Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China
Abstract
:1. Introduction
2. Methods
2.1. Frequency Distribution
2.2. Spatial Autocorrelation and Semivariogram
2.3. Scale-Independence and Multifractal Spectrum
2.4. Spatial Heterogeneity and q-Statistic
2.5. Hierarchical Clustering
3. Study Area and Geochemical Data
3.1. Study Area
3.2. Geochemical Data
4. Results and Discussions
4.1. Frequency Distribution Characteristics
4.2. Spatial Distribution Characteristics
4.3. Exploring the Association of Geochemical Elements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, Q. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Process. Geophys. 2012, 19, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Bao, Z. Fractal and Multifractal Properties of Geochemical Fields. Math. Geol. 2004, 36, 847–864. [Google Scholar] [CrossRef]
- De Caritat, P.; Grunsky, E.C. Defining element associations and inferring geological processes from total element concentrations in Australian catchment outlet sediments: Multivariate analysis of continental-scale geochemical data. Appl. Geochem. 2013, 33, 104–126. [Google Scholar] [CrossRef]
- Coker, W.B. Future research directions in exploration geochemistry. Geochem. Explor. Environ. Anal. 2010, 10, 75–80. [Google Scholar] [CrossRef]
- Grunsky, E.C. The interpretation of geochemical survey data. Geochem. Explor. Environ. Anal. 2010, 10, 27–74. [Google Scholar] [CrossRef]
- Bölviken, B.; Stokke, P.R.; Feder, J.; Jössang, T. The fractal nature of geochemical landscapes. J. Geochem. Explor. 1992, 43, 91–109. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Allegre, C.J.; Lewin, E. Scaling laws and geochemical distributions. Earth Planet. Sci. Lett. 1995, 132, 1–13. [Google Scholar] [CrossRef]
- Agterberg, F.P. New applications of the model of de Wijs in regional geochemistry. Math. Geosci. 2007, 39, 1–26. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Q. Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background. Math. Geosci. 2018, 50, 249–272. [Google Scholar] [CrossRef]
- Ge, Y.; Jin, Y.; Stein, A.; Chen, Y.; Wang, J.; Wang, J.; Cheng, Q.; Bai, H.; Liu, M.; Atkinson, P.M. Principles and methods of scaling geospatial Earth science data. Earth-Sci. Rev. 2019, 102897. [Google Scholar] [CrossRef]
- Goodchild, M.F. Scale in GIS: An overview. Geomorphology 2011, 130, 5–9. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Suppl. 1), 234–240. [Google Scholar] [CrossRef]
- Matheron, G. Traite de Geostatistique Appliquee; Editions Technip: Mémoires, France, 1962. [Google Scholar]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wang, J.; Zuo, R. An extended local neighborhood gap statistic for identifying geochemical anomalies. J. Geochem. Explor. 2016, 164, 86–93. [Google Scholar] [CrossRef]
- Zuo, R. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. J. Geochem. Explor. 2014, 139, 170–176. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R.; Wang, K.; Wang, J. Identification of geochemical anomalies via local RX anomaly detector. J. Geochem. Explor. 2018, 189, 64–71. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983; p. 497. [Google Scholar]
- Cheng, Q. Multifractality and spatial statistics. Comput. Geosci. 1999, 25, 949–961. [Google Scholar] [CrossRef]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 2015, 65, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S. Decoding the Morphological Differences between Himalayan Glacial and Fluvial Landscapes Using Multifractal Analysis. Sci. Rep. 2017, 7, 11032. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Lado, L.; Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 2017, 287, 147–156. [Google Scholar] [CrossRef]
- Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration; Harper & Row, Pulishers: New York, NY, USA; Evanston, IL, USA, 1962. [Google Scholar]
- Siegel, F.R. Applied Geochemistry; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Beus, A.A.; Grigorian, S.V. Geochemical Exploration Methods for Mineral Deposits; Applied Publishing Ltd.: Wilmette, IL, USA, 1977; p. 287. [Google Scholar]
- Zuo, R. Selection of an elemental association related to mineralization using spatial analysis. J. Geochem. Explor. 2018, 184, 150–157. [Google Scholar] [CrossRef]
- Nicholson, K. Contrasting mineralogical geochemical signatures of manganese oxides guides to metallogenesis. Econ. Geol. 1992, 87, 1253–1264. [Google Scholar] [CrossRef]
- Pons, J. Geology, petrography and geochemistry of igneous rocks related to mineralized skarns in the NW Neuquén basin, Argentina: Implications for Cordilleran skarn exploration. Ore Geol. Rev. 2010, 38, 37–58. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordoñez, A.; Monterroso, C.; Calleja, L. Geology and geochemistry of Iberian roofing slates. Chem. Der Erde-Geochem. 2013, 73, 373–382. [Google Scholar]
- Tong, Y.; Gong, Q.; Han, D.; Liu, N.; Xu, Z.; Yu, W. Indicator Element Association in Geochemical Surveys: A Case Study of the Niutougou Gold Deposit in Western Henan Province. Geol. Explor. 2014, 50, 712–724, (In Chinese with English abstract). [Google Scholar]
- Valkama, M.; Sundblad, K.; Nygard, R.; Cook, N. Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geol. Rev. 2016, 75, 206–219. [Google Scholar] [CrossRef]
- Costa, M.L.; Angélica, R.S.; Costa, N.C. The geochemical association Au-As-B-(Cu)-Sn-W in latosol, colluvium, lateritic iron crust and gossan in Carajas, Brazil: Importance for primary ore identification. J. Geochem. Explor. 1999, 67, 33–49. [Google Scholar] [CrossRef]
- Cluer, J.K. Remobilized geochemical anomalies related to deep gold zones, carlin trend, Nevada. Econ. Geol. 2012, 107, 1343–1349. [Google Scholar] [CrossRef]
- Forbes, C.; Giles, D.; Freeman, H.; Sawyer, M.; Normington, V. Glacial dispersion of hydrothermal monazite in the Prominent Hill deposit: An exploration tool. J. Geochem. Explor. 2015, 156, 10–33. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Liu, B.; Wang, J.; Guo, R. The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in china. Geol. Prospect. 1999, 35, 32–35. [Google Scholar]
- Harraz, H.Z.; Hamdy, M.M. Zonation of primary haloes of Atud auriferous quartz vein deposit, Central Eastern Desert of Egypt: A potential exploration model targeting for hidden mesothermal gold deposits. J. Afr. Earth Sci. 2015, 101, 1–18. [Google Scholar] [CrossRef]
- Robb, L. Introduction to Ore-Forming Processes; Blackwell Publishing: Malden, MA, USA, 2004. [Google Scholar]
- Nichol, I.; Garrett, R.G.; Webb, J.S. The role of some statistical and mathematical methods in the interpretation of regional geochemical data. Econ. Geol. 1969, 64, 204–220. [Google Scholar] [CrossRef]
- Garrett, R.G. The chi-square plot: A tool for multivariate outlier recognition. J. Geochem. Explor. 1989, 32, 319–341. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2002; p. 656. [Google Scholar]
- Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handb. Explor. Environ. Geochem. 2009, 11, 85–113. [Google Scholar]
- Reimann, C.; Filzmoser, P.; Garrett, R.; Dutter, R. Statistical Data Analysis Explained: Applied Environmental Statistics with R; John Wiley & Sons: Chichester, UK, 2011; p. 362. [Google Scholar]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data; John Wiley & Sons: Chichester, UK, 2015. [Google Scholar]
- Parsa, M.; Maghsoudi, A.; Yousefi, M.; Sadeghi, M. Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. J. Geochem. Explor. 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Grunsky, E.C.; de Caritat, P. State-of-the-art analysis of geochemical data for mineral exploration. Geochem. Explor. Environ. Anal. 2019. [Google Scholar] [CrossRef]
- Ali, K.; Cheng, Q.; Li, W.; Chen, Y. Multielement association analysis of stream sediment geochemistry data for predicting gold deposits in southcentral Yunnan Province, China. Geochem. Explor. Environ. Anal. 2006, 6, 341–348. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Zhang, G.; Xin, Z.; Hu, X. Compilation of geochemical integrated-anomaly map in Chongjiang area of Tibet. Comput. Tech. Geophys. Geochem. Explor. 2010, 32, 651–655, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Guo, K.; Ao, D.; Wu, J. Application and exploration of JADE in searching the combination of geochemical ore-forming elements. Comput. Tech. Geophys. Geochem. Explor. 2012, 34, 58–61, (In Chinese with English Abstract). [Google Scholar]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J. Geochem. Explor. 2012, 115, 24–35. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Environ. Anal. 2014, 14, 45–58. [Google Scholar] [CrossRef]
- Lee, C.W.; Tsai, W.H. Compositional data analysis of hydrothermal alteration in IOCG systems, Great Bear magmatic zone, Canada: To each alteration type its own geochemical signature. Geochem. Explor. Environ. Anal. 2013, 13, 229–247. [Google Scholar]
- Harraz, H.Z.; Hamdy, M.M.; El-Mamoney, M.H. Multielement association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine, Eastern Desert, Egypt. J. Afr. Earth Sci. 2012, 68, 1–14. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Zuo, R. Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J. Geochem. Explor. 2016, 164, 54–64. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, W.; Cheng, Q. Application of geographically weighted regression to identify spatially non-stationary relationships between Fe mineralization and its controlling factors in eastern Tianshan, China. Ore Geol. Rev. 2014, 57, 628–638. [Google Scholar] [CrossRef]
- Zhao, J.; Zuo, R.; Chen, S.; Kreuzer, O.P. Application of the tectono-geochemistry method to mineral prospectivity mapping: A case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China. Ore Geol. Rev. 2015, 71, 719–734. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Parkin, T.B.; Karlen, D.L.; Novak, J.M.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Evertsz, C.J.G.; Mandelbrot, B.B. Multil’ractal measures. In Chaos and Fractals; Peitgen, H.O., Jurgens., H., Saupe, D., Eds.; Springer: New York, NY, USA, 1992; pp. 922–953. [Google Scholar]
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988; p. 283. [Google Scholar]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 1986, 2, 501–511. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Nonlinear Variability in Geophysics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; p. 318. [Google Scholar]
- Agterberg, F.P. Fractals, multifractals and change of support. In Geostatistics for the Next Century; Dimitrakopoulos, P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 223–234. [Google Scholar]
- Cheng, Q. Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions. Nonlinear Process. Geophys. 2014, 21, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Zuo, R.; Cheng, Q.; Agterberg, F.P.; Xia, Q. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J. Geochem. Explor. 2009, 101, 225–235. [Google Scholar] [CrossRef]
- Gonçalves, M.A. Characterization of Geochemical Distributions Using Multifractal Models. Math. Geol. 2001, 33, 41–61. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res. Atmos. 1987, 92, 9693–9714. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P. Multifractal modeling and spatial statistics. Math. Geol. 1996, 28, 1–16. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Clustering methods. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 321–352. [Google Scholar]
- Mao, J.; Xu, N.; Hu, Q.; Xing, G.; Yang, Z. The Mesozoic rock-forming and oreforming processes and tectonic environment evolution in Shanghang–Datian region, Fujian. Acta Petrol. Sin. 2004, 20, 285–296, (In Chinese with English Abstract). [Google Scholar]
- Lin, D. Research on Late Paleozoic-Triassic Tectonic Evolution and Metallogenetic Regularities of Iron-Polymetalic Deposits in the Southwestern Fujian Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Zhong, J.; Chen, Y.J.; Chen, J.; Qi, J.P.; Dai, M.C. Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, SE China: Implication for deep exploration targeting. J. Geochem. Explor. 2018, 184, 49–65. [Google Scholar] [CrossRef]
- Xiang, Y.; Mou, X.; Ren, T. Geochemical Prospecting Materials for Potential Assessment of Mineral Resources in China and Applications; Geological Publishing House: Beijing, China, 2018; p. 445. [Google Scholar]
- Butt, C.R.M. The development of regolith exploration geochemistry in the tropics and sub-tropics. Ore Geol. Rev. 2016, 73, 380–393. [Google Scholar] [CrossRef]
- Zhang, X. Study on Spatial Acidification Variation in Cropland Soil and Its Driving Factors. Ph.D. Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2017. [Google Scholar]
- Wang, X.; Xie, X.; Zhang, B.; Hou, Q. Geochemical probe into China’s continental crust. Acta Geosci. Sin. 2011, 32, 65–83, (In Chinese with English Abstract). [Google Scholar]
- Xie, X.; Mu, X.; Ren, T. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978; Volume 600. [Google Scholar]
- Gringarten, E.; Deutsch, C.V. Teacher’s aide variogram interpretation and modeling. Math. Geol. 2001, 33, 507–534. [Google Scholar] [CrossRef]
- Zhang, D. Tectonic Evolution and Tin Polymetal Regional Metallogenesis in Southwestern Fujian Province. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 1999. [Google Scholar]
Elements | Mean | Variance | CV | Skewness | Kurtosis | Range | Nugget/Sill | α0 | Δα | R | q |
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | 13.43 | 1213.81 | 2.59 | 42.14 | 2427.64 | 25.20 | 0.20 | 2.07 | 2.65 | 0.97 | 0.018 |
Pb | 56.34 | 9000.36 | 1.68 | 12.99 | 281.55 | 20.70 | 0.30 | 2.05 | 1.62 | 1.29 | 0.006 |
Zn | 87.42 | 51,652.43 | 2.60 | 56.37 | 3761.43 | 20.70 | 0.30 | 2.03 | 1.77 | 3.65 | 0.000 |
Ag | 156.01 | 208,478.90 | 2.93 | 62.89 | 4573.50 | 15.60 | 0.35 | 2.05 | 1.75 | 3.98 | 0.003 |
Au | 1.74 | 52.33 | 4.17 | 27.06 | 977.07 | 15.00 | 0.53 | 2.09 | 2.59 | 1.33 | 0.001 |
Sb | 0.32 | 0.20 | 1.38 | 33.47 | 1770.18 | 31.50 | 0.25 | 2.05 | 2.19 | 1.55 | 0.075 |
W | 5.94 | 510.18 | 3.80 | 29.69 | 1134.37 | 22.50 | 0.35 | 2.04 | 1.60 | 1.79 | 0.005 |
Sn | 7.76 | 260.05 | 2.08 | 10.44 | 142.43 | 24.30 | 0.35 | 2.06 | 1.18 | 1.79 | 0.007 |
Mo | 1.86 | 6.62 | 1.39 | 11.06 | 225.85 | 27.00 | 0.30 | 2.06 | 1.56 | 1.87 | 0.020 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zuo, R. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals 2020, 10, 183. https://doi.org/10.3390/min10020183
Wang J, Zuo R. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals. 2020; 10(2):183. https://doi.org/10.3390/min10020183
Chicago/Turabian StyleWang, Jian, and Renguang Zuo. 2020. "Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China" Minerals 10, no. 2: 183. https://doi.org/10.3390/min10020183
APA StyleWang, J., & Zuo, R. (2020). Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals, 10(2), 183. https://doi.org/10.3390/min10020183