Arsenic Fixation in Polluted Soils by Peat Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Peat Characterization
2.3. Soil Samples Preparation
2.4. Determination of As Concentrations
2.5. Toxicity Bioassays
- Heterotrophic soil respiration was measured by determining the CO2 flux from treated soils with a microbiological analyser μ-Trac 4200 SY-LAB model (Neupurkersdorf, Austria) according to ISO 17155 protocol [53]. Soil moisture content was fixed at field capacity and soils were incubated at a constant temperature of 30 °C. The production of CO2 was determined by absorption in vials with a solution of potash (KOH 0.2%) during 96 h, and related to the mass of soil used to obtain a measure of respiration rate. The results were expressed as the basal respiration rate (BR) in mg·CO2·day−1·kg−1·soil. This test was done in triplicate in all studied soil treatments and also using only peat samples.
- Seed germination/root elongation of Lactuca sativa L. toxicity test, according to OECD [54] and US EPA [55] recommendations. This test assessed the phytotoxic effects on seed germination and seedling growth in the first days of growth [56]. In Petri dishes, 15 seeds of Lactuca sativa L. and 5 mL of soluble extract from the treated soils were placed in an incubator at 25 ± 1 °C, and the number of germinated seeds and the length of the germinated seed roots were measured after 120 h. Two endpoints were calculated: (a) The percentage of germinated seeds (SG) in relation to the control, and (b) the percentage of root elongation (RE) in relation to the control (distilled water). This assay was done in triplicate in all treatments.
2.6. Data Analyses
3. Results
3.1. Properties of the Soil and Peat Samples
3.2. Arsenic Solubility
3.3. Assessment of Peat Treatments Adequacy from Bioassays. Arsenic Solubility
3.3.1. Basal Soil Respiration
3.3.2. Germination and Elongation Test with the Lactuca Sativa L. Plant
3.4. Relation between Soil Properties and Their Recovery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mirsal, I.A. Soil Pollution. Origin, Monitoring and Remediation, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540707752. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Pavel, L.V.; Gavrilescu, M. Overview of ex situ decontamination techniques for soil cleanup. Environ. Eng. Manag. J. 2008, 7, 815–834. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2001; ISBN 0849315751. [Google Scholar]
- Nriagu, J.O.; Bhattacharya, P.; Mukherjee, A.B.; Bundschuh, J.; Zevenhoven, R.; Loeppert, R.H. Arsenic in soil and groundwater: An overview. In Trace Metals and Other Contaminants in the Environment; Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., Loeppert, R.H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2007; Volume 9, pp. 3–60. ISBN 9780444518200. [Google Scholar]
- Beni, C.; Diana, G.; Marconi, S. Bovine milk chain in Italian farms. I. Arsenic levels in soil, gravitational and clean water, bovine diet, and milk. Agrochimica 2008, 52, 99–115. [Google Scholar]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.M.; Yang, W.; et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, M.; Lee, J.H.; Kim, K.H.; Owens, G.; Kim, K.R. Distribution and extent of heavy metal(loid) contamination in agricultural soils as affected by industrial activity. Appl. Biol. Chem. 2020, 63, 1–8. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C. Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain. Environ. Geochem. Health 2012, 34, 123–139. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef] [PubMed]
- Fazle Bari, A.S.M.; Lamb, D.; Choppala, G.; Bolan, N.; Seshadri, B.; Rahman, M.A.; Rahman, M.M. Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation. J. Hazard. Mater. 2020, 399, 123029. [Google Scholar] [CrossRef]
- De Souza Neto, H.F.; da Silveira Pereira, W.V.; Dias, Y.N.; de Souza, E.S.; Teixeira, R.A.; de Lima, M.W.; Ramos, S.J.; do Amarante, C.B.; Fernandes, A.R. Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon. Environ. Pollut. 2020, 265, 114969. [Google Scholar] [CrossRef]
- García-Carmona, M.; García-Robles, H.; Turpín Torrano, C.; Fernández Ondoño, E.; Lorite Moreno, J.; Sierra Aragón, M.; Martín Peinado, F.J. Residual pollution and vegetation distribution in amended soils 20 years after a pyrite mine tailings spill (Aznalcóllar, Spain). Sci. Total Environ. 2019, 650, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, T.; Reichel, S.; Müller, I.; Jordan, I.; Hube, D.; Eurola, M.; Loukola-Ruskeeniemi, K. Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic As region in Finland. J. Geochem. Explor. 2020, 217, 106606. [Google Scholar] [CrossRef]
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.; Yang, Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.; Robson, A.J. A summary of river water quality data collected within the Land-Ocean Interaction Study: Core data for eastern UK rivers draining to the North Sea. Sci. Total Environ. 2000, 251–252, 585–665. [Google Scholar] [CrossRef]
- Díez, M.; Simón, M.; Dorronsoro, C.; García, I.; Martín, F. Background arsenic concentrations in Southeastern Spanish soils. Sci. Total Environ. 2007, 378, 5–12. [Google Scholar] [CrossRef]
- O’Neill, P. Arsenic. In Heavy Metals in Soils; Alloway, B.J., Ed.; Springer Science & Business Media: New York, NY, USA, 1995; pp. 105–121. ISBN 9789400744691. [Google Scholar]
- Adriano, D.C. Arsenic. In Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability and Risks of Metals; Adriano, D.C., Ed.; Springer Science & Business Media: New York, NY, USA, 2001; pp. 219–261. ISBN 9781468495058. [Google Scholar]
- Bohn, H.L.; McNeal, B.L.; O’Connor, G.A. Soil Chemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2001; ISBN 978-1-118-62923-9. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Science & Business Media: Berlin, Germany, 2007; ISBN 9783540327134. [Google Scholar]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef]
- BOJA. Boletín Oficial de la Junta de Andalucía. Decreto 18/2015, de 27 de enero, por el que se aprueba el reglamento que regula el régimen aplicable a los suelos contaminados. BOJA 2015, 38, 28–64. Available online: http://www.juntadeandalucia.es/medioambiente/web/2012_provisional/2015/reglamento_suelos_contaminados.pdf (accessed on 3 October 2020).
- German Federal Government. Federal Soil Protection Act of 17 March 1998 (Federal Law Gazette I p. 502). 1998. Available online: http://www.bmu.de/files/pdfs/allgemein/application/pdf/soilprotectionact.pdf (accessed on 3 October 2020).
- VROM. Circular on Target and Intervention Values for Soil Remediation, Reference DBO/1999226863; Ministry of Housing Spatial Planning and the Environment: Bilthoven, The Netherlands, 2000. Available online: https://www.esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf (accessed on 3 October 2020).
- Environmental Agency. Government of the United Kingdom. In Human Health Toxicological Assessment of Contaminants in Soil. Science Report—Final SC050021/SR2; Environmental Agency: Bristol, UK, 2009; ISBN 9781844328581. Available online: https://www.claire.co.uk/information-centre/water-and-land-library-wall/44-risk-assessment/178-soil-guideline-values?showall=1 (accessed on 3 October 2020).
- Dickinson, N.M.; Baker, A.J.M.; Doronila, A.; Laidlaw, S.; Reeves, R.D. Phytoremediation of inorganics: Realism and synergies. Int. J. Phytoremediat. 2009, 11, 97–114. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- García-Carmona, M.; Romero-Freire, A.; Sierra Aragón, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. J. Environ. Manage. 2017, 191, 228–236. [Google Scholar] [CrossRef]
- Aguilar, J.; Dorronsoro, C.; Fernández, E.; Fernández, J.; García, I.; Martín, F.; Sierra, M.; Simón, M. Arsenic contamination in soils affected by a pyrite-mine spill (Aznalcóllar, SW Spain). Water. Air. Soil Pollut. 2007, 180, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.M.; Shams, M.S.; Khalifa, M.R.; El-Dali, M.A.; Rinklebe, J. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol. Environ. Saf. 2017, 142, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Sierra Aragón, M.; Nakamaru, Y.M.; García-Carmona, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. The role of organic amendment in soils affected by residual pollution of potentially harmful elements. Chemosphere 2019, 237, 1–9. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Martín Peinado, F.J. Effect of soil organic matter on antimony bioavailability after the remediation process. Environ. Pollut. 2017, 228, 425–432. [Google Scholar] [CrossRef]
- González, Z.I.; Krachler, M.; Cheburkin, A.K.; Shotyk, W. Spatial distribution of natural enrichments of arsenic, selenium and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Environ. Sci. Technol. 2006, 40, 6568–6574. [Google Scholar] [CrossRef]
- Palmer, K.; Ronkanen, A.K.; Kløve, B. Efficient removal of arsenic, antimony and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecol. Eng. 2015, 75, 350–364. [Google Scholar] [CrossRef]
- Cloy, J.M.; Farmer, J.G.; Graham, M.C.; Mackenzie, A.B. Retention of As and Sb in ombrotrophic peat bogs: Records of As, Sb, and Pb deposition at four Scottish sites. Environ. Sci. Technol. 2009, 43, 1756–1762. [Google Scholar] [CrossRef]
- Rothwell, J.J.; Taylor, K.G.; Ander, E.L.; Evans, M.G.; Daniels, S.M.; Allott, T.E.H. Arsenic retention and release in ombrotrophic peatlands. Sci. Total Environ. 2009, 407, 1405–1417. [Google Scholar] [CrossRef]
- Martín, F.; Simon, M.; Arco, E.; Romero, A.; Dorronsoro, C. Arsenic behaviour in polluted soils after remediation activities. In Soil Health and Land Use Management; Hernandez Soriano, M.C., Ed.; InTech: Shangai, China, 2012; pp. 201–216. ISBN 978-953-307-614-0. [Google Scholar]
- Romero-Freire, A.; Sierra-Aragón, M.; Ortiz-Bernad, I.; Martín-Peinado, F.J. Toxicity of arsenic in relation to soil properties: Implications to regulatory purposes. J. Soils Sediments 2014, 14, 968–979. [Google Scholar] [CrossRef]
- Simón, M.; Ortiz, I.; García, I.; Fernández, E.; Fernández, J.; Dorronsoro, C.; Aguilar, J. El desastre ecológico de doñana. Edafología 1998, 5, 153–161. [Google Scholar]
- Romero-Freire, A.; Martin Peinado, F.J.; van Gestel, C.A.M. Effect of soil properties on the toxicity of Pb: Assessment of the appropriateness of guideline values. J. Hazard. Mater. 2015, 289, 46–53. [Google Scholar] [CrossRef]
- Ministerio de Agricultura Pesca y Alimentación. Métodos Oficiales de Análisis. Tomo III. Plantas, Productos Orgánicos Fertilizantes, Suelos, Agua, Productos Fitosanitarios y Fertilizantes Inorgánicos; Publicaciones del Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 1986.
- Holmgren, G.G.S. A Rapid Citrate-Dithionite Extractable Iron Procedure. Soil Sci. Soc. Am. J. 1967, 31, 210–211. [Google Scholar] [CrossRef]
- Blakemore, L.C. Exchange complex dominated by amorphous material (ECDAM). In The Andisol Proposal; Smith, G.D., Ed.; Soil Bureau (Department of Scientific and Industrial Research): Wellington, New Zealand, 1978; Volume 21. [Google Scholar]
- Kononova, M.M. Materia Orgánica del Suelo: Su Naturaleza, Propiedades y Métodos de Investigación, 1st ed.; OIKOS-TAU Ediciones: Barcelona, Spain, 1982; ISBN 8428104964. [Google Scholar]
- Fendorf, S.; La Force, M.J.; Li, G. Heavy Metals in the Environment Temporal Changes in Soil Partitioning and Bioaccessibility. J. Environ. Qual. 2004, 33, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Zhu, Y.G.; Cui, Y.S.; Duan, J.; Tang, L. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ. Int. 2006, 32, 682–689. [Google Scholar] [CrossRef]
- Aguilar, J.; Dorronsoro, C.; Fernández, E.; Fernández, J.; García, I.; Martín, F.; Sierra, M.; Simón, M. Remediation of As-contaminated soils in the Guadiamar river basin (SW, Spain). Water. Air. Soil Pollut. 2007, 180, 109–118. [Google Scholar] [CrossRef]
- Abad-Valle, P.; Iglesias-Jiménez, E.; Álvarez-Ayuso, E. A comparative study on the influence of different organic amendments on trace element mobility and microbial functionality of a polluted mine soil. J. Environ. Manage. 2017, 188, 287–296. [Google Scholar] [CrossRef]
- ISO 17155. Soil Quality. Determination Abundance Activity Soil Microflora Using Respiration Curves; International Standard ISO No.17155; International Organization for Standardization: Geneva, Switzerland, 2002; Available online: https://www.iso.org/standard/53529.html (accessed on 24 July 2020).
- OECD. Guideline for the Testing of Chemicals. Proposal for Updating Guideline 208. Terrestrial Plant. Test.: 208: Seedling Emergence and Seedling Growth Test; Organization for Economic Cooperation and Development: Paris, France, 2003; Available online: https://www.oecd.org/chemicalsafety/testing/33653757.pdf (accessed on 24 July 2020).
- US EPA. Ecological Effects Test. Guidelines. Seed Germination/Root Elongation Toxicity Test. OPPTS 850.4200; United States Environmental Protection Agency: Washington DC, USA, 1996; 2p. Available online: https://nepis.epa.gov/Exe/tiff2png.cgi/P100RF5I.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C95THRU99%5CTIFF%5C00003181%5CP100RF5I.TIF (accessed on 24 July 2020).
- Torres, M.T.R. Empleo de los ensayos con plantas en el control de contaminantes tóxicos ambientales. Rev. Cubana Hig. Epidemiol. 2003, 41, 2–3. [Google Scholar]
- Reimann, C.; De Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3642720161. [Google Scholar]
- Zhang, D.-r.; Chen, H.r.; Xia, J.-l.; Nie, Z.y.; Fan, X.l.; Liu, H.-c.; Zheng, L.; Zhang, L.-j.; Yang, H.-y. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. J. Hazard. Mater. 2020, 384, 121359. [Google Scholar] [CrossRef]
- Rothwell, J.J.; Taylor, K.G.; Evans, M.G.; Allott, T.E.H. Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England. Environ. Pollut. 2011, 159, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Naidu, R.; Zhu, Y.G.; Wang, L.S.; Jiang, J.Y.; Cao, Z.H. Toxicity issues associated with geogenic arsenic in the groundwater-soil-plant-human continuum. Bull. Environ. Contam. Toxicol. 2003, 71, 1100–1107. [Google Scholar] [CrossRef]
- Roberts, D.; Nachtegaal, M.; Sparks, D.L. Speciation of metals in soils. In Chemical Processes in Soils; Tabatabai, M.A., Sparks, D.L., Eds.; Soil Science Society of America: Washington, DC, USA, 2005; pp. 619–654. ISBN 9780891188926. [Google Scholar]
- Jones, C.A.; Inskeep, W.P.; Neuman, D.R. Arsenic transport in contaminated mine tailings following liming. J. Environ. Qual. 1997, 26, 433–439. [Google Scholar] [CrossRef]
- Simón, M.; Martín, F.; García, I.; Bouza, P.; Dorronsoro, C.; Aguilar, J. Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environ. Pollut. 2005, 135, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G.; Olsson, T. Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 2001, 52, 151–165. [Google Scholar] [CrossRef]
- Kong, Y.; Kang, J.; Shen, J.; Chen, Z.; Fan, L. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: Effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes. Environ. Sci. Pollut. Res. 2017, 24, 2381–2393. [Google Scholar] [CrossRef]
- Mukwaturi, M.; Lin, C. Mobilization of heavy metals from urban contaminated soils under water inundation conditions. J. Hazard. Mater. 2015, 285, 445–452. [Google Scholar] [CrossRef]
- Pierce, M.L.; Moore, C.B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982, 16, 1247–1253. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Kumpiene, J.; Desogus, P.; Schulenburg, S.; Arenella, M.; Renella, G.; Brännvall, E.; Lagerkvist, A.; Andreas, L.; Sjöblom, R. Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover. Environ. Sci. Pollut. Res. 2013, 20, 8649–8662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemeyer, J.C.; Lolata, G.B.; de Carvalho, G.M.; Da Silva, E.M.; Sousa, J.P.; Nogueira, M.A. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl. Soil Ecol. 2012, 59, 96–105. [Google Scholar] [CrossRef]
- Minderlein, S.; Blodau, C. Humic-rich peat extracts inhibit sulfate reduction, methanogenesis, and anaerobic respiration but not acetogenesis in peat soils of a temperate bog. Soil Biol. Biochem. 2010, 42, 2078–2086. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Kumamoto, M.; Shuto, Y.; Yamauchi, S. Stereoselective syntheses of all stereoisomers of lariciresinol and their plant growth inhibitory activities. J. Agric. Food Chem. 2011, 59, 13089–13095. [Google Scholar] [CrossRef]
- Cutillo, F.; D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Zarrelli, A. Lignans and neolignans from Brassica fruticulosa: Effects on seed germination and plant growth. J. Agric. Food Chem. 2003, 51, 6165–6172. [Google Scholar] [CrossRef]
- Abad-Valle, P.; Álvarez-Ayuso, E.; Murciego, A. Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil. Environ. Sci. Pollut. Res. 2015, 22, 6778–6788. [Google Scholar] [CrossRef]
Properties | AZN | SC | SNC | Peat |
---|---|---|---|---|
pH (H2O, 1:2.5) | 6.77 ± 0.07 | 8.79 ± 0.02 | 5.87 ± 0.09 | 3.50 ± 0.14 |
EC 2 (dS·m−1) | 0.40 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0.01 | 3.10 ± 0.21 |
CaCO3 3 (%) | 0.53 ± 0.04 | 92.32 ± 0.86 | nd 1 | nd 1 |
OC 4 (%) | 0.72 ± 0.13 | 0.38 ± 0.17 | 0.49 ± 0.02 | 25.04 ± 0.05 |
Clay (%) | 8.81 ± 0.40 | 7.70 ± 0.58 | 8.31 ± 0.12 | nd 1 |
CEC 5 (cmol+ kg−1) | 8.46 ± 0.16 | 2.94 ± 0.13 | 3.83 ± 0.37 | 41.77 ± 1.16 |
BS 6 (%) | 97.10 ± 1.12 | 100.00 ± 0.00 | 30.70 ± 1.05 | 66.24 ± 3.35 |
BD 7 (g·cm−3) | 1.56 ± 0.01 | 1.53 ± 0.02 | 1.57 ± 0.003 | 0.32 ± 0.006 |
Po 8 (%) | 41.30 ± 0.51 | 37.75 ± 0.92 | 40.60 ± 0.10 | 83.74 ± 0.01 |
AW 9 (%) | 7.18 ± 0.04 | 5.38 ± 0.06 | 7.40 ± 0.03 | 8.51 ± 0.01 |
AsT 10 (mg·kg−1) | 120.20 ± 0.14 | 3.39 ± 0.15 | 4.39 ± 0.10 | 11.85 ± 0.10 |
AsW 11 (mg·kg−1) | 0.03 ± 0.01 | 0.01 ± 0.001 | 0.01 ± 0.001 | 0.03 ± 0.001 |
Fet 12 (g·kg−1) | 68.40 ± 0.31 | 16.80 ± 0.35 | 71.20 ± 0.12 | 14.40 ± 0.06 |
Fed 13 (g·kg−1) | 26.30 ± 0.25 | 3.30 ± 0.03 | 7.80 ± 0.10 | 0.97 ± 0.04 |
Feo 14 (g·kg−1) | 18.80 ± 0.21 | 0.01 ± 0.01 | 1.00 ± 0.06 | 0.43 ± 0.06 |
THE 15 (%) | - | - | - | 27.26 ± 0.30 |
HA 16 (%) | - | - | - | 22.64 ± 0.20 |
FA 17 (%) | - | - | - | 4.62 ± 0.30 |
Soil | AZN | SC | SNC | ||||
---|---|---|---|---|---|---|---|
As (mg·kg−1) | 120.2 | 0 | 300 | 600 | 0 | 300 | 600 |
Peat (%) | pHW (1:1) | ||||||
0 | 4.49 ± 0.08 a | 7.16 ± 0.23 aA | 7.76 ± 0.03 bB | 7.91 ± 0.07 cB | 3.78 ± 0.15 aA | 6.25 ± 0.73 bB | 6.45 ± 0.14 bB |
2 | 4.59 ± 0.08 a | 7.08 ± 0.02 aA | 7.20 ± 0.09 aAB | 7.31 ± 0.02 bB | 3.72 ± 0.09 aB | 5.46 ± 0.09 aA | 5.67 ± 0.08 aA |
5 | 4.67 ± 0.08 a | 6.90 ± 0.02 aA | 7.02 ± 0.09 aAB | 7.13 ± 0.02 aB | 3.64 ± 0.10 aB | 5.32 ± 0.09 aA | 5.53 ± 0.07 aA |
Peat (%) | ECW (1:1) (dS·m−1) | ||||||
0 | 0.39 ± 0.01 a | 0.13 ± 0.01 aA | 0.49 ± 0.01 aB | 0.89 ± 0.05 aC | 0.04 ± 0.01 aA | 0.18 ± 0.01 aB | 0.33 ± 0.02 aC |
2 | 0.44 ± 0.07 b | 0.19 ± 0.01 bA | 0.52 ± 0.01 bB | 0.95 ± 0.03 abC | 0.10 ± 0.01 bA | 0.19 ± 0.01 aB | 0.33 ± 0.01 aC |
5 | 0.53 ± 0.07 c | 0.28 ± 0.02 cA | 0.61 ± 0.00 cB | 1.01 ± 0.03 bC | 0.19 ± 0.01 cA | 0.28 ± 0.02 bB | 0.42 ± 0.01 bC |
Peat (%) | AsW (1:1) (mg·kg−1) | ||||||
0 | 0.026 b | 0.010 bA | 152.513 bB | 337.450 bC | 0.019 bA | 26.427 bB | 118.123 bC |
2 | 0.014 a | 0.004 aA | 0.759 aB | 2.588 aC | 0.015 abA | 0.450 aB | 2.592 aC |
5 | 0.013 a | 0.006 aA | 0.113 aB | 0.289 aC | 0.004 aA | 0.157 aB | 0.631 aC |
Variables | Peat | RE 2 | SG 3 | BR 4 | EC 5 | pH 6 | OC 7 | CEC 8 | Fed 9 | Feo 10 | BD 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AZN | Peat | - | - | - | 0.986 ** | 0.993 ** | −0.761 ** | 0.971 ** | 0.988 ** | −0.933 ** | −0.968 ** | −0.999 ** |
AsW 1 | −0.787 ** | - | - | −0.770 ** | −0.803 ** | 0.661 * | −0.739 * | −0.792 ** | 0.778 *** | 0.766 ** | 0.801 ** | |
SC | Peat | - | 0.662 ** | 0.583 ** | 0.839 ** | - | −0.733 ** | 0.944 ** | 0.994 ** | 0.916 ** | 0.987 ** | −0.824 ** |
AsW 1 | −0.558 ** | −0.828 ** | −0.913 ** | −0.742 ** | - | 0.896 ** | −0.521 ** | −0.550 ** | −0.346 ** | −0.550 ** | - | |
SNC | Peat | - | - | - | 0.916 ** | 0.452 * | - | 0.999 ** | 0.939 ** | −0.874 ** | −0.918 ** | −0.994 ** |
AsW 1 | −0.492 ** | - | - | −0.559 ** | - | 0.557 ** | −0.490 ** | −0.461 ** | - | - | 0.472 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Garrido, A.; Romero-Freire, A.; García-Carmona, M.; Martín Peinado, F.J.; Sierra Aragón, M.; Martínez Garzón, F.J. Arsenic Fixation in Polluted Soils by Peat Applications. Minerals 2020, 10, 968. https://doi.org/10.3390/min10110968
Aguilar-Garrido A, Romero-Freire A, García-Carmona M, Martín Peinado FJ, Sierra Aragón M, Martínez Garzón FJ. Arsenic Fixation in Polluted Soils by Peat Applications. Minerals. 2020; 10(11):968. https://doi.org/10.3390/min10110968
Chicago/Turabian StyleAguilar-Garrido, Antonio, Ana Romero-Freire, Minerva García-Carmona, Francisco J. Martín Peinado, Manuel Sierra Aragón, and Francisco J. Martínez Garzón. 2020. "Arsenic Fixation in Polluted Soils by Peat Applications" Minerals 10, no. 11: 968. https://doi.org/10.3390/min10110968
APA StyleAguilar-Garrido, A., Romero-Freire, A., García-Carmona, M., Martín Peinado, F. J., Sierra Aragón, M., & Martínez Garzón, F. J. (2020). Arsenic Fixation in Polluted Soils by Peat Applications. Minerals, 10(11), 968. https://doi.org/10.3390/min10110968