Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of St-g-Polymer by Atom Transfer Radical Polymerization (ATRP)
2.2.1. Synthesis of Macroinitiator (St-Br)
2.2.2. Synthesis of Polymer-Grafted Starch by ATRP
2.3. Characterizations of St-g-Polymer
2.4. Jar Test
3. Results and Discussion
3.1. Synthesis and Characterization of St-g-Polymer
3.1.1. Synthesis and Characterization of Starch-Based Macroinitiator
3.1.2. Synthesis of St-g-Polymer
3.2. Charge Properties by Zeta Potentials (ZPs)
3.3. Effects of Charge Properties on the Flocculation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, M.; Wang, Y.; Cai, J.; Bai, J.; Yang, H.; Li, A. Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water. Water Res. 2016, 98, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Malafaya, P.B.; Elvira, C.; Gallardo, A.; San Román, J.; Reis, R.L. Porous starch-based drug delivery systems processed by a microwave route. J. Biomater. Sci. Polym. Ed. 2001, 12, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xu, K.; Wang, P.; Li, W.; Sun, S.; Dong, L. High mechanical strength and rapid response rate of poly(N-isopropyl acrylamide) hydrogel crosslinked by starch-based nanospheres. Soft Matter 2010, 6, 1467–1471. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, K.; Li, Y.; Sun, S.; Wang, P. A robust route to fabricate starch esters vesicles. Chem. Commun. 2010, 46, 4523–4525. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Liu, P.; Su, Z. Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules. Carbohydr. Polym. 2005, 62, 159–163. [Google Scholar] [CrossRef]
- Wang, L.; Shen, J.; Men, Y.; Wu, Y.; Peng, Q.; Wang, X.; Yang, R.; Mahmood, K.; Liu, Z. Corn starch-based graft copolymers prepared via ATRP at the molecular level. Polym. Chem. 2015, 6, 3480–3488. [Google Scholar] [CrossRef]
- Nurmi, L.; Holappa, S.; Mikkonen, H.; Seppälä, J. Controlled grafting of acetylated starch by atom transfer radical polymerization of MMA. Eur. Polym. J. 2007, 43, 1372–1382. [Google Scholar] [CrossRef]
- Avval, M.E.; Moghaddam, P.N.; Fareghi, A.R. Modification of starch by graft copolymerization: A drug delivery system tested for cephalexin antibiotic. Starch-Stärke 2013, 65, 572–583. [Google Scholar] [CrossRef]
- Ashby, M.F.; Shercliff, H.; Cebon, D. Materials: Engineering, Science, Processing and Design; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Ravve, A. Principles of Polymer Chemistry, 3th ed.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Wessel, J.K. (Ed.) Handbook of Advanced Materials: Enabling New Designs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Khayet, M.; Zahrim, A.Y.; Hilal, N. Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem. Eng. J. 2011, 167, 77–83. [Google Scholar] [CrossRef]
- Li, H.; Du, Y.; Wu, X.; Zhan, H. Effect of molecular weight and degree of substitution of quaternary chitosan on its adsorption and flocculation properties for potential retention-aids in alkaline papermaking. Colloids Surf. A 2004, 242, 1–8. [Google Scholar] [CrossRef]
- Hu, P.; Xi, Z.; Li, Y.; Li, A.; Yang, H. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant. Chemosphere 2020, 240, 124866. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kong, F.; Fatehi, P. Generation and use of lignin-g-AMPS in extended DLVO theory for evaluating the flocculation of colloidal particles. ACS Omega 2020, 5, 21032. [Google Scholar] [CrossRef] [PubMed]
- Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2003, 24, 1043–1059. [Google Scholar] [CrossRef]
- Vlček, P.; Janata, M.; Látalová, P.; Kríž, J.; Čadová, E.; Toman, L. Controlled grafting of cellulose diacetate. Polymer 2006, 47, 2587–2595. [Google Scholar] [CrossRef]
- Masař, B.; Janata, M.; Látalová, P.; Netopilík, M.; Vlček, P.; Toman, L. Graft copolymers and high-molecular-weight star-like polymers by atom transfer radical polymerization. J. Appl. Polym. Sci. 2006, 100, 3662–3672. [Google Scholar] [CrossRef]
- Jordan, J.W. Industrial Applications of Kaolin. Clays Clay Miner. 1961, 10, 291–298. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Bitar, H.A.; Zhu, Y.; Xu, Y.; Shi, Z. Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension. Minerals 2020, 10, 1054. https://doi.org/10.3390/min10121054
Zhao N, Bitar HA, Zhu Y, Xu Y, Shi Z. Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension. Minerals. 2020; 10(12):1054. https://doi.org/10.3390/min10121054
Chicago/Turabian StyleZhao, Nana, Hani Al Bitar, Yunyin Zhu, Yuming Xu, and Zhiqing Shi. 2020. "Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension" Minerals 10, no. 12: 1054. https://doi.org/10.3390/min10121054
APA StyleZhao, N., Bitar, H. A., Zhu, Y., Xu, Y., & Shi, Z. (2020). Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension. Minerals, 10(12), 1054. https://doi.org/10.3390/min10121054