Determination of Metal Concentration in Road-Side Trees from an Industrial Area Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Wood Sample Preparation for LA-ICP-MS Analysis
2.3. Preparation of Matrix Matched Standard for Quantitative LA-ICP-MS Analysis
2.4. Experimental Conditions of LA-ICP/MS
2.5. Soil Sample Preparation and Metal Analysis
2.6. Atmospheric Monitoring Data and Statistics
3. Results
3.1. Metal Distribution in the Annual ring of Roadside Trees
3.2. Monitoring Data of Atmospheric Metals
3.3. Metal Concentration in Surface Soil
3.4. Tree Growth and Climate Condition
4. Discussion
4.1. Air Pollution Correlation with Metal Concentrations in Annual Rings of Trees
4.1.1. Metal Concentration in the Tree Species
4.1.2. Source of Atmospheric Metals and Their Concentration in Tree Rings
4.2. Distribution of Metals in Topsoil and in Tree Rings
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gray, A.L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 1985, 110, 551–556. [Google Scholar] [CrossRef]
- Becker, J.S.; Sela, H.; Dobrowolska, J.; Zoriy, M.; Becker, J.S. Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles. Int. J. Mass Spectrom. 2008, 270, 1–7. [Google Scholar] [CrossRef]
- Kylander, M.E.; Weiss, D.J.; Jeffries, T.E.; Kober, B.; Dolgopolova, A.; Garcia-Sanchez, R.; Coles, B.J. A rapid and reliable method for Pb isotopic analysis for peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening. Anal. Chim. Acta 2007, 582, 116–124. [Google Scholar] [CrossRef]
- Cooper, H.K.; John, M.; Duke, M.; Simonetti, A.; Chen, G.C. Trace element and Pb isotope provenance analyses of native copper in northwestern North America: Results of a recent pilot study using INAA, ICP-MS, and LA-MC-ICP-MS. J. Archaeol. Sci. 2008, 35, 1732–1747. [Google Scholar] [CrossRef]
- Baes, C.F.; McLaughlin, S.B. Trace elements in tree rings: Evidence of recent and historical air pollution. Science 1984, 224, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Watmough, S.A.; Hutchinson, T.C.; Evans, R.D. Development of solid calibration standards for trace elemental analyses of tree rings by laser ablation inductively coupled plasma-mass spectrometry. Environ. Sci. Technol. 1998, 32, 2185–2190. [Google Scholar] [CrossRef]
- Märten, A.; Berger, D.; Köhler, M.; Merten, D. The dendroanalysis of oak trees as a method of biomonitoring past and recent contamination in an area influenced by uranium mining. Environ. Sci. Pollut. Res. 2015, 22, 19417–19425. [Google Scholar] [CrossRef]
- Brabander, D.J.; Keon, N.; Stanley, R.H.; Hemond, H.F. Intra-ring variability of Cr, As, Cd, and Pb in red oak revealed by secondary ion mass spectrometry: Implications for environmental biomonitoring. Proc. Natl. Acad. Sci. USA 1999, 96, 14635–14640. [Google Scholar] [CrossRef] [Green Version]
- Padilla, K.L.; Anderson, K.A. Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere 2002, 49, 575–585. [Google Scholar] [CrossRef]
- Gough, L.; Ridley, W.I. Laser Ablation ICP-Mass Spectrometry—A New Tool for Analyzing Metals in Tree Rings; Fact Sheet 2004–3031; USGS: Denver, CO, USA, 2004. [Google Scholar]
- Witte, K.M.; Wanty, R.B.; Ridley, W.I. Engelmann Spruce (Picea engelmanni) as a biological monitor of changes in soil metal loading related to past mining activity. Appl. Geochem. 2004, 19, 1367–1376. [Google Scholar] [CrossRef]
- MacDonald, H.C.; Laroque, C.P.; Fleming, E.B.; Gherase, M.R. Dendroanalysis of metal pollution from the Sydney Steel Plant in Sydney, Nova Scotia. Dendrochronologia 2011, 29, 9–15. [Google Scholar] [CrossRef]
- Navais, C.; Freitas, H. Chapter 15. Tree rings and dendroanalysis. In Metals in the Environment: Analysis by Biodiversity, 1st ed.; Prasad, M.N.V., Ed.; CRC Press: New York, NY, USA, 2001; p. 338. [Google Scholar]
- Monticelli, D.; Iorio, A.D.; Ciceri, E.; Castelletti, A.; Dossi, C. Tree ring microanalysis by LA-ICP-MS for environmental monitoring: Validation or refutation? Two case histories. Microchim. Acta 2009, 164, 139–148. [Google Scholar] [CrossRef]
- Novak, M.; Mikova, J.; Krachler, M.; Kosler, J.; Erbanova, L.; Prechova, E.; Jackova, I.; Fottova, D. Radial distribution of lead and lead isotopes in stem wood of Norway spruce: A reliable archive of pollution trends in Central Europe. Chemochim. Cosmochim. Acta 2010, 74, 4207–4218. [Google Scholar] [CrossRef]
- Gartner, B.L. Chapter 6. patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In Plant Stems: Physiology and Functional Morphology, 1st ed.; Academic Press: London, UK, 1995; pp. 125–149. [Google Scholar]
- Bukatka, A.R.; Kyser, T.K. Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability. Sci. Total Environ. 2008, 390, 275–286. [Google Scholar] [CrossRef]
- Korea Industrial Complex Corporation. Available online: http://www.e-cluster.net (accessed on 15 December 2015).
- Korea Forest Service. Available online: http://forest.go.kr (accessed on 27 December 2015).
- Hoffman, E.; Liidke, C.; Scholze, H. Is laser-ablation-ICP-MS an alternative to solution analysis of solid samples? Fresenius J. Anal. Chem. 1997, 359, 394–398. [Google Scholar] [CrossRef]
- Prohaska, T.; Stadlbauer, C.; Winmer, R.; Stingeder, B.; Latkoczy, C.; Hoffmann, E.; Stephanowitz, H. Investigation of element variability in tree-rings of young Norway spruce by laser-ablation-ICPMS. Sci. Total Environ. 1998, 219, 29–39. [Google Scholar] [CrossRef]
- Perone, A.; Cocozza, C.; Cherubini, P.; Bachmann, O.; Guillong, M.; Lasserr, B.; Marchetti, M.; Tognetti, R. Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environ. Pollut. 2018, 233, 278–289. [Google Scholar] [CrossRef]
- Danek, M.; Bell, T.; Laroque, C.P. Some considerations in the reconstruction of lead levels using laser ablation: Lessons from the design stage of an urban dendrochemistry study, St. John’s, Canada. Geochronometria 2015, 42, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.G.; Chon, H.K.; Jung, M.C. Heavy metal contamination in the vicinity of the Caduk Au–Ag–Pb–Zn mine in Korea. Appl. Geochem. 2001, 16, 1377–1386. [Google Scholar] [CrossRef]
- Chon, H.T.; Lee, J.S.; Lee, J.U. Heavy metal contamination of soil, its risk assessment and bioremediation. Geosystem. Eng. 2011, 14, 191–206. [Google Scholar] [CrossRef]
- Kloke, A. Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. In Effects of Air-borne Pollution on Vegetation, Proceedings of the United Nations-ECE Symp. Warsaw, Poland, 20–24 August 1979; UNECE: Geneva, Switzerland, 1979; p. 192. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Lukaszewski, Z.; Siwecki, R.; Opydo, J.; Zembrzuski, W. The effect of industrial pollution on Zinc, Cadmium and Copper concentration in the xylem rings of Scot’s pine (Pinus sylvestris L.) and in the soil. Trees 1988, 2, 1–6. [Google Scholar] [CrossRef]
- Doucet, A.; Savard, M.M.; Bégin, C.; Marion, J.; Smirnoff, A.; Ouarda, T.B.M.J. Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution. Tellus B 2012, 64, 19005. [Google Scholar] [CrossRef]
- Sensula, B.; Wilczynski, S.; Monin, L.; Allan, M.; Pazdur, A.; Fagel, N. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria 2017, 44, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Navais, C.; Freitas, H.; Hagemeyer, J. Dendroanalysis: A tool for biomonitoring environmental pollution? Sci. Total Environ. 1999, 232, 33–37. [Google Scholar]
- Watmough, S.A.; Hutchinson, T.C. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. Sci. Total Environ. 2001, 293, 85–96. [Google Scholar] [CrossRef]
- Balouet, J.C.; Smith, K.T.; Vroblesky, D.; Oudijk, G. Use of dendrochronology and dendrochemistry in environmental forensics: does it meet the daubert criteria? Environ. Forensics 2009, 10, 268–279. [Google Scholar] [CrossRef]
- Wahsha, M.; Bini, C.; Argese, E.; Minello, F.; Fontana, S.; Wahsheh, H. Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. J. Geochem. Explor. 2012, 123, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Fontana, S.; Wahsha, M.; Bini, C. Preliminary observations on heavy metal contamination in soils and plants of an abandoned mine in Imperina Valley (Italy). Agrochimica 2010, 54, 218–231. [Google Scholar]
- Bondietti, E.A.; Baes, C.F., III; McLaughlin, S.B. Radial trends in cation ratios in tree rings as indicators of the impact of atmospheric deposition on forests. Can. J. For. Res. 1989, 19, 586–594. [Google Scholar] [CrossRef]
- Gartner, B.L. Chapter 4.4. nutrient functions and deficiency symptons. In Introduction to Plant Physiology, 4th ed.; Hopkins, W.G., Huner, N.P.A., Eds.; John Wiley & Sons: Danvers, MA, USA, 2009; pp. 67–76. [Google Scholar]
- Ecklund, M. Cadmium and lead deposition around a Swedish battery plant as recorded in oak tree-rings. J. Environ. Qual. 1995, 24, 126–131. [Google Scholar] [CrossRef]
- USEPA. Guidance Manual for Battery Manufacturing Pretreatment Standard; Effluent Guidelines Division and Permits Division: Washington, DC, USA, 1987. [Google Scholar]
Site No. | Tree Species (Scientific Name) | Ring Structure Type | Number of Tree Rings | Site GPS |
---|---|---|---|---|
D1 | American sycamore (Platanus occidentalis) | Diffuse to semi-porous | 32 | 36°22’12.66’’ N 127°24’46.45’’ E |
D2 | Willow (Salix koreensis) | Diffuse to semi-porous | 28 | 36°22’20.96’’ N 127°24’43.25’’ E |
D3 | Japanese cypress (Chamaecyparis obtusa) | Coniferous | 40 | 36°22’16.84’’ N 127°24’43.77’’ E |
D4 | Korea red pine (Pinus densiflora) | Coniferous | 42 | 36°22’3.43’’ N 127°23’58.73’’ E |
D5 | Ginkgo (Ginkgo biloba) | Coniferous-like structure | 37 | 36°22’29.00’’ N 127°24’56.00’’ E |
Laser System | ESI NWR193UC Laser Ablation System |
Laser type | ArF 193 nm Coherent Excimer laser |
Ablation mode | Line scan |
Energy | 50% |
Repetition rate | 30 Hz |
Purging gas | N2, 2 mL/s |
Spot size | 100 μm |
Scan speed | 50 μm/s |
Depth/pass | 5 μm |
Beam focusing | Z auto movement |
Sample carrier gas | He 0.7 mL/min |
ICP-MS | Perkin Elmer Elan DRC-e |
RF power | 1300 W |
Coolant gas flow rate | 19 L/min |
Auxiliary gas flow rate | 1.3 L/min |
Nebulizer gas flow rate | 1 L/min |
Elements (m/z) | Pb (208), Cd (111), Cr (52), Mn (55), Sr (88), Zn (66),Fe (56), Ni (60) |
ICP-OES | Perkin Elmer Optima 5300 DV |
RF power | 1300 W |
Plasma gas | 15 L/min |
Carrier gas | 0.5 L/min |
Makeup gas | 0.65 L/min |
Nebulizer gas | 0.8 L/min |
Sample flow rate | 1.5 mL/min |
Replicate | 3 |
Wavelength (nm) | Fe (259.940), Mn (257.610), Cu (324.754), and Pb (220.353) |
Site No. | Tree Species | Pb | Cd | Cr | Mn | Fe | Sr | Zn | Cu | Ni | PI * |
---|---|---|---|---|---|---|---|---|---|---|---|
D1 | Platanus sp. | 730.4 | 0.324 | 57.6 | 353.3 | 16,285.6 | 157.3 | 161.5 | 74.6 | 17.6 | 1.604 |
D2 | Salix sp. | 623.6 | 0.400 | 90.9 | 379.1 | 21,758.6 | 147.1 | 315.0 | 87.0 | 27.5 | 1.625 |
D3 | Chamaecyparis sp. | 646.8 | 0.195 | 38.6 | 479.8 | 13,714.0 | 203.4 | 88.1 | 53.3 | 13.5 | 1.337 |
D4 | Pinus sp. | 34.3 | 0.032 | 9.4 | 137.6 | 13,450.1 | 92.2 | 0.1 | 38.3 | 5.4 | 0.156 |
D5 | Ginkgo sp. | 126.5 | 0.181 | 47.8 | 385.6 | 17,361.2 | 143.6 | 110.5 | 68.0 | 18.4 | 0.537 |
Species | Ambient Air Metal Concentrations | ||||
---|---|---|---|---|---|
Pb | Cd | Cr | Mn | Fe | |
Platanus sp. | 0.353 | 0.825** | −0.391 | 0.234 | −0.243 |
Salix sp. | 0.671** | −0.029 | −0.408 | 0.166 | −0.655 |
Chamaecyparis sp. | 0.249 | 0.052 | −0.366 | 0.363 | −0.573 |
Pinus sp. | 0.879** | 0.579* | −0.289 | -0.506 | −0.234 |
Ginkgo sp. | −0.266 | −0.233 | 0.188 | 0.105 | −0.189 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y.; Park, J.; Choi, J.; Kim, J. Determination of Metal Concentration in Road-Side Trees from an Industrial Area Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Minerals 2020, 10, 175. https://doi.org/10.3390/min10020175
Kim JY, Park J, Choi J, Kim J. Determination of Metal Concentration in Road-Side Trees from an Industrial Area Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Minerals. 2020; 10(2):175. https://doi.org/10.3390/min10020175
Chicago/Turabian StyleKim, Jee Young, Jaeseon Park, Jongwoo Choi, and Jinwook Kim. 2020. "Determination of Metal Concentration in Road-Side Trees from an Industrial Area Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry" Minerals 10, no. 2: 175. https://doi.org/10.3390/min10020175
APA StyleKim, J. Y., Park, J., Choi, J., & Kim, J. (2020). Determination of Metal Concentration in Road-Side Trees from an Industrial Area Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Minerals, 10(2), 175. https://doi.org/10.3390/min10020175