Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia)
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Setting
4. Results
4.1. Podiform Chromitites
4.1.1. Chrome Spinels
4.1.2. Olivine
4.2. Geochemistry of Platinum-Group Elements
4.3. Mineralogy of Platinum-Group Elements
4.3.1. Primary Platinum-Group Minerals
4.3.2. Secondary Platinum-Group Minerals
5. Discussion
5.1. Chromitite Formation: Composition of Parental Melts
+ Cr + Fe3+) and Fe3+′Sp = Fe3+/(Al + Cr + Fe3+)
5.2. Spinel and Olivine Geothermometers and Olivine-Spinel Oxybarometers
5.3. Distribution of PGE in Mantle Peridotites and Chromitites
5.4. Sequence of the Formation and Transformation of the Platinum-Group Mineral Assemblage
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, M.F.; Robinson, P.T. Origin and tectonic environment of podiform chromite deposits. Econ. Geol. 1997, 92, 259–262. [Google Scholar] [CrossRef]
- Arai, S.; Matsukage, K. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites. Lithos 1998, 43, 1–14. [Google Scholar] [CrossRef]
- Dönmez, C.; Keskin, S.; Günay, K.; Çolakoğlu, A.O.; Çiftçi, Y.; Uysal, İ.; Türkel, A.; Yıldırım, N. Chromite and PGE geochemistry of the Elekdağ Ophiolite (Kastamonu, Northern Turkey): Implications for deep magmatic processes in a supra-subduction zone setting. Ore Geol. Rev. 2014, 57, 216–228. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S. Platinum group minerals in podiform chromitites of the Oman ophiolite. Can. Mineral. 2003, 41, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Uysal, I.; Sadiklar, M.B.; Tarkian, M.; Karsli, O.; Aydin, F. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Mugla-SW Turkey): Evidence for ophiolitic chromitite genesis. Mineral. Petrol. 2005, 83, 6–13. [Google Scholar] [CrossRef]
- Thalhammer, O.A.R.; Prochaska, W.; Mühlhans, H.W. Solid inclusions in chromspinels and platinum group element concentration from the Hochgrössen and Kraubath Ultramafic Massifs (Austria). Contrib. Mineral. Petrol. 1990, 105, 66–80. [Google Scholar] [CrossRef]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Garuti, G.; Fershtater, G.; Bea, F.; Montero, P.G.; Pushkarev, E.V.; Zaccarini, F. Platinum-group element distribution in mafic–ultramafic complexes of central and southern Urals: Preliminary results. Tectonophysics 1997, 276, 181–194. [Google Scholar] [CrossRef]
- Zhou, M.F.; Sun, M.; Keays, R.R.; Kerrich, R.W. Controls on platinum-group elemental distribution of podiform chromitites: A case study of high-Cr and high-Al chromitites from chinese orogenic belts. Geochimica et Cosmochim. Acta 1998, 62, 677–688. [Google Scholar] [CrossRef]
- Gervilla, F.; Proenza, J.A.; Frei, R.; González-Jiménez, J.M.; Garrido, C.J.; Melgarejo, J.C.; Meibom, A.; Díaz-martínez, R.; Lavaut, W. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolilte Belt (eastern Cuba). Contrib. Mineral. Petrol. 2005, 150, 589–607. [Google Scholar] [CrossRef]
- Uysal, I.; Tarkian, M.; Sadıklar, M.B.; Sen, C. Platinum group-element geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, Northeastern Turkey. Can. Mineral. 2007, 45, 355–377. [Google Scholar] [CrossRef]
- Proenza, J.A.; Zaccarini, F.; Escayola, M.; Cábana, C.; Shalamuk, A.; Garuti, G. Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Córdoba Pampeans Ranges, Argentine. Ore Geol. Rev. 2008, 33, 32–48. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G. Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia). Ore Geol. Rev. 2008, 33, 20–30. [Google Scholar] [CrossRef]
- Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Maurel, C.; Maurel, P. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bull. Minéralogie 1982, 105, 197–202. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromium-spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Gueddari, K.; Piboule, M.; Amosee, J. Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera). Chem. Geol. 1996, 134, 181–197. [Google Scholar] [CrossRef]
- Kamenetsky, V.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.H.; Arai, S. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib. Mineral. Petrol. 2002, 143, 263–278. [Google Scholar] [CrossRef]
- Ahmed, A.H. Diversity of platinum-group minerals in podiform chromitites of the late Proterozoic ophiolite, Eastern Desert, Egypt: Genetic implications. Ore Geol. Rev. 2007, 33, 31–45. [Google Scholar] [CrossRef]
- Rollinson, H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt composition. Contrib. Mineral. Petrol. 2008, 156, 273–288. [Google Scholar] [CrossRef]
- Akmaz, R.M.; Uysal, I.; Saka, S. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis. Ore Geol. Rev. 2014, 58, 208–224. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.; Green, D. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implication for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Andrews, D.R.A.; Brenan, J.M. Phase-equilibrium constraints of the magmatic origin of laurite and Os-Ir alloy. Can. Mineral. 2002, 40, 1705–1716. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Gall, L. Trace element geochemistry of mantle olivine and its application to geothermometry. Ofioliti 2005, 30, 182–183. [Google Scholar]
- Korolyuk, V.N.; Pokhilenko, L.N. Electron probe determination of trace elements in olivine: Thermometry of depleted peridotites. Russ. Geol. Geophys. 2016, 57, 1750–1758. [Google Scholar] [CrossRef]
- Kuznetsov, A.P.; Kukushkin, Y.N.; Makarov, D.F. The use of nickel matte as a collector of precious metals in the analysis of poor products. J. Anal. Chem. USSR 1974, 29, 2156–2160. (In Russian) [Google Scholar]
- Beklemishev, M.K.; Kuzmin, N.M.; Zolotov, Y.A. Extraction and extraction-kinetic determination of Os using aza analogs of dibenzo-18-crown-6. J. Anal. Chem. USSR 1989, 2, 356–362. (In Russian) [Google Scholar]
- Shlenskaya, V.I.; Khvostova, V.P.; Kadyrova, G.I. Kinetic methods for the determination of osmium and ruthenium (review). J. Anal. Chem. USSR 1973, 28, 779–784. (In Russian) [Google Scholar]
- Rao, N.V.; Ravana, P.V. Kinetic-catalytic determination of osmium. Mikrochim. Acta 1981, 76, 269–276. [Google Scholar] [CrossRef]
- Belichenko, V.G.; Butov, Y.P.; Boos, R.G.; Vratkovskaya, S.V.; Dobretsov, N.L.; Dolmatov, V.A.; Zhmodik, S.M.; Konnikov, E.G.; Kuzmin, M.I.; Medvedev, V.N.; et al. Geology and Metamorphism of Eastern Sayan; Nauka: Novosibirsk, Russia, 1988. (In Russian) [Google Scholar]
- Dobretsov, N.L.; Konnikov, E.G.; Dobretsov, N.N. Precambrian ophiolitic belts of Southern Siberia (Russia) and their metallogeny. Precambr. Res. 1992, 58, 427–446. [Google Scholar] [CrossRef]
- Zhmodik, S.; Kiseleva, O.; Belyanin, D.; Damdinov, B.; Airiyants, E.; Zhmodik, A. PGE mineralization in ophiolites of the southeast part of the Eastern Sayan (Russia). In Proceedings of the 12th International Platinum Symposium, Abstracts, Russia, 11–14 August 2014; Anikina, E.V., Ariskin, A.A., Barnes, S.-J., Barnes, S.J., Borisov, A.A., Evstigneeva, T.L., Kinnaird, J.A., Latypov, R.M., Li, C., Maier, W.D., et al., Eds.; Institute of Geology and Geochemistry UB RAS: Yekaterinburg, Russia, 2014; pp. 221–225. [Google Scholar]
- Kuzmichev, A.B. The Tectonic History of the Tuva–MongolianMassif: Early Baikalian, late Baikalian, and Early Caledonian Stages; Probel Publishing House: Moscow, Russia, 2004; 192p. (In Russian) [Google Scholar]
- Kuzmichev, A.B.; Larionov, A.N. Neoproterozoic island arcs of East Sayan: Duration of magmatism (from U-Pb zircon dating of volcanic clastics). Russ. Geol. Geophys. 2013, 54, 34–43. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Zhmodik, S.M.; Damdinov, B.B.; Agafonov, L.V.; Belyanin, D.K. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa-Kitoi and Khara-Nur areas, East Sayan). Russ. Geol. Geophys. 2014, 55, 259–272. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Kovach, V.P.; Kotov, A.B.; Kuzmichev, A.B.; Lavrenchuk, A.V.; Perelyaev, V.I.; Shipansky, A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Geol. Geophys. 2016, 57, 127–140. (In Russian) [Google Scholar] [CrossRef]
- Kiseleva, O.; Zhmodik, S. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front. 2017, 8, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Skopintsev, V.G. Geological Structure and Mineral Resources of the Upper Rivers Gargan, Urik, Kitoy, Onot; Results of prospecting works on the site of Kitoy (East Sayan); Report of the Samartin and Kitoy parties; Buryatia Publishing House: Ulan-Ude, Russia, 1995; Book 1; 319p. (In Russian) [Google Scholar]
- Pavlov, N.V.; Kravchenko, G.G.; Chuprynina, I.I. Chromites from the Kempirsai Pluton; Nauka: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Cabri, L.J. The platinum group minerals. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements; Published for the Geological Society of CIM; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Volume 54, pp. 13–131. [Google Scholar]
- Kelemen, P.B. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of the calcalkaline magma series, and the formation of discordant dunite. J. Petrol. 1990, 31, 51–98. [Google Scholar] [CrossRef]
- Arai, S.; Yurimoto, H. Podiform chromitites from the Tari-Misaka ultramafic complex, southwestern Japan, as melt-mantle interaction products. Econ. Geol. 1994, 89, 1279–1288. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Robinson, P.T. High-chromium and high-aluminum podiform chromitites, western China: Relationship to partial melting and melt/rock interaction in the upper mantle. Int. Geol. Rev. 1994, 36, 678–686. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Robinson, P.; Malpas, J.; Li, Z. Podiform chromites in the Luobusa Ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. 1996, 37, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Arai, S. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 1997, 47, 177–187. [Google Scholar]
- Ahmed, A.H.; Harbi, H.M.; Habtoor, A.M. Compositional variations and tectonic settings of podiform chromitites and associated ultramafic rocks of the Neoproterozoic ophiolite at Wadi Al Hwanet, northwestern Saudi Arabia. J. Asian Earth Sci. 2012, 56, 118–134. [Google Scholar] [CrossRef]
- Prichard, H.M.; Lord, R.A.; Neary, C.R. A model to explain the occurrence of platinum- and palladium- rich ophiolite complexes. J. Geol. Soc. 1996, 153, 323–328. [Google Scholar] [CrossRef]
- Tsoupas, G.; Economou-Eliopoulos, M. High PGE contents and extremaly abundant PGE-minerals hosted in chromitites from Veria ophiolite complex, northern Greece. Ore Geol. Rev. 2008, 33, 3–19. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Day, J.M.D.; Walker, R.J.; Daly, J.S.; McDonough, W.F.; Piccoli, P.M. Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex. Scotland. Earth Planet. Sci. Lett. 2012, 333, 226–237. [Google Scholar] [CrossRef]
- Gurskaya, L.I.; Smelova, L.V.; Kolbantsev, L.R.; Lyakhnitskaya, V.D.; Lyakhnitsky, Y.S.; Shakhova, S.N. Platinoids of Chromite-Bearing Massifs of the Polar Urals; Publishing House SPb Card Factory VSEGEI: St. Petersburg, Russia, 2005; 306p. (In Russian) [Google Scholar]
- Arai, S. Characterization of spinel peridotites by olivine—Spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Leblanc, M.; Violette, J.F. Distribution of Aluminium-rich and Chromium-rich chromite pods in ophiolite peridotites. Econ. Geol. 1983, 78, 293–301. [Google Scholar] [CrossRef]
- Zhou, M.F.; Bai, W.J. Chromite deposits in China and their origin. Miner. Depos. 1992, 27, 192–199. [Google Scholar] [CrossRef]
- Leblanc, M. Chromite and ultramafic rock compositional zoning through a paleotransform fault, Poum, New Caledonia. Econ. Geol. 1995, 90, 2028–2039. [Google Scholar] [CrossRef]
- Graham, I.T.; Franklin, B.J.; Marshall, B. Chemistry and mineralogy of podiform chromitite deposits, southern NSW, Australia: A guide to their origin and evolution. Mineral. Petrol. 1996, 37, 129–150. [Google Scholar] [CrossRef]
- Economou-Ellopoulos, M. Platinum-group element distribution in chromite ores from ophiolite complexes: Implications for their exploration. Ore Geol. Rev. 1996, 11, 363–381. [Google Scholar] [CrossRef]
- Proenza, J.; Gervilla, F.; Melgarejo, J.C.; Bodinier, J.L. Al-and Cr-rich chromitites from the Mayari–Baracoa Ophiolitic Belt (Eastern Cuba): Consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ. Geol. 1999, 94, 547–566. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S.; Attia, A.K. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Miner. Depos. 2001, 36, 72–84. [Google Scholar] [CrossRef]
- Thayer, P.T. Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag district, Turkey. Econ. Geol. 1964, 59, 1497–1524. [Google Scholar] [CrossRef]
- Thayer, T.P. Chromite Segregations as Petrogenetic Indicators; 1 (Special Publications); The Geological Society of South Africa: Johannesburg, South Africa, 1970; pp. 380–389. [Google Scholar]
- Uysal, I.; Tarkian, M.; Sadiklar, M.B.; Zaccarini, F.; Meisel, T.; Garuti, G.; Heidrich, S. Petrology of Al- and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib. Mineral. Petrol. 2009, 158, 659–674. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Liu, Z.; Guo, G.; Chen, S.; Xu, X.; Li, Y.; Liu, F. High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrol. Sin. 2013, 29, 1878–1908. [Google Scholar]
- González-Jiménez, J.M.; Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Blanco-Moreno, J.A.; Ruiz-Sánchez, R.; Griffin, W.L. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 2011, 125, 101–121. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Shimizu, N.; Salters, V.J.M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 1995, 375, 747–753. [Google Scholar] [CrossRef]
- Arai, S. Role of dunite in genesis of primitive MORB. Proc. Jpn. Acad. 2005, B 81, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Miura, M. Podiform chromitites do form beneath mid-ocean ridges. Lithos 2015, 232, 143–149. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Geochemical Features of Peridotites and Volcanogenic-Sedimentary Rocks of the Ultrabasic-Basitic Massif of Ulan-Sar’dag (East Sayan, Russia); The Bulletin of Irkutsk State University: Irkutsk, Russia, 2019. (In Russian) [Google Scholar]
- Wilson, M. Igneous Petrogenesis; Unwin Hyman: London, UK, 1989. [Google Scholar]
- Jonson Kevin, T.M.; Dick Henry, J.B. Open System Melting and Temporal and Spatial Variation of Peridotite and Basalt at the Atlantis II Fracture Zone. J. Geophys. Res. 1992, 97, 9219–9241. [Google Scholar] [CrossRef]
- Garuti, G.; Pushkarev, E.V.; Thalhammer, O.A.R.; Zaccarini, F. Chromitites of the Urals (Part 1): Overview of chromite mineral chemistry and geotectonic setting. Ofioliti 2012, 37, 27–53. [Google Scholar]
- Jenner, G.A. Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chem. Geol. 1981, 33, 307–332. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Sobolev, A.V.; Eggins, S.M.; Crawford, A.J.; Arculus, R.J. Olivine enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: Evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem. Geol. 2002, 83, 287–303. [Google Scholar] [CrossRef]
- Walker, D.A.; Cameron, W.E. Boninite primary magmas: Evidence from the Cape Vogel Peninsula, PNG. Contrib. Mineral. Petrol. 1983, 83, 150–158. [Google Scholar] [CrossRef]
- Cameron, W.E. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib. Mineral. Petrol. 1985, 89, 239–255. [Google Scholar] [CrossRef]
- Flower, M.F.J.; Levine, H.M. Petrogenesis of a tholeiite–boninite sequence from Ayios Mamas, Troodos ophiolite: Evidence for splitting of a volcanic arc? Contrib. Mineral. Petrol. 1987, 97, 509–524. [Google Scholar] [CrossRef]
- Page, P.; Barnes, S.J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada. Econ. Geol. 2009, 104, 997–1018. [Google Scholar] [CrossRef]
- Shibata, T.; Thompson, G.; Frey, F.A. Tholeiitic and alkali basalts from the mid Atlantic ridge at 43° N. Contrib. Mineral. Petrol. 1979, 70, 127–141. [Google Scholar] [CrossRef]
- Le Roex, A.P.; Dick, H.J.B.; Gulen, L.; Reid, A.M.; Erlank, A.J. Local and regional heterogeneity in MORB from the mid-Atlantic ridge between 54.5° S and 51° S: Evidence for geochemical enrichment. Geochim. Cosmochim. Acta 1987, 51, 541–555. [Google Scholar] [CrossRef]
- Presnall, D.C.; Hoover, J.D. High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts. Geochem. Soc. Spec. Pap. 1987, 1, 75–89. [Google Scholar]
- Rollinson, H. Chromite in the mantle section of the Oman ophiolite: A new genetic model. Isl. Arc 2005, 14, 542–550. [Google Scholar] [CrossRef]
- Barnes, S.J.; Kunilov, V.Y. Spinels and Mg ilmenites from the Noril’sk and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province. Econ. Geol. 2000, 95, 1701–1717. [Google Scholar] [CrossRef]
- Burns, L.E. The Borger Range ultramafic and mafic complex, south-central Alaska: Cumulative fractionates of island-arc volcanics. Can. J. Earth Sci. 1985, 22, 1020–1038. [Google Scholar] [CrossRef]
- Volchenko, Y.A.; Ivanov, K.S.; Koroteev, V.A.; Auge, T. Structural-substantial evolution of the Urals platiniferous belt’s complexes in the time of Uralian type chromite-platinum deposits formation. Part I. Lithosphere 2007, 3, 3–27. [Google Scholar]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part II. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Henry, D.; Medaris, L. Application of pyroxene and olivine-spinel geothermometers to spinel peridotites in South-western Oregon. Am. J. Sci. 1980, 280, 211–231. [Google Scholar]
- Bedard, J.H. A new projection scheme and differentiation index for Cr-spinels. Lithos 1997, 42, 37–45. [Google Scholar] [CrossRef]
- Ashchepkov, I.V. Program of the mantle thermometers and barometers: Usage for reconstructions and calibration of PT methods. Vestn. Otd. Nauk Zemle 2011, 3, NZ6008. [Google Scholar] [CrossRef]
- Ashchepkov, I.V.; Pokhilenko, N.P.; Vladykin, N.V.; Rotman, A.Y.; Afanasiev, V.P.; Logvinova, A.M.; Kostrovitsky, S.I.; Pokhilenko, L.N.; Karpenko, M.A.; Kuligin, S.S.; et al. Reconstruction of mantle sections beneath Yakutian kimberlite pipes using monomineral thermobarometry. Geol. Soc. Spec. Publ. 2008, 293, 335–352. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Wal, V.J. The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J. Petrol. 1987, 28, 1169–1191. [Google Scholar] [CrossRef]
- Taylor, W.R.; Kammerman, M.; Hamilton, R. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 11–17 April 1998; Extended Abstracts. pp. 891–901. [Google Scholar]
- Lorand, J.P.; Keays, R.R.; Bodiner, J.R. Copper- and noble metal enrichment across the asthenosphere-lithosphere mantle diapiris: The Lanzo lherzolite massif. J. Petrol. 1993, 34, 1111–1140. [Google Scholar] [CrossRef]
- Brugmann, G.E.; Armdt, N.T.; Hoffmann, A.W.; Tobschall, H.J. Nobel metal abundances in Komatiite suites from Alexo, Ontario and Gorgona Island, Colombia. Geochim. Cosmochim. Acta 1987, 51, 2159–2169. [Google Scholar] [CrossRef]
- Wang, K.-L.; Chu, Z.; Gornova, M.A.; Dril, S.; Belyaev, V.A.; Lin, K.-Y.; O’Reilly, S.Y. Depleted SSZ type mantle peridotites in Proterozoic Eastern Sayan ophiolotes in Siberia. Geodyn. Tectonophys. 2017, 8, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Agafonov, L.V.; Lkhamsuren, J.; Kuzhuget, K.S.; Oidup, C.K.B. Platinum-Group Element Mineralization of Ultramafic-Mafic Rocks in Mongolia and Tuva; Tomurtogoo, O., Ed.; Ulaanbaatar Publishing House: Ulaanbaatar, Mongolia, 2005. (In Russian) [Google Scholar]
- Page, N.J.; Engin, T.; Singer, D.A.; Haffty, J. Distribution of platinum-group elements in the Bati Kef chromite deposit, Güleman-Elaziğ area, Eastern Turkey. Econ. Geol. 1984, 79, 177–184. [Google Scholar] [CrossRef]
- Yaman, S.; Ohnenstetter, M. Distribution of platinum-group elements of chromite deposits within ultramafic zone of Mersin ophiolite (south Turkey). Bull. Geol. Congr. Turk. 1991, 6, 253–261. [Google Scholar]
- Garuti, G.; Pushkarev, E.V.; Zaccarini, F. Diversity of chromite-PGE mineralization in ultramafic complexes of the Urals. In Proceedings of the Platinum-Group Elements—From Genesis to Beneficiation and Environmental Impact: 10th International Platinum Symposium, Oulu, Finland, 8–11 August 2005; Geological Survey of Finland: Esbo, Finland, 2005. [Google Scholar]
- Ballhaus, C.; Sylvester, P. PGE enrichment processes in the Merensky reef. J. Petrol. 2000, 41, 454–561. [Google Scholar] [CrossRef] [Green Version]
- Matveev, S.; Ballhaus, C. Role of water in the origin of podiform chromititedeposits. Earth Planet. Sci. Lett. 2002, 203, 235–243. [Google Scholar] [CrossRef]
- Sattari, P.; Brenan, J.M.; Horn, I.; McDonough, W.F. Experimental constraints in the sulfide-and chromite-silicate melt partitioning behaviour of rhenium and platinum-group elements. Ecol. Geol. 2002, 97, 385–398. [Google Scholar] [CrossRef]
- Fleet, M.E.; Crocket, J.H.; Lin, M.H.; Stone, W.E. Laboratory partitioning of platinum-group elements and gold with application to magmatic sulfide-PGE deposits. Lithos 1999, 47, 127–142. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Geochemical and mineralogical indicators (Cr-spinelides, Platinum Group Minerals) of the geodynamic settings of formation of maficultramafic Ulan Saridag massif (Eastern Sayan). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Prichard, H.M.; Tarkian, M. Platinum and palladium minerals from two PGElocalities in the Shetland ophiolite complex. Can. Mineral. 1988, 26, 979–990. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Economou-Eliopoulos, M. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Miner. Depos. 1999, 34, 312–319. [Google Scholar] [CrossRef]
- Brenan, J.M.; Andrews, D. High-temperature stability of laurite and Ru-Os-Ir alloy and their role in PGE fractionation in mafic magmas. Can. Mineral. 2001, 39, 341–360. [Google Scholar] [CrossRef]
- Ballhaus, C.; Bockrath, C.; Wohlgemuth-Ueberwasser, C.; Laurenz, V.; Berndt, J. Fractionation of the noble metals by physical processes. Contrib. Mineral. Petrol. 2006, 152, 667–684. [Google Scholar] [CrossRef]
- Bockrath, C.; Ballhaus, C.; Holzheid, A. Stabilities of laurite RuS2 and monosulphide liquid solution atmagmatic temperature. Chem. Geol. 2004, 208, 265–271. [Google Scholar] [CrossRef]
- Finnigan, C.S.; Brenan, J.M.; Mungall, J.E.; McDonough, W.F. Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. J. Petrol. 2008, 49, 1647–1665. [Google Scholar] [CrossRef] [Green Version]
- Dick, H.J.B. Terrestrial nickel–iron from the josephinite peridotite, its geologic occurrence, associations and origin. Earth Planet. Sci. Lett. 1974, 24, 291–298. [Google Scholar] [CrossRef]
- Zaccarini, F.; Proenza, J.A.; Ortega-Gutiérrez, F.; Garuti, G. Platinum group minerals in ophioliticchromitites from Tehuitzingo (Acatlán complex, southern Mexico): Implications for postmagmatic modification. Miner. Petrol. 2005, 84, 147–168. [Google Scholar] [CrossRef]
- Garuti, G.; Proenza, J.A.; Zaccarini, F. Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusiyn (Bahia State, Brazil): Control by magmatic and hydrothermal processes. Miner. Petrol. 2007, 89, 159–188. [Google Scholar] [CrossRef]
- Stockman, H.W.; Hlava, P.F. Platinum-group minerals in Alpine chromitites from southwestern Oregon. Econ Geol. 1984, 79, 492–508. [Google Scholar] [CrossRef]
- Nilsson, L.P. Platinum-group mineral inclusions in chromitite from Osthammeren ultramafic tectonite body, south central Norway. Mineral. Petrol. 1990, 42, 249–263. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Gize, A.P.; Vaughan, D.J.; Norris, S.J. Development of platinum-group minerals in laterites—Initial comparison of organic and inorganic controls. Trans. Inst. Min. Metall. (Sect. B Appl. Earth Sci.) 1994, 103, 53–56. [Google Scholar]
- Garuti, G.; Zaccarini, F. In situ alteration of platinum-group minerals at low temperature: Evidence from serpentinized and weathered chromitite of the Vourinos complex, Greece. Can. Mineral. 1997, 35, 611–626. [Google Scholar]
- Bai, W.; Robinson, P.T.; Fang, Q.; Yang, J.; Yan, B.; Zhang, Z.; Hu, X.-F.; Zhou, M.-F.; Malpas, J. The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet. Can. Mineral. 2000, 38, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.V.; Hattori, K.; Barronet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Bowles, J.F.W. The development of platinum-group minerals in laterites. Econ. Geol. 1986, 81, 1278–1285. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Lyon, J.C.; Saxton, J.M.; Vaughan, D.J. The origin of Platinum Group Minerals from the Freetown intrusions, Sierra Leone, inferred from osmium isotope systematics. Econ. Geol. 2000, 95, 539–548. [Google Scholar] [CrossRef]
- Xiong, Y.; Wood, A. Experimental quantifycation of hydrothermal solubility of platinum- group elements with special reference to porphyry copper environments. Mineral. Petrol. 2000, 68, 1–28. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Reich, M.; Camprubí, T.; Gervilla, F.; Griffin, W.L.; Colás, V.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Mineral. Petrol. 2015, 170, 15. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I Group | II Group | III Group | ||||||||||||||||||||
N Sample | 37 | 41 | 74 | 77 | 101 | 130 | 132 | 120 | 10 | 48 | 52 | 47 | 53 | 5 | 112 | 88 | 9 | 60 | 71 | 11 | 22 | 18 |
TiO2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.10 | 0.1 | 0.1 | 0.1 | 0.05 | 0.07 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.05 | 0.04 | 0.07 | 0.05 | 0.07 |
Al2O3 | 40.3 | 41.0 | 24.6 | 24.1 | 19.2 | 12.19 | 7.97 | 15.3 | 14.6 | 13.52 | 16.53 | 14.5 | 14.8 | 13.9 | 12.5 | 12.4 | 14.6 | 14.6 | 13.0 | 14.0 | 16.5 | 19.6 |
Cr2O3 | 29.7 | 28.5 | 44.2 | 43.7 | 49.2 | 59.57 | 63.94 | 56.4 | 54.2 | 56.51 | 53.70 | 55.6 | 55.6 | 56.5 | 56.4 | 57.0 | 57.3 | 54.0 | 55.4 | 49.0 | 48.0 | 48.3 |
MnO | 0.5 | 0.5 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.32 | 0.56 | 0.3 | 0.4 | 0.3 | 0.5 | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.7 | 0.3 | ||
FeO | 7.9 | 7.9 | 14.7 | 14.8 | 14.4 | 15.4 | 19.1 | 13.3 | 14.8 | 15.8 | 15.3 | 15.4 | 16.4 | 15.6 | 16.1 | 16.3 | 17.7 | 19.0 | 18.3 | 18.6 | 20.9 | 19.8 |
Fe2O3 | 2.0 | 2.3 | 2.1 | 2.6 | 3.3 | 2.4 | 0.7 | 1.2 | 2.1 | 1.7 | 2.1 | 1.6 | 2.3 | 1.7 | 2.7 | 2.7 | 1.1 | 1.8 | 2.3 | 5.6 | 5.8 | 2.5 |
MgO | 19.7 | 19.8 | 13.6 | 13.3 | 12.9 | 12.6 | 10.8 | 13.7 | 12.4 | 11.7 | 12.4 | 12.0 | 11.7 | 11.9 | 11.4 | 11.3 | 10.9 | 9.6 | 9.8 | 9.6 | 8.3 | 9.6 |
V2O5 | 0.8 | 0.8 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.13 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.07 | 0.11 | 0.12 | 0.09 | ||||
NiO | 0.3 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.03 | 0.06 | 0.07 | 0.02 | ||||
ZnO | 0.0 | 0.0 | 0.0 | 0.2 | 0.7 | 0.0 | 0.0 | 0.14 | 0.1 | 0.2 | 0.3 | 0.2 | 0.0 | 0.3 | 0.19 | 0.10 | 0.46 | 0.46 | ||||
Total | 101.3 | 101.1 | 99.8 | 99.2 | 100.2 | 102.3 | 234.6 | 100.4 | 98.6 | 99.8 | 100.7 | 99.7 | 101.2 | 100.2 | 100.1 | 100.5 | 102.2 | 99.8 | 99.5 | 97.6 | 100.9 | 100.7 |
Al’ | 56 | 57 | 35 | 34 | 27 | 23 | 26 | 20 | 20 | 19 | 23 | 20 | 20 | 19 | 20 | 20 | 20 | 20 | 18 | 20 | 23 | 28 |
Cr′ | 41 | 40 | 62 | 62 | 69 | 74 | 84 | 80 | 80 | 79 | 74 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 78 | 71 | 68 | 69 |
Fe′ | 2.7 | 3 | 3 | 3.7 | 4 | 2.9 | 0.9 | 1.7 | 3.0 | 2.3 | 2.9 | 2.2 | 3.2 | 2.3 | 3.7 | 3.7 | 1.6 | 2.6 | 3 | 8 | 8 | 4 |
Mg′ | 72 | 71 | 48 | 47 | 47 | 59 | 50 | 49 | 54 | 57 | 55 | 56 | 58 | 57 | 59 | 59 | 62 | 66 | 35 | 34 | 29 | 33 |
f′ | 28 | 29 | 52 | 53 | 53 | 41 | 50 | 49 | 54 | 57 | 55 | 56 | 58 | 57 | 59 | 59 | 62 | 66 | 65 | 66 | 71 | 67 |
TiO2melt | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.18 | 0.11 | 0.1 | 0.2 | 0.10 | 0.13 | 0.1 | 0.1 | 0.1 | 0.4 | 0.3 | 0.2 | 0.10 | 0.09 | 0.14 | 0.10 | 0.14 |
Al2O3 melt | 18.3 | 18.5 | 15.0 | 14.9 | 13.5 | 11.1 | 9.3 | 12.3 | 12.2 | 11.7 | 12.7 | 12.1 | 12.1 | 11.8 | 11.3 | 11.3 | 12.0 | 12.1 | 11.5 | 12.0 | 12.7 | 13.6 |
(Fe/Mg)m | 0.3 | 0.3 | 0.5 | 0.6 | 0.5 | 0.5 | 0.7 | 0.4 | 0.5 | 0.6 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 0.78 | 0.80 | 1.07 | 0.96 |
T°C (Ol-Sp) | 919.1 | 893.9 | 823.4 | 820.7 | 885.7 | 938.62 | 991.6 | 1003.9 | 948.9 | 931.8 | 891.6 | 931.5 | 921.2 | 933.2 | 942.4 | 913.6 | 861.2 | 812.6 | 846.3 | 821 | 742.7 | 738.1 |
fO2 | −0.988 | −0.765 | −1.498 | −1.246 | −1.1 | −2.48 | −1.3 | −2.1 | −1.3 | −1.8 | −2.5 | −1.9 | −1.6 | −1.9 | −1.1 | −2.8 | −4.4 | −3.3 | −3.01 | −1.49 | −1.73 | −2.78 |
T°C (Al in Ol) | 893–1332 | 1073–1225 |
N-Sample | SiO2 | MgO | FeO | NiO | MnO | CaO | Al2O3 | Cr2O3 | Total | Mg# |
---|---|---|---|---|---|---|---|---|---|---|
298-1 | 41.28 | 52.59 | 4.98 | 0.41 | 0.11 | 0.001 | 0.002 | 99.38 | 95 | |
298-2 | 41.83 | 52.25 | 4.50 | 0.42 | 0.09 | 0.001 | 0.002 | 99.08 | 95 | |
298-3 | 41.26 | 52.20 | 5.68 | 0.42 | 0.12 | 0.002 | 0.004 | 99.68 | 94 | |
298-4 | 41.31 | 52.10 | 5.71 | 0.42 | 0.13 | 0.001 | 0.0118 | 0.002 | 99.68 | 94 |
298-5 | 41.41 | 52.68 | 5.34 | 0.44 | 0.11 | 0.002 | 0.0052 | 0.002 | 99.98 | 95 |
3-6 | 41.08 | 51.19 | 6.95 | 0.37 | 0.11 | 0.001 | 0.0191 | 0.002 | 99.73 | 93 |
3-7 | 41.10 | 51.04 | 6.98 | 0.37 | 0.11 | 0.003 | 0 | 0.001 | 99.60 | 93 |
3-8 | 41.15 | 51.03 | 6.85 | 0.38 | 0.12 | 0.004 | 0.0119 | 0 | 99.54 | 93 |
3-9 | 40.83 | 50.85 | 7.13 | 0.38 | 0.13 | 0.015 | 0.0104 | 0.002 | 99.34 | 93 |
3-10 | 41.13 | 51.17 | 6.92 | 0.38 | 0.10 | 0.003 | 0.0015 | 0 | 99.69 | 93 |
3-11 | 41.22 | 51.02 | 6.89 | 0.37 | 0.11 | 0.004 | 0.0117 | 0.001 | 99.62 | 93 |
3-12 | 41.09 | 51.16 | 6.90 | 0.38 | 0.13 | 0.006 | 0.0005 | 0.001 | 99.66 | 93 |
3-13 | 41.07 | 51.19 | 6.89 | 0.37 | 0.13 | 0.005 | 0.0006 | 99.65 | 93 | |
3-14 | 41.10 | 51.08 | 6.93 | 0.37 | 0.10 | 0.006 | 0.0009 | 99.58 | 93 | |
3-15 | 41.24 | 51.26 | 6.79 | 0.38 | 0.13 | 0.009 | 0.003 | 0.002 | 99.80 | 93 |
305-16 | 41.33 | 53.61 | 3.28 | 0.61 | 98.83 | 97 | ||||
305-17 | 41.38 | 53.86 | 3.45 | 0.69 | 99.38 | 97 | ||||
2-18 | 41.05 | 51.71 | 6.47 | 99.23 | 93 | |||||
973-19 | 40.25 | 50.24 | 8.14 | 0.01 | 98.64 | 92 | ||||
976-20 | 41.43 | 51.26 | 6.90 | 0.02 | 99.61 | 93 | ||||
977-21 | 40.09 | 50.39 | 6.85 | 0.02 | 0.00 | 97.35 | 93 | |||
939-22 | 40.94 | 49.59 | 7.28 | 0.01 | 0.03 | 97.85 | 92 | |||
939-23 | 40.74 | 49.06 | 9.61 | 0.04 | 0.36 | 99.81 | 90 | |||
970-24 | 40.85 | 49.93 | 7.87 | 0.00 | 0.02 | 98.67 | 92 | |||
980-25 | 42.39 | 53.59 | 5.50 | 0.01 | 0.02 | 101.51 | 95 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
N Sample | 6 | 305 | 6 mas | 7 mas | 294 mas | 307 mas | 6 mas | 3 mas | 17 mas | 20 mas | 2 shl |
Os | 6 | 8 | 45 | 51 | 58 | 117 | 49 | 37 | 81 | 46 | 7 |
Ir | 21 | 6 | 26 | 58 | 43 | 82 | 57 | 20 | 35 | 20 | 6 |
Ru | 7 | 14 | 68 | 53 | 116 | 221 | 121 | 59 | 44 | 46 | 20 |
Rh | 7 | 3 | 12 | 10 | 8 | 19 | 24 | 16 | 9 | 11 | 21 |
Pt | 35 | 15 | 39 | 49 | 31 | 54 | 49 | 64 | 46 | 41 | 35 |
Pd | 104 | 48 | 177 | 182 | 104 | 122 | 478 | 97 | 87 | 78 | 903 |
Total | 180 | 94 | 367 | 403 | 360 | 615 | 778 | 293 | 302 | 242 | 992 |
Pt/Ir | 1.67 | 2.5 | 1.5 | 0.84 | 0.72 | 0.66 | 0.86 | 3.20 | 1.31 | 2.05 | 5.83 |
∑IPGE | 34 | 28 | 139 | 162 | 217 | 420 | 227 | 116 | 160 | 112 | 33 |
∑PPGE | 146 | 66 | 228 | 241 | 143 | 195 | 551 | 177 | 142 | 130 | 959 |
IPGE/PPGE | 0.23 | 0.42 | 0.61 | 0.67 | 1.52 | 2.15 | 0.41 | 0.66 | 1.13 | 0.86 | 0.03 |
∑PGE | 180 | 94 | 367 | 403 | 360 | 615 | 778 | 293 | 302 | 242 | 992 |
Cr# (Crt) | 68 | 67 | 65 | 57 | 70 | 69 | 84 | 83 | 75 | ||
Al#(Crt) | 30 | 30 | 42 | 34 | 26 | 27 | 14 | 15 | 22 |
No. an | Os | Ir | Ru | Rh | Fe | Ni | S | As | Sb | O | Total | Os | Ir | Ru | Rh | Fe | Ni | S | As | Sb | O | Ru/ (Ru + Os) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt. % | apfu | |||||||||||||||||||||
1 | 75.01 | 21.95 | 3.38 | 0.72 | 101.06 | 0.39 | 0.11 | 0.03 | 0.01 | |||||||||||||
2 | 74.84 | 20.6 | 5.16 | 0.33 | 0 | 100.93 | 0.39 | 0.11 | 0.05 | 0.01 | ||||||||||||
3 | 79.75 | 20.74 | 2.35 | 0.35 | 103.19 | 0.41 | 0.1 | 0.02 | 0.01 | |||||||||||||
4 | 23.87 | 5.23 | 34.23 | 0.59 | 33.36 | 97.28 | 0.24 | 0.05 | 0.65 | 0.02 | 2 | 0.59 | ||||||||||
5 | 23.21 | 5.18 | 39.55 | 0.6 | 34.33 | 102.87 | 0.23 | 0.05 | 0.73 | 0.01 | 0.00 | 2 | 0.63 | |||||||||
6 | 33.29 | 5.5 | 27.26 | 0.58 | 31.27 | 97.9 | 0.36 | 0.06 | 0.55 | 0.02 | 2 | 0.45 | ||||||||||
7 | 22.92 | 4.3 | 39.85 | 35.23 | 102.3 | 0.22 | 0.05 | 0.73 | 2 | 0.63 | ||||||||||||
8 | 20.65 | 6.86 | 39.48 | 33,15 | 100.14 | 0.21 | 0.07 | 0.75 | 2 | 0.66 | ||||||||||||
9 | 8.94 | 5.76 | 50.87 | 37.82 | 103.39 | 0.08 | 0.05 | 0.85 | 2 | 0.85 | ||||||||||||
10 | 33.62 | 2.93 | 34.3 | 32 | 0.66 | 103.51 | 0.35 | 0.03 | 0,67 | 1.98 | 0.02 | 0.51 | ||||||||||
11 | 49.97 | 2.18 | 20.8 | 30.12 | 103.07 | 0.56 | 0.02 | 0.44 | 2.00 | 0.29 | ||||||||||||
12 | 3.5 | 58.59 | 38.19 | 1.67 | 101.95 | 0.03 | 0.95 | 1.96 | 0.04 | 1 | ||||||||||||
13 | 62.81 | 39.43 | 102,24 | 1.01 | 2 | 1 | ||||||||||||||||
14 | 1.91 | 4.45 | 57.45 | 0,32 | 0.49 | 36.31 | 0.92 | 101,85 | 0.02 | 0.04 | 0,99 | 0,01 | 0.01 | 1.98 | 0.02 | 0.97 | ||||||
15 | 92.73 | 0 | 8.57 | 0.47 | 1.2 | 0.19 | 103.16 | 0.79 | 0.14 | 0,00 | 0.01 | 0.06 | ||||||||||
16 | 37.98 | 31.17 | 29.55 | 0.88 | 1.61 | 101.19 | 0.29 | 0.23 | 0.42 | 0.02 | 0.04 | |||||||||||
17 | 28.79 | 27.29 | 37.06 | 4.4 | 0.71 | 1.15 | 99.4 | 0.21 | 0.2 | 0.51 | 0.06 | 0.02 | ||||||||||
18 | 33.33 | 11.19 | 53.61 | 2.12 | 100.25 | 0.19 | 0.06 | 0.6 | 0.14 | |||||||||||||
19 | 34.25 | 9.51 | 54.3 | 1.57 | 3.19 | 102.82 | 0.17 | 0.05 | 0.54 | 0.05 | 0.19 | |||||||||||
20 | 88.01 | 11.34 | 1.09 | 2.01 | 0.2 | 0.66 | 103.31 | 0.8 | 0.1 | 0.03 | 0.06 | |||||||||||
21 | 59.46 | 16.78 | 21.62 | 0.58 | 3.06 | 101.5 | 0.46 | 0.13 | 0.32 | 0.01 | 0.07 | |||||||||||
22 | 2.52 | 2.11 | 93.14 | 2.55 | 100.32 | 0.01 | 0.01 | 0.93 | 0.04 | |||||||||||||
23 | 3.01 | 3.67 | 52.84 | 0.99 | 36.78 | 3.3 | 100.59 | 0.03 | 0.03 | 0.88 | 0.03 | 1.93 | 0.07 | 0.95 | ||||||||
24 | 60.54 | 0.32 | 0.46 | 38.33 | 99.65 | 1 | 0.01 | 0.01 | 2 | 1 | ||||||||||||
25 | 47.44 | 4.97 | 22.55 | 0.37 | 27.28 | 102.61 | 0.59 | 0.06 | 0.52 | 0.02 | 2 | 0.32 | ||||||||||
26 | 60.93 | 38.64 | 99.57 | 1 | 2 | 1 | ||||||||||||||||
27 | 9.25 | 3.47 | 54.02 | 34.92 | 101.66 | 0.09 | 0.03 | 0.98 | 2 | 0.85 | ||||||||||||
28 | 60.28 | 6.17 | 6.88 | 0.37 | 1.04 | 23.79 | 98.53 | 0.85 | 0.09 | 0.18 | 0.02 | 0.05 | 2 | 0.1 | ||||||||
29 | 59.89 | 0.46 | 37.67 | 98.02 | 1.01 | 0.01 | 2 | 1 | ||||||||||||||
30 | 58.69 | 2.1 | 2.31 | 12.51 | 23.25 | 98.86 | 0.29 | 0.02 | 0.02 | 0.37 | 0.30 | |||||||||||
31 | 1.18 | 59.23 | 1.44 | 0.35 | 0.81 | 11.38 | 24.82 | 99.21 | 0.03 | 0.41 | 0.1 | 0.63 | 0.37 | |||||||||
32 | 1.8 | 56.58 | 5.84 | 0.6 | 12.85 | 19.07 | 1 | 97.74 | 0.01 | 0.29 | 0.06 | 0.01 | 0.39 | 0.25 | 0.01 | |||||||
33 | 48.23 | 11.47 | 3.91 | 16.81 | 20.93 | 101.35 | 0.21 | 0.09 | 0.03 | 0.44 | 0.23 | |||||||||||
34 | 61.04 | 2.53 | 0.87 | 11.81 | 23.78 | 1.16 | 0.30 | 0.02 | 0.01 | 0.35 | 0.30 | 0.01 | ||||||||||
35 | 4.21 | 3.15 | 10 | 37.77 | 22.35 | 25.66 | 103.14 | 0.02 | 0.01 | 0.08 | 0.3 | 0,31 | 0.28 | |||||||||
36 | 21.34 | 10.58 | 26.92 | 0.57 | 28.95 | 6.5 | 14.23 | 109.09 | 0.17 | 0.08 | 0.40 | 0.01 | 0.74 | 0.31 | 0.29 |
No. Mineral | 2a-12 (Fe,Ni)9S8 | 6-12 Cu2S | 6-13 Ni3S2 | 3-13 NiS | 6-13 Ni3S2 | 4-12 Ni3S2 | 3-13 Ni3As2 |
---|---|---|---|---|---|---|---|
Ni | 38.9 | 67.5 | 64.16 | 72.82 | 72.19 | 64.24 | |
Fe | 25.58 | ||||||
Cu | 64.89 | ||||||
Co | 0.87 | ||||||
Os | 4.34 | ||||||
Ir | 1.18 | ||||||
Ru | 8.01 | 5.29 | |||||
Rh | 0.42 | ||||||
S | 33.08 | 19.8 | 25.81 | 33.82 | 27.25 | 27.2 | |
As | 0.55 | 36.01 | |||||
O | 1.06 | ||||||
Total | 98.43 | 99.28 | 99.57 | 97.98 | 100.07 | 99.39 | 100.25 |
Incl. in olivine | PGE bearing, intergrowth with PGM | PGE-free, individual grains |
Cr-Spinels | Al′ | Cr#′ | Mg′ | Parental Melt (wt. %) | References | |
---|---|---|---|---|---|---|
1 | I group | 24–60 | 36–74 | 45–74 | Al2O3, 13–18; TiO2, 0–0.14 FeO/MgO, 0.2–0.7 | In this article |
2 | II group | 14–23 | 74–81 | 32–48 | Al2O3, 10–12; TiO2, 0–0.35 FeO/MgO, 0.4–0.85 | In this article |
3 | III group | 13–27 | 68–81 | 28–35 | Al2O3, 10–13; TiO2, 0.08–0.13 FeO/MgO, 0.7–1 | In this article |
4 | Ospa-Kitoy medium Al′ | 24-–41 | 59–75 | 43–70 | Al2O3, 12–14; TiO2, 0.01–0.44 FeO/MgO, 0.5–1.1 | [38] |
5 | Ospa-Kitoy low Al′ | 9–21 | 77–90 | 23–59 | Al2O3, 8–11; TiO2, 0.01–0.48 FeO/MgO, 0.5–2.4 | [38] |
6 | MORB | 35–64 | 29–57 | 57–59 | Al2O3 13–18; TiO2, 0.3–1.7 FeO/MgO, 0.5–0.7 | [18,69]; |
7 | BAB | 61 | 34 | 75 | Al2O3, 17.6; TiO2, 0.4 FeO/MgO, 0.4 | [18] |
8 | OIB | 28 | 61 | 57 | Al2O3, 12; TiO2, 1.6 FeO/MgO, 0.6 | [18] |
9 | IAB | 15–29 | 61–68 | 58–69 | Al2O3, 9–12; TiO2, 0.4–0.7 FeO/MgO, 0.3–0.5 | [18] |
10 | IABon, IAT | 5–19 | 74–89 | 58–75 | Al2O3, 6–10; TiO2, 0.08–0.4 FeO/MgO, 0.2–0.4 | [18] |
11 | LIP | 13–35 | 52–72 | 35–61 | Al2O3, 8–13; TiO2, 0.2–0.5 FeO/MgO, 0.4–1.2 | [18] |
12 | Abissal peridotite | 45–77 | 20–50 | 64–77 | Al2O3, 15–19; TiO2, 0.08–0.1 FeO/MgO, 0.4–0.5 | [70] |
13 | Chromite in ophiolite mantle | 40–51 | 44–52 | 63–74 | Al2O3, 14–16; TiO2, 0.2–0.5 FeO/MgO, 0.3–0.6 | [3] |
14 | Chromite in ophiolite mantle | 21–28 | 67–74 | 56–68 | Al2O3, 10–12; TiO2, 0.1–0.3 FeO/MgO, 0.54–0.6 | [3,48] |
15 | Chromite in Alaskan type | 11–14 | 62–70 | 45–56 | Al2O3, 8–9; TiO2, 0.6–0.9 FeO/MgO, 0.4–0.5 | [71] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia). Minerals 2020, 10, 141. https://doi.org/10.3390/min10020141
Kiseleva ON, Airiyants EV, Belyanin DK, Zhmodik SM. Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia). Minerals. 2020; 10(2):141. https://doi.org/10.3390/min10020141
Chicago/Turabian StyleKiseleva, Olga N., Evgeniya V. Airiyants, Dmitriy K. Belyanin, and Sergey M. Zhmodik. 2020. "Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia)" Minerals 10, no. 2: 141. https://doi.org/10.3390/min10020141
APA StyleKiseleva, O. N., Airiyants, E. V., Belyanin, D. K., & Zhmodik, S. M. (2020). Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia). Minerals, 10(2), 141. https://doi.org/10.3390/min10020141