Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems
Abstract
:1. Introduction
2. Sample Material and Geology
2.1. Ilímaussaq (Southwest Greenland)
2.2. Tamazeght (Morocco)
2.3. Lovozero and Khibina (Russian Federation)
2.4. Norra Kärr (Sweden)
3. Methods
4. Results
4.1. Eudialyte-Group Minerals
4.2. Sodalite
4.3. Tugtupite
5. Discussion
5.1. Halogens in EGM and Sodalite from Ilímaussaq
5.1.1. Eudialyte Group Minerals
5.1.2. Sodalite
5.2. Halogen and S Partitioning Between EGM and Sodalite
5.3. Halogen and S Systematics of EGM from Different Localities: Clues to Magma Sources?
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aiuppa, A.; Baker, D.R.; Webster, J.D. Halogens in volcanic systems. Chem. Geol. 2009, 263, 1–18. [Google Scholar] [CrossRef]
- Pyle, D.M.; Mather, T.A. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review. Chem. Geol. 2009, 263, 110–121. [Google Scholar] [CrossRef]
- Gerlach, T.M. Volcanic sources of tropospheric ozone-depleting trace gases. Geochem. Geophys. Geosyst. 2004, 5, 16. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Bani, P.; Calkins, J.A.; Burton, M.R.; Sawyer, G.M. Rapid FTIR sensing of volcanic gases released by strombolian explosions at Yasur volcano, Vanuatu. Appl. Phys. B 2006, 85, 453–460. [Google Scholar] [CrossRef]
- Theys, N.; Van Rozendael, M.; Dils, B.; Hendrick, F.; de Mazière, M. First satellite detection of volcanic bromine monoxide emission after Kasatochi eruption. Geophys. Res. Lett. 2009, 36, L03809. [Google Scholar] [CrossRef] [Green Version]
- Daniel, J.S.; Solomon, S.; Portmann, R.W.; Garcia, R.R. Stratospheric ozone detruction: The importance of bromine relative to chlorine. J. Geophys. Res. 1999, 104, 23871–23880. [Google Scholar] [CrossRef]
- Bureau, H.; Foy, E.; Raepsaet, C.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells. Geochim. Cosmochim. Acta 2010, 74, 3839–3850. [Google Scholar] [CrossRef]
- Boulyga, S.F.; Heumann, K.G. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. Int. J. Mass Spectrom. 2005, 242, 291–296. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Wenzel, T.; Whitehouse, M.; Loose, M.; Zack, T.; Barth, M.; Worgard, L.; Krasz, V.; Eby, G.N.; Stosnach, H.; et al. The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chem. Geol. 2012, 291, 241–255. [Google Scholar] [CrossRef]
- John, T.; Scambelluri, T.; Frische, M.; Barnes, J.D.; Bach, W. Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet. Sci. Lett. 2011, 308, 65–76. [Google Scholar] [CrossRef]
- Cadoux, A.; Iacono-Mariziano, G.; Paonita, A.; Deloule, E.; Aiuppa, A.; Eby, G.N.; Costa, M.; Brusca, L.; Berlo, K.; Geraki, K.; et al. A new set of standards for in–situ measurement of bromine abundances in natural silicate glasses: Application to SR-XRF, LA-ICP-MS and SIMS techniques. Chem. Geol. 2017, 452, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lin, J.; Pan, Y.; Feng, R.; Almeev, R.R.; Holtz, F. Electron Probe Microanalysis of Bromine in Minerals and Glasses with Correction for Spectral Interference from Aluminium, and Comparison with Microbeam Synchrotron X-Ray Fluorescence Spectrometry. Geostand. Geoanal. Res. 2017, 41, 449–457. [Google Scholar] [CrossRef]
- Webster, J.D. Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt. Contrib. Mineral. Petrol. 1990, 104, 424–438. [Google Scholar] [CrossRef]
- Webster, J.D.; Halloway, J.R. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol. Soc. Am. Spec. Pap. 1990, 246, 21–34. [Google Scholar]
- Scaillet, B.; Macdonald, R. Fluorite stability in silicic magmas. Contrib. Mineral. Petrol. 2004, 147, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Giehl, C.; Marks, M.A.W.; Nowak, M. An experimental study on the influence of fluorine and chlorine on phase relations in peralkaline phonolitic melts. Contrib. Mineral. Petrol. 2014, 167, 977. [Google Scholar] [CrossRef]
- Metrich, N.; Rutherford, M.J. Experimental study of chlorine behaviour in hydrous silicic melts. Geochim. Cosmochim. Acta 1992, 56, 607–616. [Google Scholar] [CrossRef]
- Signorelli, S.; Carroll, M.R. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim. Cosmochim. Acta 2000, 64, 2851–2862. [Google Scholar] [CrossRef]
- Signorelli, S.; Carroll, M.R. Experimental study of Cl solubility in hydrous alkaline melts: Constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib. Mineral. Petrol. 2002, 143, 209–218. [Google Scholar]
- Bureau, H.; Métrich, N. An experimental study of bromine behaviour in water-saturated silicic melts. Geochim. Cosmochim. Acta 2003, 67, 1689–1697. [Google Scholar] [CrossRef]
- Bureau, H.; Keppler, H.; Métrich, N. Volcanic degassing of bromine and iodine: Experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet. Sci. Lett. 2000, 183, 51–60. [Google Scholar] [CrossRef]
- Carroll, M.R.; Webster, J.D. Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. Rev. Miner. 1994, 30, 231–279. [Google Scholar]
- Villemant, B.; Boudon, G. H2O and halogen (F, Cl, Br) behaviour during shallow agma degassing processes. Earth Planet. Sci. Lett. 1999, 168, 271–286. [Google Scholar] [CrossRef]
- Wang, L.-X.; Marks, M.A.W.; Keller, J.; Markl, G. Halogen variations in alkaline rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br behavior during magmatic processes. Chem. Geol. 2014, 380, 133–144. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Dong, P. Halogen-Element (F, Cl and Br) Behaviour in Apatites, Scapolite, and Sodalite: An Experimental Investigation with Field Applications. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2005. [Google Scholar]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Zhang, C.; Holtz, F.; Ma, C.; Wolff, P.E.; Li, X. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: A case study from the Liujiawa pluton (Dabie Orogen, China). Contrib. Mineral. Petrol. 2012, 164, 859–879. [Google Scholar] [CrossRef]
- Teiber, H.; Marks, M.A.W.; Wenzel, T.; Zack, T.; Siebel, W.; Altherr, R.; Markl, G. The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem. Geol. 2014, 374–375, 92–109. [Google Scholar] [CrossRef]
- Zhu, C.; Sverjenski, D.A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim. Cosmochim. Acta 1991, 55, 1837–1858. [Google Scholar] [CrossRef]
- Ionov, D.A.; Griffin, W.L.; O’Reilly, S.Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 1997, 141, 153–184. [Google Scholar] [CrossRef]
- Kendrick, M.A. High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem. Geol. 2012, 292, 116–126. [Google Scholar] [CrossRef]
- Krumrei, T.V.; Pernicka, E.; Kaliwoda, M.; Markl, G. Volatiles in a peralkaline system: Abiogenic hydrocarbons and F-Cl-Br systematics in the naujaite of the Ilimaussaq intrusion, South Greenland. Lithos 2007, 95, 298–314. [Google Scholar] [CrossRef]
- O´Reilly, S.Y.; Griffin, W.L. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 2000, 53, 217–232. [Google Scholar] [CrossRef]
- Kusebauch, C.; John, T.; Whitehouse, M.J.; Engvik, A.K. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contrib. Mineral. Petrol. 2015, 170, 34. [Google Scholar] [CrossRef]
- Kusebauch, C.; John, T.; Barnes, J.D.; Klügel, A.; Austrheim, H.O. Halogen Element and Stable Chlorine Isotope Fractionation Caused by Fluid–Rock Interaction (Bamble Sector, SE Norway). J. Petrol. 2015, 56, 299–324. [Google Scholar] [CrossRef] [Green Version]
- Teiber, H.; Marks, M.A.W.; Arzamastsev, A.A.; Wenzel, T.; Markl, G. Compositional variation in apatite from various host rocks: Clues with regards to source composition and crystallization conditions. Neues Jahrb. Mineral. Abh. J. Mineral. Geochem. 2015, 192, 151–167. [Google Scholar] [CrossRef]
- Wang, L.-X.; Marks, M.A.W.; Wenzel, T.; von der Handt, A.; Keller, J.; Teiber, H.; Markl, G. Apatites from the Kaiserstuhl Volcanic Complex, Germany: New constraints on the relationship between carbonatite and associated silicate rocks. Eur. J. Mineral. 2014, 26, 397–414. [Google Scholar] [CrossRef]
- Wang, L.-X.; Marks, M.A.W.; Wenzel, T.; Markl, G. Halogen-bearing minerals from the Tamazeght complex (Morocco): Constraints on halogen distribution and evolution in alkaline to peralkaline magmatic systems. Can. Mineral. 2016, 54, 1347–1368. [Google Scholar] [CrossRef]
- Bailey, J.C.; Gwozdz, R.; Rose-Hansen, J.; Sørensen, H. Geochemical overview of the Ilimaussaq alkaline complex, South Greenland. GEUS Bull. 2001, 190, 35–53. [Google Scholar] [CrossRef]
- Smith, M.; Moore, K.; Kavecsánszki, D.; Finch, A.; Kynicky, J.; Wall, F. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci. Front. 2016, 7, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Khomyakov, A. Mineralogy of Hyperagpaitic Alkaline Rocks; Oxford Science Publications; Oxford University Press: Oxford, UK, 1995; 222p. [Google Scholar]
- Sørensen, H. The agpaitic rocks—An overview. Mineral. Mag. 1997, 61, 485–498. [Google Scholar] [CrossRef]
- Andersen, T.; Erambert, M.; Larsen, A.O.; Selbekk, R.S. Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J. Petrol. 2010, 51, 2303–2325. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Hettmann, K.; Schilling, J.; Frost, B.R.; Markl, G. The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. J. Petrol. 2010, 52, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Marks, M.A.W.; Markl, G. A global review on agpaitic rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Lindhuber, M.J.; Marks, M.A.W.; Bons, P.D.; Wenzel, T.; Markl, G. Crystal mat-formation as an igneous layering-forming process: Textural and geochemical evidence from the ‘lower layered’ nepheline syenite sequence of the Ilimaussaq complex, South Greenland. Lithos 2015, 224–225, 295–309. [Google Scholar] [CrossRef]
- Ratschbacher, B.C.; Marks, M.A.W.; Bons, P.D.; Wenzel, T.; Markl, G. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland. Lithos 2015, 231, 62–76. [Google Scholar] [CrossRef]
- Stormer, J.C.; Carmichael, I. Villiaumite and the occurrence of fluoride minerals in igneous rocks. Am. Mineral. 1970, 55, 126–134. [Google Scholar]
- Sharp, Z.D.; Helffrich, G.R.; Bohlen, S.R.; Essene, E.J. The stability of sodalite in the system NaAlSiO4-NaCl. Geochim. Cosmochim. Acta 1989, 53, 1943–1954. [Google Scholar] [CrossRef] [Green Version]
- Kogarko, L.N.; Lazutkina, L.N.; Romanchev, B.P. The origin of eudialyte mineralization (translated from Russian). Geokhimiya 1982, 10, 1415–1432. [Google Scholar]
- Bailey, J.C. Geochemistry of boron in the Ilimaussaq alkaline complex, South Greenland. Lithos 2006, 91, 319–330. [Google Scholar] [CrossRef]
- Zahoransky, T.; Friis, H.; Marks, M.A.W. Luminescence and tenebrescence of natural sodalites: A chemical and structural study. Phys. Chem. Mineral. 2016, 43, 459–480. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, P. Bromine in scapolite-group minerals and sodalite; XRF microprobe analysis, exchange experiments, and applications to skarn deposits. Can. Mineral. 2003, 41, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Ryabchikov, I.D.; Kogarko, L.N. Oxygen fugacity in the apatite-bearing intrusion of the Khibina complex. Geochem. Int. 2009, 47, 1157–1169. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Glaznev, V.N.; Raevsky, A.B.; Arzamastseva, L.V. Morphology and internal structure of the Kola Alkaline intrusions, NE Fennoscandian Shield: 3D density modelling and geological implications. J. Asian Earth Sci. 2001, 18, 213–228. [Google Scholar] [CrossRef]
- Atanasova, P.; Marks, M.A.W.; Heining, T.; Krause, J.; Gutzmer, J.; Markl, G. Distinguishing magmatic and metamorphic processes in peralkaline rocks of the Norra Kärr complex (Southern Sweden) using textural and compositional variations of clinopyroxene and eudialyte-group minerals. J. Petrol. 2017, 58, 361–384. [Google Scholar] [CrossRef] [Green Version]
- Kramm, U.; Kogarko, L.N. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia. Lithos 1994, 32, 225–242. [Google Scholar] [CrossRef]
- Schilling, J.; Wu, F.-Y.; McCammon, C.; Wenzel, T.; Marks, M.A.W.; Pfaff, K.; Jacob, D.E.; Markl, G. The compositional variability of eudialyte-group minerals. Mineral. Mag. 2011, 75, 87–115. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Markl, G. The Ilímaussaq alkaline complex, South Greenland. In Layered Intrusions; Charlier, B., Namur, O., Latypov, R., Tegner, C., Eds.; Springer Geology; Springer: Dordrecht, The Netherlands, 2015; pp. 649–691. [Google Scholar]
- Larsen, L.M.; Sørensen, H. The Ilimaussaq intrusion-progressive crystallization and formation of layering in an agpaitic magma. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geological Society Special Publications; Blackwell Scientific Publications: London, UK, 1987; Volume 30, pp. 473–488. [Google Scholar]
- Markl, G.; Marks, M.; Schwinn, G.; Sommer, H. Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland. J. Petrol. 2001, 42, 2231–2258. [Google Scholar] [CrossRef] [Green Version]
- Marks, M.A.W.; Rudnick, R.; Vennemann, T.; McCammon, C.; Markl, G. Arrested kinetic Li isotope fractionation at the margin of the Ilimaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem. Geol. 2007, 246, 207–230. [Google Scholar] [CrossRef]
- Schönberg, R.; Marks, M.A.W.; Schuessler, J.A.; von Blanckenburg, F.; Markl, G. Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland. Chem. Geol. 2009, 258, 65–77. [Google Scholar] [CrossRef]
- Hettmann, K.; Marks, M.A.W.; Kreissig, K.; Zack, T.; Wenzel, T.; Rehkämper, M.; Jacob, D.E.; Markl, G. The geochemistry of Tl and its isotopes during magmatic and hydrothermal processes: The peralkaline Ilimaussaq complex, southwest Greenland. Chem. Geol. 2014, 366, 1–13. [Google Scholar] [CrossRef]
- Kchit, A. Le Plutonisme Alcalin du Tamazeght (Haut Atlas de Midelt, Maroc). Ph.D. Thesis, University Toulouse, Toulouse, France, 1990; 224p. [Google Scholar]
- Marks, M.A.W.; Schilling, J.; Coulson, I.M.; Wenzel, T.; Markl, G. The alkaline-peralkaline Tamazeght complex, High Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J. Petrol. 2008, 49, 1097–1131. [Google Scholar] [CrossRef] [Green Version]
- Marks, M.; Coulson, I.M.; Schilling, J.; Jacob, D.E.; Schmitt, A.K.; Markl, G. The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem. Geol. 2008, 257, 153–172. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Neukirchen, F.; Vennemann, T.; Markl, G. Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite-syenite Tamazeght complex, High Atlas Mountains, Morocco. Mineral. Petrol. 2009, 97, 23–42. [Google Scholar] [CrossRef]
- Allah, R.K.; Fontan, F.; Kadar, M.; Monchoux, P.; Sørensen, H. Reactions between agpaitic nepheline syenitic melts and sedimentary carbonate rocks, exemplified by the Tamazeght complex, Morocco. Geochem. Int. 1998, 36, 569–581. [Google Scholar]
- Schilling, J.; Marks, M.; Wenzel, T.; Markl, G. Reconstruction of magmatic to sub-solidus processes in an agpaitic system using eudialyte textures and composition: A case study from Tamazeght, Morocco. Can. Mineral. 2009, 47, 351–365. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Yakovenchuk, V.; Pakhomovsky, Y.; Ivanyuk, G. The Khibina and Lovozero alkaline massifs: Geology and unique mineralization. In Proceedings of the 33 International Geological Congress (IGC) Excursion No 47, Oslo, Norway, 6–14 August 2008. [Google Scholar]
- Zaitsev, A.N.; Wall, F.; Le Bas, M.J. REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution. Mineral. Mag. 1998, 62, 225–250. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Arzamastseva, L.V.; Zhirova, A.M.; Glaznev, V.N. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex. Geol. Ore Depos. 2013, 55, 341–356. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Ivanyuk, G.Y.; Kalashnikov, A.O.; Pakhomovsky, Y.A.; Bazai, A.V.; Yakovenchuk, V.N. Petrogenesis of the Eudialyte Complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia). Minerals 2019, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Ryabchikov, I.D.; Kogarko, L.N. Magnetite compositions and oxygen fugacity of the Khibina magmatic system. Lithos 2006, 91, 35–45. [Google Scholar] [CrossRef]
- Sjöqvist, A.S.; Cornell, D.H.; Andersen, T.; Erambert, M.; Ek, M.; Leijd, M. Three Compositional Varieties of Rare-Earth Element Ore: Eudialyte-Group Minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals 2013, 3, 94–120. [Google Scholar] [CrossRef]
- Stevensen, F.J. Chemical state of the nitrogen in rocks. Geochim. Cosmochim. Acta 1962, 26, 797–809. [Google Scholar] [CrossRef]
- Scholten, S.O. The Distribution of Nitrogen Isotopes in Sediments. Ph.D. Thesis, Utrecht University Repository, Utrecht, The Netherlands, 1991. [Google Scholar]
- Holloway, J.A.M.; Dahlgren, R.A. Nitrogen in rock: Occurrences and biogeochemical implications. Glob. Biogeochem. Cycles 2002, 16, 65. [Google Scholar] [CrossRef]
- Walter, A. Bestimmung von Iod in Gesteinsmehl nach Verbrennungsaufschluß mit Metrohm Combustion; Application Work AW IC DE8-0898-042015; Metrohm: Filderstadt, Germany, 2016. [Google Scholar]
- Hagen, M. Igneous Layering: Mineralogic and Petrologic Analysis of Slightly-Layered Kakortokites (SLK’s) and Lower Layered Kakortokites (LLK’s) of the Ilimaussaq Intrusion, Southwest Greenland. Master’s Thesis, University of Tübingen, Tübingen, Germany, 2019. [Google Scholar]
- Mundel, F. Igneous Layering in the Lowermost Units of the Eudialyte-Bearing Nepheline Syenitic Kakortokites, Ilímaussaq Alkaline Complex, South Greenland. Master’s Thesis, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, 2019. [Google Scholar]
- Rastsvetaeva, R.K. Structural mineralogy of the eudialyte group: A review. Crystallogr. Rep. 2007, 52, 47–64. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Chukanov, N.V. Classification of eudialyte-group minerals. Geol. Ore Depos. 2012, 54, 487–497. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Chukanov, N.V.; Pekov, I.V.; Varlamov, D.A.; Aksenov, S.M. New Data on the Isomorphism in Eudialyte-Group Minerals. VI: Crystal Structure of the First Member Containing Sulfide Anion with Isomorphic Substitution Cl−–S2−. Crystallogr. Rep. 2020, 65, 215–222. [Google Scholar] [CrossRef]
- Sørensen, H.; Danø, M.; Petersen, O.V. On the mineralogy and paragenesis of Tugtupite, Na8Al2Be2Si8O24(Cl,S)2, from the Ilímaussaq alkaline intrusion, South Greenland. GEUS Bull. 1971, 95, 38. [Google Scholar]
- Danø, M. The crystal structure of tugtupite—A new mineral, Na8Al2Be2Si8O24(Cl,S)2. Acta Crystallogr. 1966, 20, 812–816. [Google Scholar] [CrossRef]
- Gaft, M.; Panczer, G.; Nagli, L.; Yeates, H. Laser-induced time-resolved luminescence of tugtupite, sodalite and hackmanite. Phys. Chem. Mineral. 2009, 36, 127–141. [Google Scholar] [CrossRef]
- Finch, A.A.; Friis, H.; Maghrabi, M. Defects in sodalite-group minerals determined from X-ray-induced luminescence. Phys. Chem. Mineral. 2016, 43, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Povarennykh, A.S.; Platonov, A.N.; Tarashchan, A.N.; Belichenko, V.B. The colour and luminescence of Tugtupite (beryllosodalite) from Ilímaussaq, South Greenland. GEUS Bull. 1971, 95, 12. [Google Scholar]
- Kendrick, M.A.; Jackson, M.G.; Hauri, E.H.; Phillips, D. The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth Planet. Sci. Lett. 2015, 410, 197–209. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Honda, M.; Vanko, D.A. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: Implications for oceanic hydrothermal root zones and global volatile cycles. Contrib. Mineral. Petrol. 2015, 170, 43. [Google Scholar] [CrossRef]
- Epp, T.; Marks, M.A.W.; Ludwig, T.; Kendrick, M.A.; Eby, N.; Neidhardt, H.; Oelmann, Y.; Markl, G. Crystallographic and fluid compositional effects on the halogen (Cl, F, Br, I) incorporation in pyromorphite-group minerals. Am. Mineral. 2019, 104, 1673–1688. [Google Scholar] [CrossRef]
- Borst, A.M.; Friis, H.; Nielsen, T.F.D.; Waight, T.E. Bulk and mush melt evolution in agpaitic intrusions: Insights from compositional zoning in eudialyte, Ilímaussaq complex, South Greenland. J. Petrol. 2018, 59, 589–612. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, K.; Krumrei, T.; Marks, M.; Wenzel, T.; Rudolf, T.; Markl, G. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 2008, 106, 280–296. [Google Scholar] [CrossRef]
- Babiel, R.; Marks, M.A.W.; Neumann, U.; Markl, G. Sulfides in alkaline and peralkaline rocks: Textural appearance and compositional variations. Neues Jahrb. Mineral. Abh. J. Mineral. Geochem 2018, 195, 155–175. [Google Scholar] [CrossRef]
- Graser, G.; Potter, J.; Köhler, J.; Markl, G. Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 2008, 106, 207–221. [Google Scholar] [CrossRef]
- Hettmann, K.; Wenzel, T.; Marks, M.; Markl, G. The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am. Mineral. 2012, 97, 1653–1661. [Google Scholar] [CrossRef]
- Fleet, M.E.; Liu, X.; Harmer, S.L.; Nesbitt, H.W. Chemical state of sulfur in natural and synthetic lazurite by S K-edge xanes and X-ray photoelectron spectroscopy. Can. Mineral. 2005, 43, 1589–1603. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I. Transmission electron microscopy and differential thermal studies of lazurite polymorphs. Am. Mineral. 2000, 85, 1383–1389. [Google Scholar] [CrossRef]
- Wulff-Pedersen, E.; Neumann, E.-R.; Burke, E.A.J.; Vannucci, R.; Bottazzi, P.; Ottolini, L.; Gjonnes, J.; Hansen, V. Origin and structural character of hauyne(ss) in spinel dunite xenoliths from La Palma, Canary Islands. Am. Mineral. 2000, 85, 1397–1405. [Google Scholar] [CrossRef]
- Hassan, I.; Grundy, H.D. The crystal structures of sodalite-group minerals. Acta Crystallogr. B Struct. Sci. 1984, 40, 6–13. [Google Scholar] [CrossRef]
- Giuseppetti, G.; Mazzi, F.; Tadini, C. The crystal structure of eudialyte. Tschermaks Mineral. Petrogr. Mitt. 1971, 16, 105–127. [Google Scholar] [CrossRef]
- Johnsen, O.; Grice, J.D.; Gault, R.A. Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F endmember in a series within the eudialyte group: Description and crystal structure. Eur. J. Mineral. 1998, 10, 207–219. [Google Scholar] [CrossRef]
- Johnsen, O.; Grice, J.D. The crystal chemistry of the eudialyte group. Can. Mineral. 1999, 37, 865–891. [Google Scholar]
- Sjöqvist, A.S.; Zack, T.; Honn, D.K.; Baxter, E.F. Modification of a rare-earth element deposit by low-temperature partial melting during metamorphic overprinting: Norra Kärr alkaline complex, southern Sweden. Chem. Geol. 2020, 545, 119640. [Google Scholar] [CrossRef]
Mineral Name | Formula |
---|---|
Fluorite | CaF2 |
Villiaumite | NaF |
Rinkite | (Ca3REE)Na(NaCa)Ti(Si2O7)2(OF)F2 |
Wöhlerite | Na2Ca4Zr(Nb,Ti)(Si2O7)2(O,F)4 |
Natrophosphate | Na7(PO4)2F.19H2O |
Vuonnemite | Na6Na2Nb2Na3Ti(Si2O7)2(PO4)2O2(OF) |
Kentbrooksite * | Na15Ca6Mn3Zr3NbSi(Si24O73)(O,OH,H2O)3(F,Cl)2 |
Eudialyte * | Na15Ca6Fe3Zr3Si2(Si24O73)(O,OH,H2O)3(Cl,F,OH)2 |
Sodalite | Na8Al6Si6O24Cl2 |
Tugtupite | Na4BeAlSi4O12Cl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eggenkamp, H.G.M.; Marks, M.A.W.; Atanasova, P.; Wenzel, T.; Markl, G. Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems. Minerals 2020, 10, 995. https://doi.org/10.3390/min10110995
Eggenkamp HGM, Marks MAW, Atanasova P, Wenzel T, Markl G. Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems. Minerals. 2020; 10(11):995. https://doi.org/10.3390/min10110995
Chicago/Turabian StyleEggenkamp, Hans G.M., Michael A.W. Marks, Petya Atanasova, Thomas Wenzel, and Gregor Markl. 2020. "Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems" Minerals 10, no. 11: 995. https://doi.org/10.3390/min10110995
APA StyleEggenkamp, H. G. M., Marks, M. A. W., Atanasova, P., Wenzel, T., & Markl, G. (2020). Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems. Minerals, 10(11), 995. https://doi.org/10.3390/min10110995