Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Mineral Chemistry
4.3. Whole-Rock Major and Trace Elements Composition
4.3.1. Major Elements
4.3.2. Trace Elements
4.4. Zircon U-Pb Dating
5. Discussion
5.1. Mineral Assemblage Evolution
- (1)
- Mid-pressure amphibolite facies P ≈ 0.6–1.0 GPa and T ≈ 770–930 °C;
- (2)
- Low-pressure greenschist facies P ≈ 0.2–0.7 GPa and T ≈ 500–650 °C.
5.2. Tectonic Setting
5.3. The Stages of Magmatism of the Ulan-Sarʼdag Mélange
6. Conclusions
- (1)
- The Ulan-Sar’dag melange (USM) is composed of a variety of structurally mixed different units – ophiolitic ultramafic-mafic rocks with podiform chromitites, foliated serpentinites, cherts, volcanic-sedimentary rocks with MORB, and island-arc and OIB geochemical affinities, and metasedimentary rocks.
- (2)
- Igneous rocks, according to geochemical affinities, are divided into four groups. Group I belongs to ensimatic island-arc boninite. It is characterized by low concentrations of REE and negative anomalies of HFSE (Nb, Ta, and Ti). It has a pronounced positive anomaly in Sr and low relationships of (La/Yb)n, (Ce/Y)n, (Th/Y)n, (Ta/Nb)n, and (Zr/Nb)n. According to the ratios of trace elements, boninite is close to N-MOR basalts. On the tectonic discrimination diagrams, it lies within the island-arc volcanic rock and boninite fields. Group II belongs to island-arc rocks. The igneous rocks of this group have a slightly pronounced negative slope of the REE pattern and a distribution of REE, HFSE, and LILE, which is similar to a continental crust. The rocks have a negative anomaly for Ta, Nb, and Ti. In a number of samples, positive anomalies in Sr, Ba, Rb, and Zr are recorded. The (La/Nb)n, (Ce/Y)n, (Th/Yb)n, and (Ta/Yb)n ratios in these rocks correspond to values of the upper and lower continental crust. On the tectonic diagrams, these rocks plot in fields of volcanic arc, island-arc tholeiite, calc-alkaline, basalts, and continental arc. It is worth noting the elevated abundance of Nb, Ti, Y, and Zr in some samples, which is not typical for intermediate island-arc rocks. The rocks of the second group were generated from island arc-magmas with a significant contribution of a crustal component. Group III corresponds to E-MOR basalts. These rocks show a distribution of REE and HFSE that corresponds to E-MORB. Furthermore, the presence of a subduction component is noted and indicated by the elevated contents of LREE, Rb, Ba, and Sr, which differs from contents E-MORB. According to trace element ratios, metabasalts show hybrid characteristics of N-MORB, E-MORB basalts, and continental crust components. They are slightly enriched in LREE relative to E-MORB. On the tectonic discrimination diagrams, these rocks plot in the N-MORB–E-MORB field and on an N-MORB–OIB trend. The basalts appear to have formed in the mid-ocean ridge setting from an enriched magmatic source. The igneous rocks of group IV have contents and patterns of REE and HFSE identical to those of OIB basalts. The rocks show a negative anomaly in Sr, and high ratios of (La/Yb)n and (Nb/Y)n. On the tectonic discrimination diagrams, these rocks plot in the OIB field. They could have been formed at the plume-magmatism stage, from an enriched deep magmatic source.
- (3)
- Three stages of magmatism are proposed according to the evolution of the subduction zone in the studied segments of CAOB. Stage I: In the Meso-Neoproterozoic at the closure of the Paleo-Asian Ocean, intra-oceanic island-arc systems were formed. At an early stage, an ensimatic island arc on oceanic-type crust was formed with generation boninitic melts. Stage II. During the development to an ensialic island arc, boninite magmatism turned to calc-alkaline andesite-dacite magmatism. Stage III. At a late Neoproterozoic–early Paleozoic period, island-arc rifting results in the initial stage of back-arc basin formation (initiation of Shishkhid island arc). The third stage is likely associated with plume-magmatic activity that led to the slabs plunging into the subduction zones and the formation of a slab-window. Mixed enriched magmas were generated.
- (4)
- U–Pb dating of zircons from the trachyandesite, belonging to the second geochemical type, yielded a crystallization age of 833 ± 4 Ma, which is interpreted as the crystallization age during mature island-arc and intra-arc rifting stages.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobretsov, N.L. (Ed.) Geology and Metamorphism of East Sayan; Nauka Publ. House: Novosibirsk, Russia, 1988; p. 190. (In Russian) [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A. Palaeotectonics of Asia: Fragments of a Synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Torsvik, T.H.; Smethurst, M.A.; Meert, J.G.; Van der Voo, R.; McKerrow, W.S.; Brasier, M.D.; Sturt, B.A.; Walderhaug, H.J. Continental break-up and collision in the Neoproterozoic and Paleozoic—A tale of Baltica and Laurentia. Earth Sci. Rev. 1996, 40, 229–258. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Sklyarov, E.V.; Letnikova, E.F.; Gladkochub, D.F.; Khain, E.V. Neoproterozoic ophiolite and sedimentary sequences of the Tuva-Mongolian superterrane. In Assembly and Breakup of Rodinia Supercontinent: Evidence from South Siberia; Sklyarov, E.V., Ed.; Guide-Book and Abstracts of the IGCP-440 Workshop; Publishing House of Institute of Earth Crust: Irkutsk, Russia, 2001; pp. 71–92. [Google Scholar]
- Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian ocean: Implications to the break-up of Rodinia. Gondwana Res. 2003, 6, 143–159. [Google Scholar] [CrossRef]
- Zhmodik, S.M.; Postnikov, A.A.; Buslov, M.M.; Mironov, A.G. Geodynamics of the Sayan-Baikal-Muya accretion-collision belt in the Neoproterozoic-early Paleozoic and regularities of the formation and localization of precious-metal mineralization. Russ. Geol. Geophys. 2006, 1, 183–198. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, N.L.; Konnikov, E.G.; Dobretsov, N.N. Precambrian ophiolitic belts of Southern Siberia (Russia) and their metallogeny. Precambrian Res. 1992, 58, 427–446. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Men’shagin, Y.V.; Konstantinov, K.M.; Watanabe, T. Dike swarms of southern flank of Siberian craton—Indicators of Rodinia supercontinent breakup. Geotektonika 2000, 6, 59–70. [Google Scholar]
- Buslov, M.M.; Saphonova, I.Y.; Watanabe, T.; Obut, O.T.; Fujiwara, Y.; Iwata, K.; Semakov, N.N.; Sugai, Y.; Smirnova, L.V.; Kazansky, A.Y. Evolution of the Paleo-Asian ocean (Altai–Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 2001, 5, 203–224. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kovalenko, V.I. Late Riphean breakup between Siberia and Laurentia: Evidence from intraplate magmatism. Dokl. Earth Sci. 2001, 379, 525–552. [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Kozlovsky, A.M.; Kudryashova, E.A.; Anisimova, I.V.; Sal’nikova, E.B.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Plotkina, Y.V.; et al. Late Riphean alkali granites of the Zabhan microcontinent: Evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian fold belt. Dokl. Earth Sci. 2008, 420, 583–588. [Google Scholar] [CrossRef]
- Xiao, W.J.; Han, C.M.; Yuan, C.; Sun, M.; Lin, S.F.; Chen, H.L.; Li, Z.L.; Li, J.L.; Sun, S. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- Xiao, W.J.; Kusky, T.M. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction. Gondwana Res. 2009, 16, 167–169. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Buslov, M.M.; Safonova, I.Y.; Kokh, D.A. Fragments of oceanic islands in the Kurai and Katun’ accretionary wedges of Gorny Altai. Russ. Geol. Geophys. 2004, 45, 1325–1348. [Google Scholar]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Belichenko, V.G.; Letnikova, E.E.; Geletii, N.K. Geochemical features of carbonate sediments in the covers of the Tuva-Mongol microcontinent. Trans. Russ. Acad. Sci. 1999, 364, 80–83. [Google Scholar]
- Letnikova, E.F.; Geletii, N.K.; Sklyarov, E.V. Lithological and Geochemical Features of Carbonate Rocks in the Sedimentary Cover of the Gargan Terrain, Southeastern East Sayan. Gondwana Res. 2001, 4, 680. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Bibikova, E.V.; Zhuravlev, D.Z. Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): Island arc–continent collision at the northeast Rodinia margin. Precambrian Res. 2001, 110, 109–126. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. (Eds.) Geology of the USSR: A Plate-Tectonic Synthesis; Geodynamic Series; American Geophysical Union: Washington, DC, USA, 1990; p. 21. [Google Scholar]
- Mossakovsky, A.A.; Ruzhentsev, S.V.; Samygin, S.G.; Kheraskova, T.N. Central Asian fold belt: Geodynamic evolution and history of formation. Geotectonics 1993, 6, 3–33. [Google Scholar]
- Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Berezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Larionov, A.N. Neoproterozoic island arcs of East Sayan: Duration of magmatism (from U-Pb zircon dating of volcanic clastics). Russ. Geol. Geophys. 2013, 54, 34–43. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Zhmodik, S.M.; Damdinov, B.B.; Agafonov, L.V.; Belyanin, D.K. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur areas, East Sayan). Russ. Geol. Geophys. 2014, 55, 259–272. [Google Scholar] [CrossRef]
- Kiseleva, O.; Zhmodik, S. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front. 2017, 8, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Fedorovskii, V.S.; Khain, E.V.; Vladimirov, A.G.; Kargopolov, S.A.; Gibsher, A.S.; Izokh, A.E. Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides. Geotectonics 1995, 29, 193–212. [Google Scholar]
- Khain, E.; Gusev, G.S.; Khain, E.V.; Vernikovsky, V.A.; Volobuev, M.I. Circum-Siberian Neoproterozoic Ophiolite Belt. Ofioliti 1992, 22, 195–200. [Google Scholar]
- Kuzmichev, A.V. The Central Asian Fold Belt. Geology, Evolution, Tectonics and Models; Kröner, A., Ed.; Burntraeger Science Publisher: Stuttgart, Germany, 2015. [Google Scholar]
- Sklyarov, E.V.; Kovach, V.P.; Kotov, A.B.; Kuzmichev, A.B.; Lavrenchuk, A.V.; Perelyaev, V.I.; Shchipansky, A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Russ. Geol. Geophys. 2016, 57, 127–140. [Google Scholar] [CrossRef]
- Belyaev, V.A.; Wang, K.-L.; Gornova, M.A.; Dril, S.I.; Karimov, A.A.; Medvedev, A.Y.; Noskova, Y.V. Geochemistry and origin of the Eastern Sayan ophiolites, Tuva-Mongolian microcontinent (Southern Siberia). Geodyn. Tectonophys. 2017, 8, 411415. [Google Scholar] [CrossRef] [Green Version]
- Safonova, I.; Biske, G.; Romer, R.L.; Seltmann, R.; Simonov, V.; Maruyama, S. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res. 2016, 30, 236–256. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Kröner, A.; Hegner, E.; Liu, D.Y.; Wan, Y.S. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res. 2005, 138, 125–150. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Larionov, A.N. The Sarkhoi Group in East Sayan: Neoproterozoic (~770–800 Ma) volcanic belt of the Andean type. Russ. Geol. Geophys. 2011, 52, 685–700. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Sklyarov, E.; Postnikov, A.; Bibikova, E. The Oka Belt (Southern Siberia and Northern Mongolia): A Neoproterozoic analog of the Japanese Shimanto Belt? Island Arc 2007, 16, 224–242. [Google Scholar] [CrossRef]
- Zhmodik, S.; Kiseleva, O.; Belyanin, D.; Damdinov, B.; Airiyants, E.; Zhmodik, A. PGE mineralization in ophiolites of the southeast part of the Eastern Sayan (Russia). In Proceedings of the 12th International Platinum Symposium, Yekaterinburg, Russia, 11–14 August 2014; Anikina, E.V., Ariskin, A.A., Barnes, S.-J., Barnes, S.J., Borisov., A.A., Evstigneeva, T.L., Kinnaird, J.A., Latypov, R.M., Li, C., Maier, W.D., et al., Eds.; Institute of Geology and Geochemistry UB RAS: Yekaterinburg, Russia, 2014; pp. 221–225. [Google Scholar]
- Gordienko, I.V.; Dobretsov, N.L.; Zhmodik, S.M.; Roschektayev, P.A. Multistage thrust and nappe tectonics on the southeastern part the eastern sayan and its role in the formation of large gold deposits. Russ. Geol. Geophys. 2021, 62, in press. [Google Scholar]
- Kovalev, S.; Zhmodik, S.; Belyanin, D.; Airiyants, E.; Kiseleva, O.; Kulikov, Y.; Travin, A. Lamprophyres from Ospa ophiolite of the East Sayan (Russia). In Proceedings of the EGU Genera Assembly Conference Abstarct, Vienna, Austria, 4–8 May 2020; p. 926. [Google Scholar] [CrossRef]
- Roshchektaev, P.A.; Goneger, A.V. Neoproterozoic volcanism of the south-eastern East Sayan and gold mineralization associated with it. In Minerageny of the North East Asia, Proceedings of the III All-Russian Scientific and Practical Conference Dedicated to the 20th Anniversary of Geological Department, BSU, Ulan-Ude, Russia, 21–24 May 2012; Ekos Publishing House: Ulan-Ude, Russia; pp. 136–140. (In Russian)
- Zhang, J.-J.; Zheng, Y.-F.; Zhao, Z.-F. Geochemical evidence for interaction be-tween oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 2009, 110, 305–320. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.-F.; Zheng, Y.-F.; Zhang, J.-J. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos 2011, 125, 940–955. [Google Scholar] [CrossRef]
- Safonova, I.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Geochemical Features of Peridotites and Volcanogenic-Sedimentary Rocks of the Ultrabasic-Basitic Massif of Ulan Sar’dag (East Sayan, Russia); The Bulletin of Irkutsk State University: Irkutsk, Russia, 2019. (In Russian) [Google Scholar]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Podiform chromitites and PGE mineralization in the Ulan-Sar’dag ophiolite (East Sayan, Russia). Minerals 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chu, Z.; Gornova, M.; Dril, S.; Belyaev, V.; Lin, K.; O’Reilly, S. Depleted SSZ type mantle peridotites in Proterozoic Eastern Sayan ophiolites in Siberia. Geodyn. Tectonophys. 2017, 8, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, I.V.; Palesskii, S.V.; Koz’menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022. [Google Scholar] [CrossRef]
- Compston, W.; Williams, I.S.; Kirschvink, J.L.; Zichao, Z.; Guogan, M.A. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. 1992, 149, 171–184. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, p. 72. [Google Scholar]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals; Geological Society: London, UK, 1997. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur. J. Mineral. 1997, 9, 623–651. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.J. Spilites, keratophyres, and the igneous spectrum. Geol. Mag. 1973, 109, 513–527. [Google Scholar] [CrossRef]
- Pearce, J.A. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 1975, 25, 41–67. [Google Scholar] [CrossRef]
- Ludden, J.; Gelinas, L.; Trudel, P. Archean metavolcanics from the Rouyn–Noranda district, Abitibi greenstone belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Can. J. Earth Sci. 1982, 19, 2276–2287. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonic: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011. [Google Scholar] [CrossRef]
- Le Bas, M.; Le Maitre, R.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Floyd, P.A.; Winchester, J.A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 1975, 27, 211–218. [Google Scholar] [CrossRef]
- Ross, P.-S.; Bedard, J.H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 2009, 46, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Van der Laan, S.R.; Arculus, R.J.; Murton, B.J.; Ishii, T.; Peate, D.W.; Parkinson, I.J. Boninite and harzburgites from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction. In Proceedings of the Ocean Drilling Program, 125, Scientific Results; Fryer, P., Pearce, J.A., Stokking, L.B., Ali, J.R., Arculus, R., Balotti, D., Burke, M.M., Ciampo, G., Haggerty, J.A., Haston, R.B., et al., Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 125, pp. 623–659. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatis Geochem. 2003, 3, 1–64. [Google Scholar]
- Fitton, J.G.; Saunders, A.D.; Norry, M.J.; Hardarson, B.S.; Taylor, R.N. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 1997, 153, 197–208. [Google Scholar] [CrossRef]
- Weaver, B.L. The origin of ocean island basalt and member compositions: Trace element and isotope constrains. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Shchipansky, A.A. Subduction and Mantle-Plume Processes in Geodynamics of Formation of Archaean Greenstone Belts; Publishing House LCI: Moscow, Russia, 2008. (In Russian) [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Ashchepkov, I.V.; Andre, L.; Downes, H.; Belyatsky, B.A. Pyroxenites and megacrysts from Vitim picrite-basalts, Russia. Polybaric fractionation of rising melts in the mantle? J. Asian Earth Sci. 2011, 42, 14–37. [Google Scholar] [CrossRef]
- Franz, L.; Becker, K.-P.; Kramer, W.; Herzig, P.M. Metasomatic mantle xenolith from the Bismarck microplate (Papua New Guinea)—Thermal evolution, geochemistry and extent of slab-induced metasomatism. J. Petrol. 2002, 43, 315–343. [Google Scholar] [CrossRef]
- Liu, C.-Z.; Wu, F.-Y.; Wide, S.A.; Yu, L.-J.; Li, J.-L. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 2010, 114, 413–422. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Bazylev, B.A.; Silantyev, S.A.; Kononkova, N.N. Phlogopite and hornblende in spinel harzburgites from the Mid Atlantic Ridge: Mineral assemblages and origin. Ofioliti 1999, 24, 59–60. [Google Scholar] [CrossRef]
- Cassidy, K.F.; Groves, D.I.; Binns, R.A. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks fromWestern Australia. Can. Mineral. 1988, 26, 999–1012. [Google Scholar]
- Hartopanu, P.; Cristea, C.; Stela, G. Pyrophanite of Delinesti (Semenic Mountains). Rom. J. Mineral. 1995, 77, 19–24. [Google Scholar]
- Zaccarini, F.; Garuti, G.; Ortiz-Suarez, A.; Carugno-Duran, A. The paragenesis of pyrophanite from Sierra de Comechingones, Córdoba, Argentina. Can. Mineral. 2004, 42, 155–168. [Google Scholar] [CrossRef]
- Svetlitskaya, T.V.; Nevolko, P.A.; Fominykh, P.A. Fe-Ti Oxide Assemblages from the Contact-Metamorphosed Mafic-Ultramafic Rocks of the Sedova Zaimka Intrusion (Western Siberia, Russia): The Tracking of Metamorphic Transformations. Minerals 2020, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Yardley, B.W.D. An Introduction to Metamorphic Petrology; Longman Group: Harlow, UK, 1989; pp. 49–51. [Google Scholar]
- Gill, J.B. Orogenic andesites and plate tectonics. Geol. Mag. 1981, 119, 516–517. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas on the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Geng, H.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2011, 42, 854–866. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Saccani, E.; Principi, G. Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system. Mineral. Petrol. 2016, 110, 713–730. [Google Scholar] [CrossRef]
- Duncan, R.A.; Green, D.H. Role of multistage melting in the formation of oceanic crust. Geology 1980, 8, 22–26. [Google Scholar] [CrossRef]
- Duncan, R.A.; Green, D.H. The genesis of refractory melts in the formation of oceanic crust. Contrib. Mineral. Petrol. 1987, 96, 326–342. [Google Scholar] [CrossRef]
- Crawford, A.J.; Fallon, T.J.; Green, D.H. Classification, petrogenesis and tectonic setting of boninites. In Boninites and Related Rocks; Crawford, A.J., Ed.; Unwin Hyman: London, UK, 1989; pp. 1–49. [Google Scholar]
- Le Bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.R.; Hauri, E.N.; Oschmann, L.A.; Whitehead, J.A. Mantle plumes and entrainment: Isotopic evidence. Science 1992, 256, 517–520. [Google Scholar] [CrossRef]
- Wilson, M. Geochemical signatures of oceanic and continental basalts: A key to mantle dynamics? J. Geol. Soc. 1993, 150, 977–990. [Google Scholar] [CrossRef]
- Gordienko, I.V.; Metelkin, D.V. The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian Ocean. Russ. Geol. Geophys. 2016, 57, 69–81. [Google Scholar] [CrossRef]
- Gordienko, I.V.; Roshchektaev, P.A.; Gorokhovsky, D.V. Oka ore district of the Eastern Sayan: Geology, structural-metallogenic zonation, genetic types of ore deposits, their geodynamic formation conditions, and outlook for development. Geol. Ore Depos. 2016, 58, 361–382. [Google Scholar] [CrossRef]
- Dobretsov, N.L. Plate tectonics vs. Plume tectonic interplay: Possible model and typical cases. Russ. Geol. Geophys. 2020, 61, 617–647. [Google Scholar]
- Gordienko, I.V. Relationship between subduction-related and plume magmatism at the active boundaries of lithospheric plates in the interaction zone of the Siberian continent and Paleoasian Ocean in the Neoproterozoic and Paleozoic. Geodyn. Tectonophys. 2019, 10, 405–457. [Google Scholar] [CrossRef]
- Bogatikov, O.A.; Tsvetkov, A.A. Magmaticheskaya Evolyutsiya Ostrovnykh dug (Magmatic Evolution of Island Arcs). Nauka: Moscow, USSR, 1988. (In Russian) [Google Scholar]
- D’Orazio, M.; Agostini, S.; Mazzarini, F.; Innocenti, F.; Manetti, P.; Haller, M.J.; Lahsen, A. The PalilAike Volcanic Field, Patagonia: Slab-window magmatism near the tip of South America. Tectonophysics 2000, 321, 407–427. [Google Scholar] [CrossRef]
- D’Orazio, M.; Agostini, S.; Innocenti, F.; Haller, M.J.; Manetti, P.; Mazzarini, F. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina–Chile). Lithos 2001, 57, 67–89. [Google Scholar] [CrossRef]
- Espinoza, F.; Morata, D.; Pelleter, E.; Maury, R.C.; Suarez, M.; Lagabrielle, Y.; Polve, M.; Bellon, H.; Cotten, J.; De la Cruz, R.; et al. Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows. Lithos 2005, 82, 315–343. [Google Scholar] [CrossRef]
- Churikova, T.; Dorendorf, F.; Worner, G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J. Petrol. 2001, 42, 1567–1593. [Google Scholar] [CrossRef] [Green Version]
- Yogodzinski, G.M.; Lees, J.M.; Churikova, T.G.; Dorendorf, F.; Worner, G.; Volynets, O.N. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 2001, 409, 500–504. [Google Scholar] [CrossRef]
- Perepelov, A.B.; Antipin, V.S.; Kablukov, A.V.; Filosofova, T.M. Ultrapotassic Rhyolites of Southern Kamchatka: Geochemical and Petrological Evidence. Plumes and Problems of Deep Sources of Alkaline Magmatism; Publishing House of the Irkutsk State Technical University: Khabarovsk, Russia, 2003; pp. 171–183. [Google Scholar]
- Kay, S.M.; Ardolino, A.A.; Gorring, M.; Ramos, V. The Somuncura Large igneous province in Patagônia: Interaction of a transient mantle thermal anomaly with a subducting slab. J. Petrol. 2007, 48, 43–77. [Google Scholar] [CrossRef] [Green Version]
- Hoernle, K.; Carracedo, J.C. Canary Islands, geology. In Cyclopedias of Islands (Encyclopedias of the Natural World); Gillespie, R.G., Clague, D.A., Eds.; University California Press: Berkeley, CA, USA, 2009; pp. 133–143. [Google Scholar]
- Volynets, A.; Churikova, T.; Wörner, G. Mafic Late Miocene-Quaternary volcanic rocks in the Kamchatka back arc region: Implications for subduction geometry and slab history at the Pacific-Aleutian junction. Contrib. Mineral. Petrol. 2010, 159, 659–687. [Google Scholar] [CrossRef] [Green Version]
- Thorkelson, D. Subduction of diverging plates and the principles of slab window formation. Tectonophysics 1996, 255, 47–63. [Google Scholar] [CrossRef]
- Dobretsov, N.L. Early Paleozoic tectonics and geodynamic of Central Asia: Role of mantle plumes. Russ. Geol. Geophys. 2011, 52, 1539–1552. [Google Scholar] [CrossRef]
- Aragón, E.; Pinotti, L.; D’Eramo, F.; Castro, A.; Rabbia, O.; Coniglio, J.; Demartis, M.; Hernando, I.; Cavarozzi, C.E.; Aguilera, Y.E. The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore- to back-arc. Geosci. Front. 2013, 4, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Sawaki, Y.; Ebisuzaki, T.; Ikoma, M.; Omori, S.; Komabayashi, T. Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Res. 2014, 25, 910–944. [Google Scholar] [CrossRef]
Spot | % 206Pbc | U ppm | Th ppm | 232Th /238U | 206Pb*ppm | (1) 206Pb/238UAge | (1) 207Pb/206PbAge | % Dis-cor-dant | (1) 238U/206Pb* | ±% | (1) 207Pb*/206Pb* | ±% | (1) 207Pb*/235U | ±% | (1) 206Pb*/238U | ±% | err corr | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
314_1.1 | 0.07 | 350 | 155 | 0.46 | 41.3 | 828.9 | ±7.3 | 842 | ±26 | 2 | 7.287 | 0.9 | 0.06715 | 1.2 | 1.271 | 1.6 | 0.1372 | 0.9 | 0.6 |
314_1.2 | 0.16 | 69 | 20 | 0.30 | 8.25 | 838.0 | ±10 | 884 | ±53 | 6 | 7.207 | 1.3 | 0.06850 | 2.6 | 1.310 | 2.9 | 0.1387 | 1.3 | 0.4 |
314_2.1 | 0.09 | 274 | 161 | 0.61 | 32.6 | 834.0 | ±7.5 | 848 | ±27 | 2 | 7.241 | 1.0 | 0.06733 | 1.3 | 1.282 | 1.6 | 0.1381 | 1.0 | 0.6 |
314_2.2 | 0.19 | 119 | 43 | 0.37 | 14.1 | 827.3 | ±8.6 | 859 | ±53 | 4 | 7.303 | 1.1 | 0.06770 | 2.6 | 1.278 | 2.8 | 0.1369 | 1.1 | 0.4 |
314_3.1 | 0.07 | 147 | 51 | 0.36 | 17.3 | 831.0 | ±8.3 | 809 | ±39 | -3 | 7.268 | 1.1 | 0.06610 | 1.9 | 1.253 | 2.1 | 0.1376 | 1.1 | 0.5 |
314_3.2 | 0.08 | 167 | 55 | 0.34 | 19.8 | 833.6 | ±8.7 | 859 | ±45 | 3 | 7.244 | 1.1 | 0.06770 | 2.2 | 1.288 | 2.5 | 0.1380 | 1.1 | 0.5 |
314_4.1 | 0.04 | 256 | 94 | 0.38 | 30.5 | 835.7 | ±7.7 | 804 | ±30 | -4 | 7.224 | 1.0 | 0.06593 | 1.4 | 1.258 | 1.7 | 0.1384 | 1.0 | 0.6 |
314_4.2 | 0.27 | 134 | 35 | 0.27 | 15.9 | 832.1 | ±9.5 | 940 | ±57 | 13 | 7.258 | 1.2 | 0.07040 | 2.8 | 1.337 | 3.0 | 0.1378 | 1.2 | 0.4 |
314_5.1 | 0.01 | 1108 | 498 | 0.46 | 131 | 828.7 | ±6.7 | 826 | ±14 | 0 | 7.290 | 0.9 | 0.06661 | 0.7 | 1.260 | 1.1 | 0.1372 | 0.9 | 0.8 |
314_5.2 | 0.35 | 145 | 49 | 0.35 | 17.2 | 831.4 | ±8.5 | 889 | ±54 | 7 | 7.265 | 1.1 | 0.06870 | 2.6 | 1.303 | 2.8 | 0.1377 | 1.1 | 0.4 |
314_6.1 | 0.02 | 688 | 712 | 1.07 | 81 | 828.3 | ±7.1 | 831 | ±18 | 0 | 7.293 | 0.9 | 0.06677 | 0.9 | 1.262 | 1.2 | 0.1371 | 0.9 | 0.7 |
314_6.2 | 0.66 | 115 | 36 | 0.33 | 13.6 | 829.0 | ±11 | 911 | ±86 | 10 | 7.280 | 1.4 | 0.06940 | 4.2 | 1.314 | 4.4 | 0.1373 | 1.4 | 0.3 |
314_8.1 | 0.03 | 333 | 224 | 0.69 | 39.3 | 829.2 | ±7.3 | 821 | ±25 | -1 | 7.285 | 0.9 | 0.06645 | 1.2 | 1.258 | 1.5 | 0.1373 | 0.9 | 0.6 |
314_8.2 | 0.00 | 134 | 39 | 0.30 | 16 | 841.0 | ±9.3 | 822 | ±40 | -2 | 7.176 | 1.2 | 0.06650 | 1.9 | 1.278 | 2.3 | 0.1393 | 1.2 | 0.5 |
314_9.1 | 0.14 | 135 | 76 | 0.58 | 16 | 835.3 | ±8.7 | 822 | ±45 | -2 | 7.228 | 1.1 | 0.06650 | 2.2 | 1.268 | 2.4 | 0.1383 | 1.1 | 0.5 |
314_9.2 | 0.04 | 229 | 155 | 0.70 | 27.3 | 837.1 | ±7.8 | 812 | ±31 | -3 | 7.211 | 1.0 | 0.06616 | 1.5 | 1.265 | 1.8 | 0.1387 | 1.0 | 0.6 |
314_9.3 | 0.02 | 346 | 182 | 0.54 | 41.3 | 838.8 | ±7.4 | 827 | ±25 | -1 | 7.196 | 1.0 | 0.06667 | 1.2 | 1.277 | 1.5 | 0.1390 | 1.0 | 0.6 |
314_9.4 | 0.04 | 223 | 110 | 0.51 | 26.5 | 835.7 | ±7.9 | 836 | ±32 | 0 | 7.225 | 1.0 | 0.06690 | 1.5 | 1.277 | 1.8 | 0.1384 | 1.0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M.; Ashchepkov, I.V.; Kovalev, S.A. Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia). Minerals 2020, 10, 1077. https://doi.org/10.3390/min10121077
Kiseleva ON, Airiyants EV, Belyanin DK, Zhmodik SM, Ashchepkov IV, Kovalev SA. Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia). Minerals. 2020; 10(12):1077. https://doi.org/10.3390/min10121077
Chicago/Turabian StyleKiseleva, Olga N., Evgeniya V. Airiyants, Dmitriy K. Belyanin, Sergey M. Zhmodik, Igor V. Ashchepkov, and Semyon A. Kovalev. 2020. "Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia)" Minerals 10, no. 12: 1077. https://doi.org/10.3390/min10121077
APA StyleKiseleva, O. N., Airiyants, E. V., Belyanin, D. K., Zhmodik, S. M., Ashchepkov, I. V., & Kovalev, S. A. (2020). Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia). Minerals, 10(12), 1077. https://doi.org/10.3390/min10121077