Editorial for Special Issue “Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas”
Funding
Acknowledgments
Conflicts of Interest
References
- Bussweiler, Y. Polymineralic Inclusions in Megacrysts as Proxies for Kimberlite Melt Evolution—A Review. Minerals 2019, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.-Z.; Ni, P.; Ding, J.-Y.; Wang, G.-G. Geochemistry of Magmatic and Xenocrystic Spinel in the No. 30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential. Minerals 2019, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Shchukina, E.V.; Agashev, A.M.; Shchukin, V.S. Diamond-Bearing Root Beneath the Northern East European Platform (Arkhangelsk Region, Russia): Evidence from Cr-Pyrope Trace-Element Geochemistry. Minerals 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Tychkov, N.S.; Agashev, A.M.; Pokhilenko, N.P.; Tsykh, V.A.; Sobolev, N.V. Types of Xenogenic Olivine from Siberian Kimberlites. Minerals 2020, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Dymshits, A.M.; Sharygin, I.S.; Malkovets, V.G.; Yakovlev, I.V.; Gibsher, A.A.; Alifirova, T.A.; Vorobei, S.S.; Potapov, S.V.; Garanin, V.K. Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields. Minerals 2020, 10, 549. [Google Scholar] [CrossRef]
- Dymshits, A.; Sharygin, I.; Liu, Z.; Korolev, N.; Malkovets, V.; Alifirova, T.; Yakovlev, I.; Xu, Y.-G. Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton. Minerals 2020, 10, 740. [Google Scholar] [CrossRef]
- Pokhilenko, L. Formation Sequence of Different Spinel Species in Megacrystalline Peridotites of the Udachnaya-East Kimberlite Pipe (Yakutia): Evidence for the Metasomatism of Depleted Mantle. Minerals 2019, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Rezvukhin, D.I.; Alifirova, T.A.; Golovin, A.V.; Korsakov, A.V. A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals 2020, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Mikhailenko, D.; Golovin, A.; Korsakov, A.; Aulbach, S.; Gerdes, A.; Ragozin, A. Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite. Minerals 2020, 10, 383. [Google Scholar] [CrossRef]
- Zedgenizov, D.; Bogush, I.; Shatsky, V.; Kovalchuk, O.; Ragozin, A.; Kalinina, V. Mixed-Habit Type Ib-IaA Diamond from an Udachnaya Eclogite. Minerals 2019, 9, 741. [Google Scholar] [CrossRef] [Green Version]
- Safonov, O.; Butvina, V.; Limanov, E. Phlogopite-Forming Reactions as Indicators of Metasomatism in the Lithospheric Mantle. Minerals 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Shatsky, V.; Zedgenizov, D.; Ragozin, A.; Kalinina, V. Silicate Melt Inclusions in Diamonds of Eclogite Paragenesis from Placers on the Northeastern Siberian Craton. Minerals 2019, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Logvinova, A.; Zedgenizov, D.; Wirth, R. Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton. Minerals 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals 2019, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Ragozin, A.; Zedgenizov, D.; Shatsky, V.; Kuper, K.; Kagi, H. Deformation Features of Super-Deep Diamonds. Minerals 2020, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Tamarova, A.P.; Marchenko, E.I.; Bobrov, A.V.; Eremin, N.N.; Zinov’eva, N.G.; Irifune, T.; Hirata, T.; Makino, Y. Interphase REE Partitioning at the Boundary between the Earth’s Transition Zone and Lower Mantle: Evidence from Experiments and Atomistic Modeling. Minerals 2020, 10, 262. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharygin, I.S.; Zedgenizov, D.A. Editorial for Special Issue “Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas”. Minerals 2020, 10, 976. https://doi.org/10.3390/min10110976
Sharygin IS, Zedgenizov DA. Editorial for Special Issue “Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas”. Minerals. 2020; 10(11):976. https://doi.org/10.3390/min10110976
Chicago/Turabian StyleSharygin, Igor S., and Dmitry A. Zedgenizov. 2020. "Editorial for Special Issue “Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas”" Minerals 10, no. 11: 976. https://doi.org/10.3390/min10110976
APA StyleSharygin, I. S., & Zedgenizov, D. A. (2020). Editorial for Special Issue “Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas”. Minerals, 10(11), 976. https://doi.org/10.3390/min10110976