Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition
3.2. Infrared Spectroscopy
3.3. Raman Spectroscopy
3.4. Absorption Spectra in the Range of 250–1000 nm
3.5. ESR Spectroscopy
3.6. X-Ray Diffraction
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, D. The sodalite group of minerals. Contr. Mineral. Petrol. 1967, 16, 172–188. [Google Scholar] [CrossRef]
- Sahl, K.; Chatterjee, N.D. The crystal structure of bicchulite, Ca2[Al2SiO6](OH)2. Z. Krist. 1977, 146, 35–41. [Google Scholar] [CrossRef]
- Sahl, K. Refinement of the crystal structure of bicchulite, Ca2[Al2SiO6](OH)2. Z. Krist. 1980, 152, 13–21. [Google Scholar] [CrossRef]
- Uchida, E.; Iiyama, J.T. On kamaishilite, Ca2Al2SiO6(OH)2; A new mineral (tetragonal), dimorphous with bicchulite, from the Kamaishi mine, Japan. Proc. Jpn. Acad. 1981, 57B, 239–243. (In English) [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.C. The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec. Can. Mineral. 1983, 21, 549–552. [Google Scholar]
- Hassan, I.; Grundy, H.D. The crystal structures of sodalite-group minerals. Acta Cryst. 1984, 40, 6–13. [Google Scholar] [CrossRef]
- Hassan, I.; Buseck, P. Cluster ordering and antiphase domain boundaries in hauyne. Can. Mineral. 1989, 27, 173–180. [Google Scholar]
- Sapozhnikov, A.N.; Tauson, V.L.; Lipko, S.V.; Shendrik, R.Y.; Levitskii, V.I.; Suvorova, L.F.; Chukanov, N.V.; Vigasina, M.F. On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)−nH2O. Am. Mineral. 2020. [Google Scholar] [CrossRef]
- Hassan, I.; Peterson, R.C.; Grundy, H.D. The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Cryst. C 1985, 41, 827–832. [Google Scholar] [CrossRef]
- Gobeltz-Hautecoeur, N.; Demortier, A.; Lede, B.; Lelieur, J.P.; Duhayon, C. Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg. Chem. 2002, 41, 2848–2854. [Google Scholar] [CrossRef]
- Bellatreccia, F.; Della Ventura, G.; Piccinini, M.; Cavallo, A.; Brilli, M. H2O and CO2 in minerals of the hauyne-sodalite group: A FTIR spectroscopy study. Mineral. Mag. 2009, 73, 399–413. [Google Scholar] [CrossRef]
- Fechtelkord, M. Structural study of Na8[AlSiO4]6(CO3)x(HCOO)2-2x(H2O)4x, 0.2 ≤ x ≤ 1, synthesized in organic solvents: Order and disorder of carbonate and formate anions in sodalite. Microporous Mesoporous Mater. 1999, 28, 335–351. [Google Scholar] [CrossRef]
- Gesing, T.M.; Buhl, J.C. Crystal structure of a carbonate-nosean Na8[AlSiO4]6CO3. Eur. J. Mineral. 1998, 10, 71–77. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Kotel’nikov, A.R.; Shchekina, T.I.; Gramenitskiy, E.N.; Zubkov, E.S. New representative in the sodalite structure type with extraframework anions [AlF6]3–. Crystallogr. Rep. 2011, 56, 190–197. [Google Scholar] [CrossRef]
- Gramenitskii, E.N.; Kotel’nikov, A.R.; Shchekina, T.I.; Yakubovich, O.V.; Devyatova, V.N.; Zubkov, E.S.; Suk, N.I.; Vigasina, M.F.; Kotel’nikova, Z.A. Composition, structure and conditions of formation of fluorine-containing sodalite (experimental data). Geochem. Int. 2018, 56, 521–534. [Google Scholar] [CrossRef]
- Hassan, I.; Grundy, H.D. The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24](OH)2·3H2O. Can. Mineral. 1991, 29, 123–130. [Google Scholar]
- Ivanov, V.G.; Sapozhnikov, A.N. Lazurites of the USSR; Nauka: Novosibirsk, Russia, 1985. (In Russian) [Google Scholar]
- IMA List of Minerals. Available online: http://cnmnc.main.jp/ (accessed on 22 November 2020).
- Deer, W.A.; Howie, R.A.; Wise, W.S.; Zussman, J. Rock-Forming Minerals. Volume 4B. Framework Silicates: Silica Minerals. Feldspathoids and the Zeolites; The Geological Society: London, UK, 2004. [Google Scholar]
- Tauson, V.L.; Goettlicher, J.; Sapozhnikov, A.N.; Mangold, S.; Lustenberg, E.E. Sulfur speciation in lazurite-type minerals (Na,Ca)8[Al6Si6O24](SO4,S)2 and their annealing products: A comparative XPS and XAS study. Eur. J. Miner. 2012, 24, 133–152. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F.; Zubkova, N.V.; Pekov, I.V.; Schäfer, C.; Kasatkin, A.V.; Yapaskurt, V.O. New aspects of the application of infrared and Raman spectroscopy to the characterization of extra-framework components in sodalite-group minerals. Minerals 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Chivers, T.; Elder, P.J.W. Ubiquitous trisulfur radical anion: Fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. Chem. Soc. Rev. 2013, 42, 5996–6005. [Google Scholar] [CrossRef]
- Tauson, V.L.; Sapozhnikov, A.N.; Shinkareva, S.N.; Lustenberg, E.E. Indicative properties of lazurite as a member of clathrasil mineral family. Doklady Earth Sci. 2011, 441, 1732–1737. [Google Scholar] [CrossRef]
- Platonov, A.N.; Tarashchan, A.N.; Belichenko, V.P.; Povarennikh, A.S. Spectroscopic study of sulfide sulfur in some framework aluminosilicates. Const. Prop. Miner. 1971, 5, 61–72. (In Russian) [Google Scholar]
- Samoilovich, M.I. An ESR study of sulfur-bearing radical ions in minerals. Geokhimiya 1971, 4, 477–483. (In Russian) [Google Scholar]
- Steudel, R. Inorganic polysulfides Sn2− and radical anions Sn•−. In Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry; Steudel, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 231. [Google Scholar]
- Climent-Pascual, E.; de Paz, J.R.; Rodríguez-Carvajal, E.; Suard, E.; Sáez-Puche, R. Synthesis and characterization of the ultramarine-type analog Na8-x[Si6Al6O24]·(S−2,S−3,CO3)(1–2). Inorg. Chem. 2009, 48, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Steudel, R.; Chivers, T. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 2019, 48, 3279–3319, 4338. [Google Scholar] [CrossRef]
- Evsyunin, V.G.; Sapozhnikov, A.N.; Kashaev, A.A.; Rastsvetaeva, R.K. Crystal Structure of Triclinic Lazurite. Crystallogr. Rep. 1997, 42, 938–945. [Google Scholar] [CrossRef]
- Ostroumov, E.; Fritsch, E.; Faulques, E.; Chauvet, O. Etude spectrometrique de la lazurite du Pamir, Tajikistan. Can. Mineral. 2002, 40, 885–893. (In French) [Google Scholar] [CrossRef] [Green Version]
- Eckert, B.; Steudel, F. Molecular spectra of sulfur molecules and solid sulfur allotropes. Top. Curr. Chem. 2003, 231, 31–97. [Google Scholar] [CrossRef]
- Rejmak, P. Computational refinement of the puzzling red tetrasulfur chromophore in ultramarine pigments. Phys. Chem. Chem. Phys. 2020. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N. Modulated structure of lazurite from deposits in southwestern Pamir. Sov. Phys. Crystallogr. 1992, 37, 470–472. [Google Scholar]
- Sofich, D.; Tushinova, Y.L.; Shendrik, R.; Bazarov, B.G.; Dorzhieva, S.G.; Chimitova, O.D.; Bazarova, J.G. Optical spectroscopy of molybdates with composition Ln2Zr3(MoO4)9 (Ln: Eu, Tb). Opt. Mater. 2018, 81, 71–77. [Google Scholar] [CrossRef]
- Kaneva, E.; Shendrik, R.; Mesto, E.; Bogdanov, A.; Vladykin, N. Spectroscopy and crystal chemical properties of NaCa2[Si4O10]F natural agrellite with tubular structure. Chem. Phys. Lett. 2020, 738, 136868. [Google Scholar] [CrossRef]
- Kaneva, E.V.; Shendrik, R.; Radomskaya, T.A.; Suvorova, L.F. Fedorite from Murun Alkaline Complex (Russia): Spectroscopy and crystal chemical features. Minerals 2020, 10, 702. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: Cham, Switzerland, 2016; 1109p. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Cobbold, D.G. Characterization of sulfur radical-ions in solutions of alkalipolysulfides in dimethylformamide and hexamethylphosphoramide and in solid-state in ultramarine blue, green, and red. Inorg. Chem. 1978, 17, 3169–3174. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Sun, L. Preparation of acid-resisting ultramarine blue by novel two-step silica coating process. Ind. Eng. Chem. Res. 2011, 50, 7326–7331. [Google Scholar] [CrossRef]
- Chukanov, N.V. Infrared Spectra of Mineral Species: Extended Library; Springer-Verlag GmbH: Dordrecht, The Netherlands, 2014; 1716p, ISBN 9400771274. [Google Scholar]
- Wong, M.W.; Steudel, R. Structure and spectra of tetrasulfur S4—An ab initio MO Study. Chem. Phys. Lett. 2003, 379, 162–169. [Google Scholar] [CrossRef]
- Tubergen, M.J.; Lavrich, R.J.; McCargar, J.W. Infrared Spectrum and Group Theoretical Analysis of the Vibrational Modes of Carbonyl Sulfide. J. Chem. Ed. 2000, 77, 1637–1639. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; A Wiley-Interscience Publication: New York, NY, USA, 1986. [Google Scholar]
- Ledé, B.; Demortier, A.; Gobeltz-Hautecœur, H.; Lelieur, J.-P.; Picquenard, E.; Duhayo, C. Observation of the ν3 Raman band of S3− inserted into sodalite cages. J. Raman Spectrosc. 2007, 38, 1461–1468. [Google Scholar] [CrossRef]
- Rolfe, J. Emission spectra of S2−, Se2−, and SeS− ions in KI Crystals. J. Chem. Phys. 1968, 49, 4193–4197. [Google Scholar] [CrossRef]
- Goslar, J.; Lijewski, S.; Hoffmann, S.K.; Jankowska, A.; Kowalak, S. Structure and dynamics of S3− radicals in ultramarine-type pigment based on zeolite A: Electron spin resonance and electron spin echo studies. J. Chem. Phys. 2009, 130, 204504. [Google Scholar] [CrossRef]
- Pinon, V.; Levillain, E.; Lelieur, J. The S3– radical as a standard for ESR experiments. J. Magn. Reson. 1992, 96, 31–39. [Google Scholar] [CrossRef]
- Kowalak, S.; Jankowska, A.; Zeidler, S.; Wiećkowski, A.B. Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. J. Solid State Chem. 2007, 180, 1119–1124. [Google Scholar] [CrossRef]
- Vassilikou-Dova, A.B.; Lehmann, G. Paramagnetic defects in the mineral hauyne. Cryst. Res. Technol. 1990, 25, 525–529. [Google Scholar] [CrossRef]
- Barabas, M. The nature of the paramagnetic centres at g = 2.0057 and g = 2.0031 in marine carbonates. Intern. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 1992, 20, 453–464. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N. Indication of additional reflections on lazurite debyegrams in connection with the study of modulation of its structure. Zapiski Vsesoyuznogo Mineral. Obs. 1990, 119, 110–116. (In Russian) [Google Scholar]
Sample | LSh | MD | Hn7981 | PH | KL | ZK |
---|---|---|---|---|---|---|
Color | Lilac | Light blue | Light blue | Bright blue | Deep blue | Dark blue |
Contents of components (wt%) | ||||||
Na2O | 17.61 | 18.09 | 15.06 | 18.05 | 20.01 | 19.94 |
K2O | 0.25 | 0.13 | 1.42 | 0.02 | 0.20 | 0.43 |
CaO | 7.81 | 6.84 | 9.84 | 6.91 | 5.18 | 4.56 |
Al2O3 | 26.86 | 27.35 | 26.07 | 27.35 | 28.25 | 28.02 |
SiO2 | 32.49 | 33.01 | 32.25 | 32.91 | 34.20 | 33.48 |
CO2 a | 0.62 | 0.10 | 0.21 | 0.09 | 0.62 | 0.13 |
SO3 | 13.78 | 12.43 | 13.89 b | 13.89 | 8.67 | 8.08 |
S | 0.06 | 0.11 | No data | 1.31 | 2.34 | 5.07 |
Cl | 0.17 | 0.50 | 0.34 | 0.28 | 0.71 | 0.13 |
−O=(Cl,S) | −0.04 | −0.12 | −0.08 | −0.07 | −0.07 | −0.33 |
Total | 99.61 | 98.44 | 100.08 c | 100.74 | 100.11 | 100.71 d |
Formula coefficients calculated on Al + Si + Fe = 12 atoms per formula unit and unit-cell parameter a (Å) | ||||||
Na | 6.39 | 6.45 | 5.52 | 6.45 | 6.90 | 6.97 |
K | 0.06 | 0.03 | 0.35 | 0.01 | 0.05 | 0.10 |
Ca | 1.57 | 1.35 | 1.99 | 1.36 | 0.99 | 0.88 |
Al | 5.92 | 5.93 | 5.81 | 5.94 | 5.92 | 5.96 |
Si | 6.08 | 6.07 | 6.10 | 6.06 | 6.08 | 6.04 |
C | 0.15 | 0.02 | 0.05 | 0.02 | 0.15 | 0.03 |
SO4 | 1.93 | 1.72 | 1.97 | 1.56 | 1.16 | 1.09 |
S | 0.02 | 0.04 | No data | 0.45 | 0.78 | 1.70 |
Cl | 0.07 | 0.16 | 0.11 | 0.09 | 0.21 | 0.04 |
a | 9.076 | 9.067 | No data | 9.071 | 9.066 | 9.087 |
Excess of negative charge in the empirical formula calculated on [(SO4)2−, S2−] | ||||||
−0.32 | −0.43 | −0.10 | −0.88 | −1.07 | −2.77 | |
Kinds and amounts (pfu) of S-bearing extra-framework components determined based on spectroscopic data (see below) and the charge-balance condition | ||||||
SO42− | 1.78 | 1.35 | 1.91 | 1.56 | 1.16 | 1.09 |
SO3•− | 0.37 | |||||
S2− | 0.02 | 0.12 | 0.05 | |||
S2•− | 0.02 | 0.03 | ||||
S3•− | 0.03 | 0.22 | 0.55 | |||
S4 | 0.03 | 0.09 |
Sample | Assignment | |||||
---|---|---|---|---|---|---|
LSh | MD | Hn7981 | PH | KL | ZK | |
Raman Shift (cm−1) | ||||||
260sh | 260w | 258 | 254w | 258 | 257 | S3•− bending (ν2) |
290sh | 290sh | 285w | Combination of low-frequency lattice modes | |||
331s | cis-S4 symmetric stretching (ν1 − A1) | |||||
442s | 447 | 446s | 441s | SO4 bending and/or δ[O–Si(Al)–O] | ||
543s | 545s | 545s | 543s | 544s | 546s | S3•− symmetric stretching (ν1) (possibly, overlapping with the stretching band of gauche- or trans-S4) |
582w | 583w | 584sh | 584sh | 585sh | S3•− antisymmetric stretching (ν3) (possibly, overlapping with the stretching band of S2•−) | |
613 | 616w | 615 | SO4 bending (ν4 − F2) | |||
649 | trans-S4 or gauche-S4 symmetric stretching (ν1 − A1) | |||||
681s | cis-S4 antisymmetric stretching (ν3 − E) | |||||
806w | 805 | 809 | 814 | 811 | S3•− combination mode (ν1 + ν2) | |
989s | 987s | 989s | 988w | 988w | SO4 symmetric stretching (ν1 − A1) | |
1047w | Framework stretching vibrations ? | |||||
1084s | 1091s | 1090s | 1089s | 1093s | 1093s | S3•− overtone (2 × ν1) [possibly, overlapping with SO4•− stretching band (ν3 − F2)] |
1152w | SO4 asymmetric (ν3 − F2) mode [possibly, overlapping with S2•− overtone (2 × ν1)] | |||||
1160sh | 1166sh | S2•− overtone (2 × ν1) | ||||
1335br | cis-S4 antisymmetric stretching (2 × ν3) | |||||
1360 | 1353 | 1362 | 1363 | S3•− combination mode (2ν1 + ν2) | ||
1635 | 1635 | 1636 | 1632 | 1636 | 1638 | S3•− overtone (3 × ν1) |
1900w | 1897 | 1905w | 1903 | S3•− combination mode (3 × ν1 + ν2) | ||
2158w | 2169 | 2173 | 2174 | 2182 | 2181 | S3•− overtone (4 × ν1) |
2267sh | Assignment is ambiguous | |||||
2428 | 2434 | 2449w | 2440w | S3•− combination mode (4 × ν2 + ν1) | ||
2579w | S–H stretching ? | |||||
2691w | cis-S4 antisymmetric stretching (4 × ν3) | |||||
2760br | 2720w | 2712w | 2717w | 2720 | S3•− overtone (5 × ν1) | |
2975w | S3•− combination mode (5 × ν1 + ν2) | |||||
3242br | 3252br | 3249w | 3251w | S3•− overtone (6 × ν1) | ||
3647br | 3507 | 3495w | H2O stretching |
h, k, l * | dmeas (Å) | dcalc (Å) | I (%) | h, k, l * | dmeas (Å) | dcalc (Å) | I (%) |
---|---|---|---|---|---|---|---|
1 1 0 | 6.42 | 6.41 | 13.5 | 3 + n, 3, n | 2.060 | 2.060 | 3.8 |
1 + n, 1, n | 5.72 | 5.71 | 4.4 | 4 + n, 1 + n, 1 | 2.015 | 2.016 | 2.5 |
2–0.5, 1–0.5, 1 | 4.859 | 4.847 | 3.4 | 3 3 2 | 1.9328 | 1.9331 | 3.3 |
2 0 0 | 4.538 | 4.534 | 5.8 | 4 2 2 | 1.8487 | 1.8508 | 2.2 |
2 − n, 1 − n, 1 | 4.139 | 4.134 | 4.5 | 4 + n, 2 − n, 2 | 1.8144 | 1.8154 | 1.9 |
2 1 0 | 4.058 | 4.055 | 3.6 | 5 1 0, 4, 3, 1 | 1.7781 | 1.7782 | 7.6 |
2, 1 − n, 1 − n | 3.961 | 3.962 | 4.2 | 4, 3 + n, 1 − n | 1.7482 | 1.7466 | 1.8 |
2–0.5, 1 + 0.5, 1 | 3.862 | 3.866 | 2.9 | 5 + n, 1 − n, 0 | 1.7188 | 1.7197 | 1.6 |
2 1 1 | 3.703 | 3.702 | 100 | 5 2 1 | 1.6553 | 1.6554 | 2.8 |
2 + n, 1 − n, 1 | 3.551 | 3.551 | 3 | 4 − n, 4, n | 1.6446 | 1.6449 | 2 |
2, 1 + n, 1 + n | 3.440 | 3.441 | 4.5 | 4 − n, 3 − n, 3 | 1.6253 | 1.6258 | 1.6 |
2 + n,1 + n,1 | 3.339 | 3.339 | 4.3 | 4 4 0 | 1.6028 | 1.6029 | 7.2 |
2 2 0 | 3.203 | 3.206 | 3.2 | 4 − n, 3 + n, 3 | 1.5551 | 1.5596 | 3.8 |
2–0.5, 2 + 0.5, 0 | 3.111 | 3.110 | 2.9 | 4 4 2 | 1.5109 | 1.5112 | 3.5 |
2 + 0.5, 1 + 0.5, 1 | 2.943 | 2.942 | 2.9 | 6 1 1 | 1.4710 | 1.4709 | 4.3 |
3 1 0 | 2.868 | 2.867 | 13.9 | 4 + n, 4, 2 + n | 1.4586 | 1.4584 | 1.7 |
2, 2 − n, 2 − n | 2.816 | 2.814 | 4.2 | 5, 4 − n, 1 + n | 1.4199 | 1.4193 | 1.7 |
3 + n, 1 − n, 0 | 2.732 | 2.740 | 2.7 | 5 4 1 | 1.3988 | 1.3991 | 1.6 |
2 2 2 | 2.618 | 2.617 | 25.9 | 6 − n, 2, 2 + n | 1.3926 | 1.3927 | 1.6 |
2 + n, 2 + n, 2 | 2.441 | 2.441 | 3.8 | 6 2 2 | 1.3669 | 1.3669 | 5.4 |
3 2 1 | 2.423 | 2.423 | 7.9 | 6 3 1 | 1.3371 | 1.3369 | 2.2 |
4 0 0 | 2.267 | 2.267 | 6.9 | 4 4 4 | 1.3085 | 1.3087 | 3.5 |
4 − n, 1 + n, 1 | 2.211 | 2.211 | 3.3 | 7 1 0 | 1.2825 | 1.2823 | 2.2 |
4, 1 − n, 1 − n | 2.183 | 2.184 | 2.6 | 7, 2 − n, 1 − n | 1.2479 | 1.2477 | 1.4 |
4 1 1 | 2.137 | 2.137 | 16.1 | 7 2 1 | 1.2339 | 1.2339 | 3.7 |
3 + 2n, 2 + 2n, 1 | 2.092 | 2.100 | 2.7 | 7, 2 + n, 1 + n | 1.2184 | 1.2185 | 1.4 |
h, k, l * | dmeas (Å) | dcalc (Å) | I (%) | h, k, l * | dmeas (Å) | dcalc (Å) | I (%) |
---|---|---|---|---|---|---|---|
1 1 0 | 6.43 | 6.41 | 12,6 | 5 − n, 2 + n, 1 | 1.6817 | 1.6813 | 0.9 |
1 + n, 1, n | 5.89 | 5.88 | 1,2 | 5, 2 − n, 1 + n | 1.6636 | 1.6627 | 0.8 |
2 0 0 | 4.538 | 4.533 | 4,4 | 5 2 1 | 1.6554 | 1.6551 | 2.8 |
2 − n, 1 − n, 1 | 4.030 | 4.025 | 3.3 | 4 − n, 4, n | 1.6346 | 1.6349 | 1.9 |
2, 1 − n, 1 − n | 3.905 | 3.901 | 2.9 | 5 + n, 2 − n, 1 | 1.6274 | 1.6272 | 0.8 |
2 1 1 | 3.704 | 3.701 | 100 | 4 4 0 | 1.6024 | 1.6025 | 8.9 |
2, 1 + n, 1 + n | 3.503 | 3.500 | 4.6 | 5, 3 − n, n | 1.5765 | 1.5763 | 0.8 |
2 + n, 1 + n, 1 | 3.421 | 3.418 | 3.7 | 4 + n, 4, n | 1.5691 | 1.5695 | 2.1 |
2 2 0 | 3.207 | 3.205 | 1.4 | 4 3 3, 5 3 0 | 1.5544 | 1.5547 | 3.8 |
3, 1 − n, n | 2.907 | 2.907 | 1.3 | 5, 3 + n, n | 1.5318 | 1.5315 | 0.8 |
3 1 0 | 2.869 | 2.867 | 12.7 | 6 0 0, 4 4 2 | 1.5108 | 1.5109 | 4 |
3, 1 + n, n | 2.817 | 2.814 | 1.3 | 4 + n, 3 + n, 3 | 1.5033 | 1.5037 | 1 |
2, 2 − n, 2 − n | 2.767 | 2.766 | 3.1 | 5 + n, 3 + n, 0 | 1.4970 | 1.4970 | 0.8 |
2 2 2 | 2.618 | 2.617 | 27.6 | 5 − n, 3, 2 + n | 1.4887 | 1.4889 | 0.8 |
3, 2 − n, 1 − n | 2.508 | 2.507 | 1.2 | 5 3 2 | 1.4704 | 1.4706 | 6 |
2 + n, 2 + n, 2 | 2.482 | 2.480 | 3.9 | 5, 3 + n, 2 − n | 1.4638 | 1.4633 | 1 |
3 2 1 | 2.424 | 2.423 | 7.3 | 4 + n, 4 + n, 2 | 1.4577 | 1.4577 | 1 |
3 + n, 2 − n, 1 | 2.391 | 2.390 | 0.9 | 5 + n, 3, 2 − n | 1.4515 | 1.4509 | 0.9 |
3, 2 + n, 1 + n | 2.339 | 2.338 | 1.1 | 5, 3 + n, 2 + n | 1.4388 | 1.4389 | 1 |
3 + n, 2, 1 + n | 2.314 | 2.313 | 1 | 5 + n, 3 + n, 2 | 1.4208 | 1.4215 | 0.8 |
4 0 0 | 2.267 | 2.266 | 6.2 | 5, 4 − n, 1 + n | 1.4141 | 1.4145 | 0.8 |
4 − n, 1 − n, 1 | 2.238 | 2.237 | 1.1 | 5 4 1 | 1.3988 | 1.3988 | 1 |
4 − n, 1 + n, 1 | 2.194 | 2.194 | 2.6 | 6 − n, 2 + n, 2 | 1.3862 | 1.3866 | 1.3 |
4, 1 − n, 1 − n | 2.174 | 2.173 | 1.2 | 6 2 2 | 1.3665 | 1.3666 | 6 |
4 1 1 | 2.137 | 2.137 | 16.8 | 6 + n, 2 − n, 2 | 1.3455 | 1.3460 | 1.6 |
4 − n, 2, n | 2.094 | 2.096 | 1.3 | 6 3 1 | 1.3366 | 1.3366 | 1.9 |
4 + n, 1 − n, 1 | 2.079 | 2.078 | 4 | 6 + n, 2 + n, 2 | 1.3264 | 1.3269 | 0.9 |
4 + n, 1 + n, 1 | 2.044 | 2.043 | 2.2 | 4 4 4 | 1.3081 | 1.3085 | 4 |
3 − n, 3 − n, 2 | 2.023 | 2.026 | 1 | 5 − n, 5, n | 1.3027 | 1.3028 | 0.7 |
3, 3 − n, 2 − n | 2.006 | 2.006 | 1 | 5 − n, 4, 3 + n | 1.2898 | 1.2898 | 0.8 |
3 3 2 | 1.9333 | 1.9327 | 2.7 | 7 1 0, 5 5 0 | 1.2819 | 1.2820 | 1.8 |
4 − n, 2 + n, 2 | 1.8733 | 1.8741 | 1 | 7, 1 + n, n | 1.2770 | 1.2772 | 0.8 |
3, 3 + n, 2 + n | 1.8622 | 1.8625 | 1.2 | 6, 4 − n, n | 1.2725 | 1.2726 | 0.7 |
3 + n, 3 + n, 2 | 1.8492 | 1.8498 | 1.3 | 7 − n, 2 − n, 1 | 1.2676 | 1.2680 | 0.6 |
4 − n, 3, 1 − n | 1.8344 | 1.8346 | 1.1 | 6 − n, 4 + n, 0 | 1.2645 | 1.2645 | 0.6 |
4, 3 − n, 1 − n | 1.8228 | 1.8224 | 1.4 | 6 4 0 | 1.2567 | 1.2571 | 0.8 |
4, 3 − n, 1 + n | 1.7991 | 1.7988 | 0.9 | 7, 2 − n, 1 − n | 1.2441 | 1.2444 | 1.2 |
4 3 1 | 1.7776 | 1.7778 | 9.1 | 7 2 1 | 1.2334 | 1.2336 | 4.4 |
4, 3 + n, 1 − n | 1.7543 | 1.7541 | 0.8 | 7, 2 + n, 1 + n | 1.2218 | 1.2220 | 1.2 |
4, 3 + n, 1 + n | 1.7336 | 1.7330 | 1.2 | 6 4 2 | 1.2112 | 1.2114 | 0.9 |
4 + n, 3, 1 + n | 1.7229 | 1.7227 | 1.1 | 7 + n, 2, 1 + n | 1.2041 | 1.2042 | 0.7 |
5 − n, 2, 1 + n | 1.6922 | 1.6908 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukanov, N.V.; Sapozhnikov, A.N.; Shendrik, R.Y.; Vigasina, M.F.; Steudel, R. Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits. Minerals 2020, 10, 1042. https://doi.org/10.3390/min10111042
Chukanov NV, Sapozhnikov AN, Shendrik RY, Vigasina MF, Steudel R. Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits. Minerals. 2020; 10(11):1042. https://doi.org/10.3390/min10111042
Chicago/Turabian StyleChukanov, Nikita V., Anatoly N. Sapozhnikov, Roman Yu. Shendrik, Marina F. Vigasina, and Ralf Steudel. 2020. "Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits" Minerals 10, no. 11: 1042. https://doi.org/10.3390/min10111042
APA StyleChukanov, N. V., Sapozhnikov, A. N., Shendrik, R. Y., Vigasina, M. F., & Steudel, R. (2020). Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits. Minerals, 10(11), 1042. https://doi.org/10.3390/min10111042