Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples
2.3. Analytical Methods
3. Results and Discussion
3.1. Chemical Composition
3.2. Mineralogical Composition
3.3. Particle Size Distribution
3.4. Rheological Properties
3.4.1. Plasticity
3.4.2. Thermal Evolution
3.4.3. Dilatometry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Murray, H.H. Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, p. 188. [Google Scholar]
- Schroeder, P.A.; Erickson, G. Kaolin: From ancient porcelains to nanocomposites. Elements 2014, 10, 177–182. [Google Scholar] [CrossRef]
- Kogel, J.E. Mining and Processing Kaolin. Elements 2014, 10, 189–193. [Google Scholar] [CrossRef]
- Silva, F.A.N.G.; Luz, A.B.; Sampaio, J.A.; Bertolino, L.C.; Scorzelli, R.B.; Duttine, M.; da Silva, F.T. Technological characterization of kaolin: Study of the case of the Borborema–Seridó region (Brazil). Appl. Clay Sci. 2009, 44, 189–193. [Google Scholar] [CrossRef]
- Hernández, A.C.; Sánchez-Espejo, R.; Meléndez, W.; González, G.; López-Galindo, A.; Viseras, C. Characterization of Venezuelan kaolins as health care ingredients. Appl. Clay Sci. 2019, 175, 30–39. [Google Scholar] [CrossRef]
- Dill, H.G. Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth Sci. Rev. 2016, 161, 16–129. [Google Scholar] [CrossRef]
- Dondi, M.; Raimondo, M.; Zanelli, C. Clays and bodies for ceramic tiles: Reappraisal and technological classification. Appl. Clay Sci. 2014, 96, 91–109. [Google Scholar] [CrossRef]
- Pruett, R.J. Kaolin deposits and their uses: Northern Brazil and Georgia, USA. Appl. Clay Sci. 2016, 131, 3–13. [Google Scholar] [CrossRef]
- Miralles, J.C. Les bauxitas del NE de Espana. Congr. Geol. Int. 1954, 12, 199–223. [Google Scholar]
- San Miguel de la Cámara, M. Geología de las bauxitas españolas. R. Soc. Esp. Hist. Nat. 1954, 579–607, Spec. issue honoring Prof. E. Hernández-Pacheco. [Google Scholar]
- Anadón, P.; Cabrera, L.; Guimerà, J.; Santanach, P. Paleogene strike-slip deformation and sedimentation along the southeastern margin of the Ebro Basin. In Strike-Slip Deformation, Basin Formation and Sedimentation; Biddle, K.T., Christie-Blick, N., Eds.; SEPM: Broken Arrow, OK, USA, 1985; Volume 37, pp. 303–318. [Google Scholar]
- Jones, M.A.; Heller, P.L.; Roca, E.; Garcés, M.; Cabrera, L. Time lag of syntectonic sedimentation across an alluvial basin: Theory and example from the Ebro Basin, Spain. Basin Res. 2004, 16, 467–488. [Google Scholar] [CrossRef]
- Jiménez-Moreno, G.; Aziz, H.A.; Rodríguez-Tovar, F.J.; Pardo-Igúzquiza, E.; Suc, J.P. Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 252, 601–616. [Google Scholar] [CrossRef]
- ICGC. ICGC-Vissir3. Available online: http://www.icc.cat/vissir3/ (accessed on 20 January 2020).
- Teixell, A. Desarrollo de un anticlinorio por transpresión, aislando una cuenca sedimentaria marginal (borde oriental de la cuenca del Ebro, Tarragona). Rev. Soc. Geol. España 1988, 1, 229–238. [Google Scholar]
- Molina, J.M. A review of karst bauxites and related paleokarsts in Spain. Acta Geologica Hispanica 1991, 34, 179–194. [Google Scholar]
- Yuste, A.; Bauluz, B.; Mayayo, M.J. Origin and geochemical evolution from ferrallitized clays to karst bauxite: An example from the Lower Cretaceous of NE Spain. Ore Geol. Rev. 2017, 84, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, N.; Proenza, J.A.; Villanova-de-Benavent, C.; Aiglsperger, T.; Bover-Arnal, T.; Torró, L.; Salas, R.; Dziggel, A. Geochemistry and Mineralogy of Rare Earth Elements (REE) in Bauxitic Ores of the Catalan Coastal Range, NE Spain. Minerals 2018, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Hinckley, D. Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays Clay Miner. 1965, 11, 229–235. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, A. Plasticity chart for the classification of cohesive soils. Trans. Am. Soc. Civ. Eng. 1948, 113, 783–811. [Google Scholar]
- UNE 103104: 1993. Determinación del Limite Plástico de un Suelo; AENOR: Madrid, Spain, 1993.
- UNE 7-377-75. Determinación del Límite Líquido de un Suelo por el Método de la Cuchara. Instituto Nacional de Racionalización y Normalización (Espanya); AENOR: Madrid, Spain, 1976.
- Garcia-Valles, M.; Pi, T.; Alfonso, P.; Canet, C.; Martinez, S.; Jimenez-Franco, A.; Tarrago, M.; Hernández-Cruz, B. Kaolin from Acoculco (Puebla, Mexico) as raw material: Mineralogical and thermal characterization. Clay Miner. 2015, 50, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Ece, O.I.; Nakagawa, Z.; Schroed, P. Alteration of volcanic rocks and genesis of kaolin deposits in the Sile region, Northern Istanbul, Turkey. Clay Mineralogy. Clays Clay Miner. 2003, 51, 675–688. [Google Scholar] [CrossRef]
- Celik, H. Technological characterization and industrial application of to Turkish clays for the ceramic industry. Appl. Clay Sci. 2010, 50, 245–254. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Srasra, E.; Zargouni, F. The use of Tunisian Barremian clay in the tradicional ceramic industry: Optimization of ceramic properties. Appl. Clay Sci. 2008, 42, 125–129. [Google Scholar] [CrossRef]
- Bennour, A.; Mahmoudi, S.; Srasra, E.; Boussen, S.; Htira, N. Composition, firing behavior and ceramic properties of the Sejnène clays (Northwest Tunisia). Appl. Clay Sci. 2015, 115, 30–38. [Google Scholar] [CrossRef]
- Barrachina, E.; Calvet, I.; Fraga, D.; Carda, J.B. Ceramic porcelain stoneware production with Spanish clays purified by means of the removal of iron compounds and organic matter using physical methods. Appl. Clay Sci. 2017, 143, 258–264. [Google Scholar] [CrossRef]
- Marques, R.; Dias, I.; Prudècio, M.I.; Rocha, F. Upper Cretaceous clayey levels from western Portugal (Aveiro and Taveiro regions): Clay mineral and trace-element distribution. Clays Clay Miner. 2011, 59, 315–327. [Google Scholar] [CrossRef]
- Raghavan, P.; Chandrasekhar, S.; Damodaran, A.D. Value addition of paper coating grade kaolins by the removal of ultrafine coloring impurities. Int. J. Miner. Process. 1997, 50, 307–316. [Google Scholar] [CrossRef]
- Jepson, W.B. Structural iron in kaolinites and in associated ancillary minerals. In Iron in Soils and Clay Minerals; Stucki, J.W., Goodman, B.A., Schwertmann, U., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 467–536. [Google Scholar]
- Gougazeh, M.; Buhl, J.C.H. Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit, southern Jordan, for its possible utilization. Clay Miner. 2010, 45, 301–314. [Google Scholar] [CrossRef]
- Kreimeyer, R. Some notes on the firing color of clay bricks. Appl. Clay Sci. 1987, 2, 175–183. [Google Scholar] [CrossRef]
- Subari, S.; Wahyudi, T. Improving tapin kaolin quality for white ware ceramic. Indones. Min. J. 2014, 17, 87–97. [Google Scholar]
- Worrall, W.E. Clays and Ceramic Raw Materials; Applied Science Publishers, Elselvier: London, UK, 1986; p. 239. [Google Scholar]
- Aparicio, P.; Galán, E. Mineralogical interference on kaolinite crystallinity index measurements. Clays Clay Miner. 1999, 47, 12–27. [Google Scholar] [CrossRef]
- Vaculíková, L.; Plevová, E.; Vallová, S.; Koutník, I. Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater. 2011, 8, 59–67. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Monograph 4; Mineralogical Society: London, UK, 1974; p. 539. [Google Scholar]
- Liu, H.; Shang, J.; Chen, X.; Kamke, F.A.; Guo, K. The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla. Wood Sci. Technol. 2014, 48, 373–392. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, A.; Wang, S.; Zhang, Q. Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. BioResources 2016, 11, 4006–4016. [Google Scholar] [CrossRef] [Green Version]
- Giese, R.F. Kaolin minerals: Structures and stabilities. In Hydrous Phyllosilicates; Bailey, S.W., Ed.; Reviews in Mineralogy 19; Mineralogical Society of America: Washington, DC, USA, 1988; pp. 29–66. [Google Scholar]
- Farmer, V.C. Infrared spectroscopy. In Data Handbook for Clay Materials and Other Non-Metallic Minerals; van Olphen, H., Fripiat, J.J., Eds.; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Schroeder, P.A. Infrared Spectroscopy in clay science. In CMS Workshop Lectures; Rule, A., Guggenheim, S., Eds.; Teaching Clay Science; The Clay Mineral Society: Aurora, CO, USA, 2002; Volume 11, pp. 181–206. [Google Scholar]
- Aroke, U.O.; Abdulkarim, A.; Ogubunka, R.O. Fourier-transform infrared characterization of kaolin, granite, bentonite and barite. ATBU J. Environ. Technol. 2013, 6, 42–53. [Google Scholar]
- Diko, M.; Ekosse, G.; Ogola, J. Fourier transform infrared spectroscopy and thermal analyses of kaolinitic clays from South Africa and Cameroon. Acta Geodyn. Geomater. 2016, 13, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Bukalo, N.N.; Ekosse, G.I.E.; Odiyo, J.O.; Ogola, J.S. Fourier Transform Infrared Spectroscopy of Clay Size Fraction of Cretaceous-Tertiary Kaolins in the Douala Sub-Basin, Cameroon. Open Geosci. 2017, 9, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Worasith, N.; Goodman, B.A.; Neampan, J.; Jeyachoke, N.; Thiravetyan, P. Characterization of modified kaolin from the Ranong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques. Clay Miner. 2011, 46, 539–559. [Google Scholar] [CrossRef]
- Prasad, M.S.; Reid, K.J.; Murray, H.H. Kaolin: Processing, properties and application. Appl. Clay Sci. 1991, 6, 87–119. [Google Scholar] [CrossRef]
- Day, R.W. Geotechnical and Foundation Engineering; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Bartolomé, J.F. El Caolín: Composición, estructura, génesis y aplicaciones. Bol. Soc. Esp. Ceram. Vidr. 1997, 36, 7–20. [Google Scholar]
- Smykatz, K. Differential Thermal Analysis, Application and Results in Mineralogy; Springer: New York, NY, USA, 1974; p. 185. [Google Scholar]
- Todor, D. Thermal Analysis of Minerals; Traduc, S.M., Ed.; Abacus Press: Tunbridge Wells, UK, 1976; p. 256. [Google Scholar]
- Brindley, G.W.; Nakahira, M. The kaolinite–mullite reaction series: II. Metakolin. J. Am. Ceram. Soc. 1959, 42, 314–318. [Google Scholar] [CrossRef]
- Hu, P.; Yang, H. Insight into the physicochemical aspects of kaolins with different morphologies. Appl. Clay Sci. 2013, 74, 58–65. [Google Scholar] [CrossRef]
- SACMI. Asociación Española de Técnicos Cerámicos. In Tecnología Cerámica Aplicada; Faenza Editrice Iberica: Castellón de la Plana, Spain, 2004. [Google Scholar]
- Chakraborty, A.K.; Ghosh, D.K. Kaolinite–Mullite reaction series: The development and significance of a binary aluminosilicate phase. J. Am. Ceram. Soc. 1991, 74, 1401–1406. [Google Scholar] [CrossRef]
- Abou-Sekkina, M.M.; Abd-El-Aziz, M.A.; Khalil, N.M.; Shalma, O.A. Phase constitution of kaolin-based refractory castables containing spinel or mullite (preformed and in situ) additives. Elixir Appl. Chem. 2011, 34, 2398–2403. [Google Scholar]
- Guatame-Garcia, A.; Buxton, M. Prediction of Soluble Al2O3 in Calcined Kaolin Using Infrared Spectroscopy and Multivariate Calibration. Minerals 2018, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Parmelee, C.W.; Rodríguez, A.R. Catalytic Mullitization of Kaolinite by Metallic Oxide. J. Am. Ceram. Soc. 1942, 25, 1–10. [Google Scholar] [CrossRef]
Samples | Oxides | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | TiO2 | K2O | CaO | MgO | Na2O | P2O5 | LOI | SiO2/Al2O3 | Al2O3/Fe2O3 | |
Hj-1 | 60.83 | 20.30 | 8.03 | 1.01 | 0.59 | 0.28 | 0.09 | 0.00 | 0.08 | 8.79 | 3.00 | 2.53 |
Hj-2 | 59.03 | 21.85 | 7.90 | 1.18 | 0.27 | 0.32 | 0.12 | 0.00 | 0.02 | 9.31 | 2.70 | 2.77 |
Hj-3 | 61.88 | 14.56 | 12.12 | 1.04 | 0.22 | 1.33 | 0.23 | 0.01 | 0.12 | 8.49 | 4.25 | 1.20 |
Hj-4 | 53.71 | 31.56 | 1.30 | 0.53 | 0.23 | 0.39 | 0.05 | 0.00 | 0.26 | 11.97 | 1.70 | 24.28 |
Hj-5 | 46.79 | 38.11 | 0.91 | 0.25 | 0.14 | 0.11 | 0.00 | 0.00 | 0.23 | 13.49 | 1.23 | 41.88 |
Hj-6 | 56.08 | 25.50 | 4.83 | 1.12 | 1.02 | 0.61 | 0.19 | 0.05 | 0.05 | 10.55 | 2.20 | 5.28 |
Hj-7 | 75.02 | 14.39 | 1.17 | 0.98 | 0.23 | 0.16 | 0.12 | 0.00 | 0.02 | 7.91 | 5.21 | 12.30 |
Hj-8 | 71.18 | 16.13 | 3.36 | 1.07 | 0.2 | 0.7 | 0.08 | 0.00 | 0.11 | 7.17 | 4.41 | 4.80 |
Hj-9 | 63.78 | 21.86 | 3.79 | 1.18 | 0.15 | 0.21 | 0.14 | 0.00 | 0.03 | 8.86 | 2.92 | 5.77 |
Pb-1 | 57.19 | 23.83 | 6.91 | 1.15 | 0.68 | 0.2 | 0.21 | 0.07 | 0.03 | 9.73 | 2.40 | 3.45 |
Pb-2 | 69.8 | 15.87 | 5.17 | 1.01 | 0.71 | 0.25 | 0.22 | 0.02 | 0.03 | 6.92 | 4.40 | 3.07 |
Pb-3 | 48.25 | 27.20 | 9.99 | 1.00 | 1.12 | 0.38 | 0.33 | 0.07 | 0.04 | 11.62 | 1.77 | 2.72 |
Pb-4 | 58.13 | 24.90 | 3.48 | 1.21 | 0.53 | 0.30 | 0.22 | 0.05 | 0.03 | 11.15 | 2.33 | 7.16 |
Pb-5 | 51.53 | 24.89 | 9.76 | 1.03 | 1.34 | 0.51 | 0.48 | 0.33 | 0.05 | 10.08 | 2.07 | 2.55 |
Pb-6 | 57.83 | 23.59 | 3.62 | 1.09 | 0.83 | 0.79 | 0.33 | 0.17 | 0.05 | 11.73 | 2.45 | 6.52 |
Pb-7 | 68.88 | 15.95 | 3.47 | 1.34 | 0.80 | 1.13 | 0.40 | 0.09 | 0.03 | 7.92 | 4.32 | 4.60 |
Pb-8 | 49.36 | 27.99 | 7.05 | 1.06 | 0.79 | 0.42 | 0.41 | 0.06 | 0.05 | 12.81 | 1.76 | 3.97 |
Pb-9 | 56.53 | 23.32 | 10.39 | 0.00 | 0.64 | 0.40 | 0.31 | 0.00 | 0.00 | 8.40 | 2.42 | 2.24 |
Sample | Quartz | Kaolinite | K-Feldspar | Illite | Hematite | Calcite | Crystallite Size |
---|---|---|---|---|---|---|---|
Hj-1 | 73 | 20 | - | - | 7 | - | 25 |
Hj-2 | 72 | 22 | - | - | 6 | - | 25 |
Hj-3 | 68 | 15 | 2 | - | 13 | 2 | 4 |
Hj-4 | 48 | 47 | 2 | - | 2 | 1 | 100 |
Hj-5 | 21 | 76 | - | - | 3 | - | 73 |
Hj-6 | 57 | 37 | 3 | - | 2 | 1 | 23 |
Hj-7 | 84 | 14 | 2 | - | - | - | 22 |
Hj-8 | 79 | 16 | 1 | - | 3 | 1 | 27 |
Hj-9 | 72 | 24 | 2 | - | 2 | - | 17 |
Pb-1 | 60 | 32 | 3 | - | 5 | - | 24 |
Pb-2 | 84 | 15 | - | - | 1 | - | 19 |
Pb-3 | 43 | 45 | 4 | - | 8 | - | 22 |
Pb-4 | 61 | 34 | 3 | - | 2 | - | 23 |
Pb-5 | 53 | 32 | 4 | 6 | 5 | - | 23 |
Pb-6 | 59 | 32 | 2 | 7 | - | - | 23 |
Pb-7 | 58 | 26 | 4 | 11 | 1 | - | 22 |
Pb-8 | 46 | 50 | - | - | 4 | - | 24 |
Pb-9 | 43 | 49 | 2 | - | 6 | - | 24 |
Wave Number (cm−1) | |||||
---|---|---|---|---|---|
Theoretical Kaolinite | Hj-4 | Hj-5 | Pb-6 | Pb-7 | Assignment |
3670-56 | 3694 | 3696 | 3694 | 3696 | Al–OH stretching |
3685 | 3682 | ||||
3645 | 3651 | 3653 | 3651 | 3655 | Al–OH stretching |
3620 | 3622 | 3622 | 3622 | 3623 | Al–OH stretching |
1638 | 1637 | 1638 | 1616 | H–O–H stretching | |
1117-05 | 1112 | 1112 | 1112 | 1113 | Si–O stretching |
1035-30 | 1018 | 1020 | 1016 | 1018 | Si–O stretching |
1019-05 | 995 | 945 | 939 | 995 | Si–O quartz |
918-09 | 916 | 920 | 919 | 916 | OH deformation |
800-784 | 805 | 805 | 800 | 810 | OH deformation |
700-686 | 701 | 705 | 705 | 698 | Si–O quartz |
524-35 | 500 | 500 | 501 | 524 | Si–O–Al stretching |
475-68 | 464 | Si–O−Si bending | |||
430 | 419 | Si–O bending |
Sample | Liquid Limit (%) | Plastic Limit (%) | Plastic Index (%) |
---|---|---|---|
Hj-1 | 19.30 | 14.80 | 4.5 |
Hj-2 | 18.75 | 13.25 | 5.5 |
Hj-3 | 22.62 | 17.82 | 4.8 |
Hj-5 | 29.67 | 25.96 | 3.7 |
Hj-7 | 17.90 | 12.10 | 5.8 |
Hj-9 | 21.40 | 15.02 | 6.4 |
Pb-1 | 31.22 | 24.52 | 6.7 |
Pb-2 | 30.84 | 20.31 | 10.5 |
Pb-3 | 47.37 | 38.18 | 9.2 |
Pb-4 | 31.86 | 24.57 | 7.3 |
Pb-5 | 44.15 | 31.60 | 12.5 |
Pb-6 | 50.58 | 30.40 | 20.2 |
Pb-7 | 46.74 | 37.8 | 8.94 |
Pb-8 | 31.86 | 24.57 | 7.29 |
Pb-9 | 34.00 | 17.20 | 16.8 |
Sample | Weight Loss (%) | Temperature (°C) | ||
---|---|---|---|---|
1st | 2nd | Endothermic | Exothermic | |
Hj-1 | 0.26 | 6.16 | 531 | 985 |
Hj-2 | 0.86 | 7.01 | 533 | 971 |
Hj-4 | 1.98 | 7.45 | 566 | 989 |
Hj-5 | 1.33 | 9.32 | 569 | 992 |
Hj-6 | 1.14 | 7.97 | 534 | 970 |
Hj-7 | 0.51 | 4.37 | 520 | 968 |
Hj-8 | 0.36 | 5.60 | 528 | 977 |
Hj-9 | 0.99 | 6.89 | 530 | 964 |
Pb-1 | 0.96 | 7.14 | 530 | 964 |
Pb-2 | 0.98 | 4.45 | 520 | 967 |
Pb-3 | 2.43 | 7.90 | 536 | 963 |
Pb-4 | 1.86 | 7.49 | 530 | 965 |
Pb-5 | 1.92 | 7.65 | 534 | 965 |
Pb-6 | 2.42 | 8.54 | 537 | 965 |
Pb-7 | 1.47 | 6.30 | 529 | 966 |
Pb-8 | 3.09 | 8.51 | 531 | 953 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Valles, M.; Alfonso, P.; Martínez, S.; Roca, N. Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals 2020, 10, 142. https://doi.org/10.3390/min10020142
Garcia-Valles M, Alfonso P, Martínez S, Roca N. Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals. 2020; 10(2):142. https://doi.org/10.3390/min10020142
Chicago/Turabian StyleGarcia-Valles, Maite, Pura Alfonso, Salvador Martínez, and Núria Roca. 2020. "Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain)" Minerals 10, no. 2: 142. https://doi.org/10.3390/min10020142
APA StyleGarcia-Valles, M., Alfonso, P., Martínez, S., & Roca, N. (2020). Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals, 10(2), 142. https://doi.org/10.3390/min10020142