-oil emulsion stability. J. Colloid Interface Sci. 2005, 285, 821–833. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Kilpatrick, P.K. The effects of inorganic solid particles on water and crude oil emulsion stability. Ind. Eng. Chem. Res. 2002, 4, 3389–3404. [Google Scholar] [CrossRef]
- Sparks, B.; Kotlyar, L.; O’Carroll, J.; Chung, K. Athabasca oil sands: Effect of organic coated solids on bitumen recovery and quality. J. Pet. Sci. Eng. 2003, 39, 417–430. [Google Scholar] [CrossRef]
- Bensebaa, F.; Kotlyar, L.S.; Sparks, B.D.; Chung, K.H. Organic coated solids in Athabasca bitumen: Characterization and process implications. Can. J. Chem. Eng. 2000, 78, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Couillard, M.; Mercier, P.H.J. Analytical electron microscopy of carbon-rich mineral aggregates in solvent-diluted bitumen products from mined Alberta oil sands. Energy Fuels 2016, 30, 5513–5524. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, J.; Thundat, T.; Gray, M.R.; Liu, Q. Spatially resolved organic coating on clay minerals in bitumen froth revealed by atomic force microscopy adhesion mapping. Fuel 2017, 191, 283–289. [Google Scholar] [CrossRef]
- Omotoso, O.; Mikula, R.; Urquhart, S.; Sulimma, H.; Stephens, P. Characterization of clays from poorly processing oil sands using synchrotron techniques. Clay Science 2006, 12, 88–93. [Google Scholar]
- Kotlyar, L.S.; Sparks, B.D.; Kodama, H. Isolation of inorganic matter-humic complexes from Athabasca oil sands. AOSTRA J. Res. 1985, 2, 103–111. [Google Scholar]
- Kotlyar, L.; Kodama, H.; Sparks, B.; Grattan-Bellew, P. Non-crystalline inorganic matter-humic complexes in Athabasca oil sand and their relationship to bitumen recovery. Appl. Clay Sci. 1987, 2, 253–271. [Google Scholar] [CrossRef]
- Majid, A.; Sparks, B.D.; Ripmeester, J.A. Characterization of solvent-insoluble organic matter isolated from Alberta oil sands. Fuel 1991, 70, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Dongbao, F.; Woods, J.R.; Kung, J.; Kingston, D.M.; Kotlyar, L.S.; Sparks, B.D.; Mercier, P.H.J.; McCracken, T.; Ng, S. Residual organic matter associated with toluene-extracted oil sands solids and its potential role in bitumen recovery via adsorption onto clay minerals. Energy Fuels 2010, 24, 2249–2256. [Google Scholar] [CrossRef] [Green Version]
- Mercier, P.H.J.; Tyo, D.D.; Zborowski, A.; Kung, J.; Patarachao, B.; Kingston, D.M.; Couillard, M.; Robertson, G.; McCracken, T.; Ng, S. First quantification of <2 μm clay, <0.2 μm ultrafines and solids wettability in process streams from naphthenic froth treatment plant at commercial mined oil sands operations. Fuel 2019, 237, 961–976. [Google Scholar] [CrossRef]
- Mercier, P.H.J.; Omotoso, O.; Hockley, D. Oil-sands Clays. In Introduction to Oil Sands Clays; Omotoso, O., Hockley, D., Eds.; CMS Workshop Lectures; The Clay Minerals Society: Chantilly, VA, USA, 2018; Volume 2, pp. 9–32. [Google Scholar]
- Kotlyar, L.S.; Sparks, B.D.; Kodama, H. Properties of fines size fractions in relation to the distribution of humic-Inorganic matter complexes in Athabasca oil sands. AOSTRA J. Res. 1988, 4, 277–285. [Google Scholar]
- Mercier, P.H.J.; Patarachao, B.; Kung, J.; Dongbao, F.; Kingston, D.M.; Le Page, Y.; Sparks, B.D.; Kotlyar, L.S.; Woods, J.R.; Toll, F.; et al. Novel mineralogical quantitative phase analysis methodology applied to Canadian oil sands for ore characterization, processability prediction and optimization of froth treatment technologies. In Proceedings of the 20th General Meeting of International Mineralogical Association, Budapest, Hungary, 21–27 August 2010. [Google Scholar]
- Mercier, P.H.J.; Patarachao, B.; Kingston, D.M.; Tyo, D.D.; Kung, J.; Le Page, Y.; Woods, J.R.; Sparks, B.D.; Kotlyar, L.S.; Toll, F.; et al. Novel mineralogical quantitative phase analysis of fines in oil sands. In Proceedings of the Oilsands 2011 Conference, Edmonton, Alberta, 22–24 February 2011. [Google Scholar]
- Williams, R.C. A method of freeze-drying for electron microscopy. Exp. Cell Res. 1953, 4, 188–201. [Google Scholar] [CrossRef]
- Couillard, M.; Radtke, G.; Botton, G.A. Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy. Philos. Mag. 2013, 93, 1250–1267. [Google Scholar] [CrossRef] [Green Version]
- Couillard, M.; Radtke, G.; Knights, A.P.; Botton, G.A. Three-dimensional atomic structure of metastable nanoclusters in doped semiconductors. Phys. Rev. Lett. 2011, 107, 186104. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. Transmission Electron Microscopy; Plenum: New York, NY, USA, 1996. [Google Scholar]
- Srodon, J.; Morgan, D.J.; Eslinger, E.V.; Eberl, D.D.; Karlinger, M.R. Chemistry of illite/smectite and end-member illite. Clays Clay Miner. 1986, 34, 368–378. [Google Scholar] [CrossRef]
Phases | Abbreviation | Chemical Formula |
---|---|---|
mineral phases | ||
Quartz | QTZ | SiO2 |
Apatite | APA | Ca5(PO4)3(OH) |
Clay minerals | CLAY | |
Illite-smectite | ILL | K0.8Al2.8Si3.2O10(OH)2 |
Kaolinite | KAO | Al2Si2O5(OH)4 |
Chlorite | CHL | Mg2.5Fe2.5Al2Si3O10(OH)8 |
Ca-Mg Carbonates | CBNT | |
calcite | CAL | CaCO3 |
dolomite | DOL | CaMg(CO3)2 |
ankerite | ANK | CaFe2/3Mg1/3(CO3)2 |
Heavy minerals | HEAVY | |
Siderite | SID | FeCO3 |
Pyrite | PYR | FeS2 |
Zircon | ZIR | ZrSiO4 |
Rutile | RUT | TiO2 |
Anatase | ANA | TiO2 |
Ilmenite | ILM | FeTiO3 |
Lepidocrocite | LEP | FeO(OH) |
Calcium sulphates and salts | ||
Gypsum | GYP | CaSO4· 2 H2O |
Bassanite | BAS | CaSO4· 0.5 H2O |
Halite | HAL | NaCl |
Feldspars | ||
Anorthite | ANO | CaAl2Si2O8 |
Sanidine | SAN | KAlSi3O8 |
amorphous phases | ||
Organic carbon | ORC | C |
Silica | SIL | SiO2 |
Amorphous iron oxide-hydroxide | AFE | Fe(OH)3 or FeO(OH)·H2O |
Phases | Phase Concentrations (wt %) | ||||||
---|---|---|---|---|---|---|---|
Total Clays | Hydrophilic Coarse Clays | Biwettable Coarse Clays | |||||
conc. | s.u. | conc. | s.u. | conc. | s.u. | ||
QTZ+SIL | 10.8108 | 0.0350 | 13.1675 | 0.0345 | 3.2065 | 0.0346 | |
ILL | 22.9828 | 0.0211 | 25.6017 | 0.0214 | 9.0882 | 0.0220 | |
KAO | 37.3881 | 0.0847 | 46.9659 | 0.0908 | 11.3017 | 0.0885 | |
CHL | 1.4214 | 0.0687 | 0.0804 | 0.0002 | 5.4199 | 0.0728 | |
DOL+CAL+ANK | 5.2761 | 1.5114 | 4.5524 | 1.4962 | 0.0334 | 0.0001 | |
SID+AFE | 1.1262 | 1.2829 | 1.9974 | 1.2428 | 10.9664 | 0.03094 | |
PYR | 5.2936 | 1.5096 | 0.7817 | 0.0144 | 7.2309 | 0.0262 | |
ZIR | 0.0402 | 0.0004 | 0.0143 | 0.0007 | 0.2009 | 0.0004 | |
RUT | 0.6994 | 0.1993 | 0.4238 | 0.2886 | 1.5457 | 0.3003 | |
ANA | 0.5178 | 0.1993 | 0.5927 | 0.2886 | 2.3063 | 0.3003 | |
ILM | 0.0016 | 0.0002 | 0.0013 | 0.0001 | 0.0042 | 0.0003 | |
LEP | 0.0021 | 0.0002 | 0.0005 | 0.0000 | 0.0040 | 0.0002 | |
GYP | 0.0354 | 0.0059 | −0.0021 | 0.0071 | 2.1035 | 0.0084 | |
BAS | 0.0004 | 0.0000 | 0.0086 | 0.0069 | 2.5518 | 0.0149 | |
ANO | 0.0004 | 0.0000 | 0.0005 | 0.0000 | 0.0020 | 0.0003 | |
SAN | 0.0004 | 0.0000 | 0.0005 | 0.0000 | 0.0029 | 0.0005 | |
ORC | 6.6583 | 0.4834 | 3.5724 | 0.4636 | 27.4031 | 0.0654 | |
APA | 1.0264 | 0.0041 | 0.9103 | 0.0040 | 2.6486 | 0.0057 | |
HAL | 5.5164 | 0.0006 | 1.3336 | 0.0016 | 1.9320 | 0.0006 | |
Clay minerals | 61.7923 | 0.0770 | 72.6480 | 0.0407 | 25.8097 | 0.0814 | |
Total accounted | 97.2842 | 0.0564 | 100.003 | 0.0002 | 87.952 | 0.055 | |
Element concentrations (wt %) | |||||||
Elements | meas. s.u. | recalc. | meas. | recalc. | meas. | recalc. | meas. |
Na | 0.10 | 2.1700 | 2.17 | 0.5246 | 0.53 | 0.7600 | 0.76 |
K | 0.04 | 1.8400 | 1.84 | 2.0496 | 2.05 | 0.7280 | 0.73 |
Si | 0.22 | 18.6700 | 18.67 | 22.2760 | 22.39 | 6.8000 | 6.80 |
Al | 0.17 | 12.3802 | 12.38 | 14.7746 | 14.91 | 4.5812 | 4.56 |
Fe | 0.27 | 2.8400 | 2.84 | 2.0284 | 2.13 | 10.0200 | 10.02 |
Mg | 0.05 | 0.8373 | 0.84 | 0.6505 | 0.71 | 0.5209 | 0.76 |
Ca | 0.22 | 1.3006 | 1.30 | 0.7888 | 0.83 | 2.2602 | 2.26 |
Ti | 0.032 | 0.7300 | 0.73 | 0.6096 | 0.61 | 2.3100 | 2.31 |
Zr | 0.045 | 0.0200 | 0.02 | 0.0071 | 0.01 | 0.1000 | 0.10 |
P | 0.01 | 0.1899 | 0.19 | 0.1684 | 0.17 | 0.4900 | 0.49 |
C | 0.1 | 7.6700 | 7.67 | 4.1669 | 4.22 | 28.1100 | 28.11 |
S | 0.1 | 2.0274 | 2.03 | 0.4193 | 0.43 | 4.8206 | 4.82 |
Phases | Chemical formula | Phase concentrations (wt %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
conc. | s.u. | conc. | s.u. | conc. | s.u. | conc. | s.u. | |||
Illite-smectite | K0.8Al2.8Si3.2O10(OH)2 | 28.9786 | 0.0053 | --- | --- | --- | --- | --- | --- | |
K0.6Al2.6Si3.4O10(OH)2 | 37.8856 | 0.0089 | --- | --- | --- | --- | ||||
K0.4Al2.4Si3.6O10(OH)2 | 55.6969 | 0.0189 | --- | --- | ||||||
K0.3Al2.3Si3.7O10(OH)2 | --- | --- | --- | --- | --- | --- | 72.7050 | 0.0287 | ||
Kaolinite | Al2Si2O5(OH)4 | 32.1326 | 0.0136 | 25.7510 | 0.0158 | 12.9899 | 0.0225 | 0.2712 | 0.0320 | |
Organic carbon | C | 8.7600 | 0.0025 | 8.7600 | 0.0025 | 8.7600 | 0.0025 | 8.7600 | 0.0025 | |
Amorphous iron oxide-hydroxide | Fe(OH)3 or FeO(OH)·H2O | 6.4411 | 0.0300 | 6.4411 | 0.0300 | 6.4411 | 0.0300 | 6.4411 | 0.0300 | |
Ionic Fe | Fe | 0.6441 | 0.0151 | 0.6441 | 0.0151 | 0.6441 | 0.0151 | 0.6441 | 0.0151 | |
Ionic Ca | Ca | 0.8500 | 0.0007 | 0.8500 | 0.0007 | 0.8500 | 0.0007 | 0.8500 | 0.0007 | |
Ionic Mg | Mg | 0.9000 | 0.0001 | 0.9000 | 0.0001 | 0.9000 | 0.0001 | 0.9000 | 0.0001 | |
Ionic Na | Na | 0.5100 | 0.0001 | 0.5100 | 0.0001 | 0.5100 | 0.0001 | 0.5100 | 0.0001 | |
Ionic SO4 | SO4 | 2.0672 | 0.0224 | 2.0672 | 0.0224 | 2.0672 | 0.0224 | 2.0672 | 0.0224 | |
Ionic PO4 | PO4 | 0.6132 | 0.0000 | 0.6132 | 0.0000 | 0.6132 | 0.0000 | 0.6132 | 0.0000 | |
Amorphous TiO2 | TiO2 | 0.46718 | 0.00001 | 0.46718 | 0.00001 | 0.46718 | 0.00001 | 0.46718 | 0.00001 | |
Amorphous zircon | ZrSiO4 | 0.04019 | 0.00002 | 0.04019 | 0.00002 | 0.04019 | 0.00002 | 0.03944 | 0.00002 | |
Amorphous silica | SiO2 | 13.8127 | 0.0073 | 10.8419 | 0.0072 | 4.9010 | 0.0075 | --- | --- | |
Total accounted | 96.2168 | 0.0398 | 95.7714 | 0.0398 | 94.8807 | 0.0398 | 94.2684 | 0.0392 | ||
Element concentrations (wt %) | ||||||||||
Elements | meas. | meas. s.u. | recalc. | recalc. | recalc. | recalc. | ||||
Na | 0.51 | 0.10 | 0.5100 | 0.5100 | 0.5100 | 0.5100 | ||||
K | 2.32 | 0.04 | 2.3199 | 2.3198 | 2.3197 | 2.2942 | ||||
Si | 20.12 | 0.22 | 20.1200 | 20.1200 | 20.1200 | 20.3906 | ||||
Al | 12.32 | 0.17 | 12.3200 | 12.3200 | 12.3200 | 12.1948 | ||||
Fe | 4.01 | 0.27 | 4.0100 | 4.0100 | 4.0100 | 4.0100 | ||||
Mg | 0.90 | 0.05 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | ||||
Ca | 0.85 | 0.22 | 0.8500 | 0.8500 | 0.8500 | 0.8500 | ||||
Ti | 0.280 | 0.032 | 0.2800 | 0.2800 | 0.2800 | 0.2800 | ||||
Zr | 0.020 | 0.045 | 0.0200 | 0.0200 | 0.0200 | 0.0196 | ||||
P | 0.20 | 0.01 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | ||||
C | 8.76 | 0.1 | 8.7600 | 8.7600 | 8.7600 | 8.7600 | ||||
S | 0.69 | 0.1 | 0.6900 | 0.6900 | 0.6900 | 0.6900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couillard, M.; Tyo, D.D.; Kingston, D.M.; Patarachao, B.; Zborowski, A.; Ng, S.; Mercier, P.H.J. Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth. Minerals 2020, 10, 1040. https://doi.org/10.3390/min10111040
Couillard M, Tyo DD, Kingston DM, Patarachao B, Zborowski A, Ng S, Mercier PHJ. Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth. Minerals. 2020; 10(11):1040. https://doi.org/10.3390/min10111040
Chicago/Turabian StyleCouillard, Martin, Daniel D. Tyo, David M. Kingston, Bussaraporn Patarachao, Andre Zborowski, Samson Ng, and Patrick H. J. Mercier. 2020. "Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth" Minerals 10, no. 11: 1040. https://doi.org/10.3390/min10111040
APA StyleCouillard, M., Tyo, D. D., Kingston, D. M., Patarachao, B., Zborowski, A., Ng, S., & Mercier, P. H. J. (2020). Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth. Minerals, 10(11), 1040. https://doi.org/10.3390/min10111040