Third Worldwide Occurrence of Juangodoyite, Na2Cu(CO3)2, and Other Secondary Na, Cu, Mg, and Ca Minerals in the Fore-Sudetic Monocline (Lower Silesia, SW Poland)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mineral Composition and Habit
3.1.1. Rudna IX Mine Materials
- azurite-like, dark blue, clearly monoclinic crystals, reaching ~2 mm in length;
- dominant in terms of volume, light blue, platy/scaly encrustations, covering areas up to few cm2, with single plates not larger than ~0.4 mm (usually up to ~0.2 mm);
- medium-green microbotryoidal, compact encrustations surrounding the blue zones;
- white to very pale greenish socket-like, thin, curved linings, up to few centimeters in length.
3.1.2. Lubin Główny Minerals
3.2. Spatial Relations, Crystal Chemistry and Unit Cell Parameters of the Minerals
3.2.1. The Rudna IX Minerals Data
3.2.2. The Lubin Główny Minerals
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlüter, J.; Pohl, D. Juangodoyite, Na2Cu(CO3)2, a new mineral from the Santa Rosa mine, Atacama desert, Chile. Neues Jahrb. Mineral. Abh. 2005, 182, 11–14. [Google Scholar]
- Maslen, E.N.; Spadaccini, N.; Watson, K.J. Electron Density in Non-Ideal Metal Complexes. II Sodium Bis(carbonato)cuprate(II). Acta Cryst. 1986, B42, 430–436. [Google Scholar] [CrossRef]
- Mosset, A.; Bonnet, J.-J.; Galy, J. Structure cristalline de la chalconatronite synthétique: Na2Cu(CO3)2∙2H2O. Zeits. Krist. 1978, 148, 165–177, (In French with English Abstract). [Google Scholar] [CrossRef]
- Carbone, C.; Dinelli, E.; De Waele, J. Characterization of minothems at Libiola (NW Italy): Morphological, mineralogical, and geochemical study. Int. J. Spel. 2016, 45, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Frondel, C.; Gettens, R.J. Chalconatronite, a new mineral from Egypt. Science 1955, 122, 75–76. [Google Scholar] [CrossRef]
- Dini, M.; Schlüter, J.; Malcherek, T.; Pohl, D. Sanrománite, from the Santa Rosa mine, Atacama desert, Chile, a new mineral of the burbankite group. Neues Jahrb. Mineral. Abh. 2007, 183, 117–121. [Google Scholar]
- Sciberras, M.J.; Leverett, P.; Williams, P.A.; Hibbs, D.E.; Downes, P.J.; Welch, M.D.; Kampf, A.R. Paratacamite-(Ni), Cu3(Ni,Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Austr. J. Miner. 2013, 17, 39–44. [Google Scholar]
- Pichler, A. Bergbau in Westkärnten, eine Bestandsaufnahme der Noch Sichtbaren Merkmale der Historischen Bergbaue in Westkärnten; Verlag des Naturwissenschaftlichen Vereins für Kärnten: Klagendurt, Austria, 2009; Volume 63, p. 416. (In German) [Google Scholar]
- Plášil, J.; Hloušek, J.; Škoda, R. Chalkonatronit, Na2Cu(CO3)2(H2O)3, ze žíly sv. Ducha, Jáchymov (Česká republika) [Chalconatronite, Na2Cu(CO3)2(H2O)3, from the “sv. Duch” vein, Jáchymov (Czech Republic)]. Bull. Miner.-Petrolog. Odd. Nár. Muz. (Praha) 2013, 21, 228–233. (In Czech) [Google Scholar]
- Stalder, H.A.; Wagner, A.; Graeser, S.; Stuker, P. Mineralienlexikon der Schweiz; Wepf Verlag: Basel, Switzerland, 1998; p. 106. [Google Scholar]
- Weiss, S. Mineralfundstellen, Deutschland West; Christian Weise Verlag: München, Germany, 1990; p. 320. (In German) [Google Scholar]
- Wittern, A.; Schnorrer-Köhler, G. Die Minerale der Glücksrad-Halde bei Oberschulenberg/Harz. Lapis 1986, 11, 9. [Google Scholar]
- Schnorrer-Köhler, G.; David, W. Die Blei-und Silberhütte Braubach und ihre Haldenminerale. Lapis 1991, 16, 38–53, 58. [Google Scholar]
- Dietrich, R.; Bode, R. Famous Mineral Localities: The Mines and Minerals of Bad Ems [Germany]. Mineral. Rec. 1984, 15, 323–344. [Google Scholar]
- Lahl, B. Berühmte Annaberger Gruben und ihre Geschichte. Lapis 1992, 17, 34–38. (In German) [Google Scholar]
- Eckel, E.B. Minerals of Colorado; Fulcrum Publishing: Golden, CO, USA, 1997; p. 676. [Google Scholar]
- Heinrich, E.W.; Robinson, G.W. Mineralogy of Michigan, 1st ed.; Michigan Technical University: Houghton, MI, USA, 2004; p. 252. [Google Scholar]
- Rosemeyer, T. The Kearsarge: Copper-bearing Amygdaloidal Lode, Houghton and Keweenaw Counties, Michigan. Rocks Miner. 2007, 82, 276–297. [Google Scholar] [CrossRef]
- Rosemeyer, T. The History, Geology, and Mineralogy of the White Pine Mine, Ontonagon County, Michigan. Rocks Miner. 1999, 74, 160–176. [Google Scholar] [CrossRef]
- Kampf, A.R.; Plášil, J.; Kasatkin, A.V.; Marty, J.; Čejka, J. Markeyite, a new calcium uranyl carbonate mineral from the Markey mine, San Juan County, Utah, USA. Mineral. Mag. 2018, 82, 1089–1100. [Google Scholar] [CrossRef]
- Desor, J. New Minerals from the Eureka Mine. 2018. Available online: http://mineralanalytik.de/images/REMBILDER/march18-02.pdf (accessed on 20 December 2018).
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Cooper, M.A.; Hawthorne, F.C. The crystal structure of rapidcreekite, Ca2(SO4)(CO3)(H2O)4, and its relation to the structure of gypsum. The Can. Mineral. 1996, 34, 99–106. [Google Scholar]
- Bots, P. Experimental Investigation of Calcium Carbonate Mineralogy in Past and Future Oceans. Ph.D. Thesis, School of Earth and Environment, University of Leeds, Leeds, UK, 2011; 212p. [Google Scholar]
- Roberts, A.C.; Ansell, H.G.; Jonasson, I.R.; Grice, J.D.; Ramik, R.A. Rapidcreekite, a new hydrated calcium sulfate-carbonate from the Rapid Creek area, Yukon Territory. Can. Mineral. 1986, 24, 51–54. [Google Scholar]
- Van Velthuizen, J.; Sturman, D.; Robinson, G.W.; Ansell, H.G. Mineralogy of the Rapid Creek and Bigh Fish River Area, Yukon Territory. Mineral. Rec. 1992, 23, 1–47. [Google Scholar]
- Walenta, K.; Dunn, P.J. Camgasite, a new calcium-magnesium arsenate mineral with composition CaMg(AsO4)(OH)∙5H2O from Wittichen in the Central Black Forest. Der Aufschluss 1989, 40, 369–372, (in German with English abstract). [Google Scholar]
- Rüger, F.; Senf, L.; Witzke, T. Die Saalfelder Feengrotten: Seltene Sekundärmineralien aus Thüringen. Lapis 1995, 20, 15–26. [Google Scholar]
- Rieck, B.; Kolitsch, U.; Voudouris, P.; Giester, G.; Tzeferis, P. Wietere Neufunde aus Lavrion, Griechenland. Miner.-Welt 2018, 29, 32–77. (In German) [Google Scholar]
- Raade, G. Etter Neumann. NAGS-nytt 1989, 16, 49. [Google Scholar]
- Onac, B.P.; Effenberger, H.S. Rapidcreekite, Ca2(SO4)(CO3)∙4H2O, in the H2S-rich environment of Diana Cave (Romania). In Proceedings of the 20th General Meeting of the IMA (IMA2010), Budapest, Hungary, 21–27 August 2010; p. 470, CD of Abstracts. [Google Scholar]
- Salama, W.; Ciobota, V.; El Aref, M.; Gaupp, R. Identification of mineralogy and organic materials of the Cretaceous and Middle Eocene ironstones by means of FTIR and micro-Raman spectroscopy. In Proceedings of the 7th European Conference on Mineralogy and Spectroscopy, ECMS, Potsdam, Germany, 4–7 September 2011. Document no. 27308. [Google Scholar]
- Warchulski, R.; Gawęda, A.; Kądziołka-Gaweł, M.; Szopa, K. Composition and element mobilization in pyrometallurgical slags from the Orzeł Biały smelting plant in the Bytom-Piekary Śląskie area, Poland. Mineral. Mag. 2015, 79, 459–484. [Google Scholar] [CrossRef]
- Oszczepalski, P.; Speczik, S.; Małecka, K.; Chmielewski, A. Prospective copper resources in Poland. Gosp. Sur. Miner. (Miner. Res. Manag.) 2016, 32, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Nieć, M.; Piestrzyński, A. Forma i budowa złoża (Shape and laying of the deposit). In Monografia KGHM Polska Miedź S.A. (a, Monograph); Piestrzyński, A., Ed.; KGHM Cuprum, CBR: Lubin, Poland, 2007; pp. 157–163. (In Polish) [Google Scholar]
- Harańczyk, C.; Jarosz, J. Ore minerals from copper deposit in Fore-Sudetic Monocline. Rudy i Metale 1973, 6, 493–498. (In Polish) [Google Scholar]
- Kucha, H. Ore mineralogy and geochemistry of ore body at Lubin-Sieroszowice deposit. Biul. PIG 2007, 423, 77–94, (In Polish with English Abstract). [Google Scholar]
- Siuda, R.; Łodziński, M.; Syczewski, M.; Kruszewski, Ł.; Pršek, J.; Hoffman, P. The first botallackite occurrence in Poland (Polkowice-Sieroszowice mine). Biul. PIG 2017, 469, 217–228, (In Polish with English Abstract). [Google Scholar] [CrossRef]
- Kruszewski, Ł.; Siuda, R.; Świek, M.; Szełęg, E. New occurrences of secondary minerals from Fore-Sudetic Monocline copper deposits: Juangodoyite (Rudna IX mine) and rapidcreekite/brushite (Lubin Główny mine). Min. Spec. Pap. 2019, 46, 55. [Google Scholar]
- O’Connor, V.A. Comparative Crystal Chemistry of Hydrous Iron Sulfates from Different Terrestrial Environments. Bachelor’s Thesis, Department of Geology, Smith College, Northampton, MA, USA, 2005; p. 150. [Google Scholar]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. (Eds.) Borates, Carbonates, Sulfates. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2003; Volume 5, p. 791. [Google Scholar]
- Kucha, H.; Piestrzyński, A.; Wieczorek, A. Copper-bearing glauconite from the Weissliegendes of Zechstein copper deposits, Poland. Min. Pol. 1982, 13, 21–26. [Google Scholar]
- Kucha, H. Felspars, clay, organic and carbonate receptors of heavy metals in Zechstein deposits (Kupferschiefer type), Poland. Trans. Inst. Min. Metall. (Sec. B Appl. Earth Sci.) 1985, 94, 133–146. [Google Scholar]
- Busenberg, E.; Plummer, N.L. Kinetic and thermodynamic factors controlling the distribution of SO42− and Na+ in calcites and selected aragonites. Geochim. Cosmochim. Acta 1985, 49, 713–725. [Google Scholar] [CrossRef]
- Fleet, M.E.; Liu, X. Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomater. 2007, 28, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. (Eds.) Arsenates, Phosphates, Vanadates. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2000; Volume 4, p. 680. [Google Scholar]
- Li, Y.; Lai, L. Preliminary study of the characteristics and the genesis of arsenate minerals in the oxidized zone of the Debao skarn-type Cu-Sn ore deposit in Guangxi. Acta Geol. Sin. 1990, 64, 337–343, (In Chinese with English Abstract). [Google Scholar]
- Fischer, A.; Eggert, G.; Stelzner, J. When Glass and Metal Corrode Together, VI: Chalconatronite. Stud. Conser. 2019. [CrossRef]
- Dydo, P.; Turek, M.; Ciba, J. Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions. Desalination 2003, 159, 245–251. [Google Scholar] [CrossRef]
- Schausberg, P.; Mustafa, G.M.; Leslie, G.; Friedl, A. Scaling prediction based on thermodynamic equilibrium calculation—Scopes and limitations. Desalination 2009, 244, 31–47. [Google Scholar] [CrossRef]
- Kleczkowski, A.S.; Downorowicz, S.; Zimny, W.; Becker, R. Hydrogeologia serii złożowej (Ore series hydrogeology). In Monografia KGHM, Polska Miedź SA; Piestrzyński, A., Ed.; KGHM Cuprum, CBR: Lubin, Poland, 2007; pp. 133–138. [Google Scholar]
- Pekov, I. Minerals First Discovered on the Territory of the Former Soviet Union; Ocean Pictures: Moscow, Russia, 1998; p. 369. [Google Scholar]
- Viñals, J.; Jambor, J.L.; Raudsepp, M.; Roberts, A.C.; Grice, J.D.; Kokinos, M.; Wise, W.S. Barahonaite-(Al) and barahonaite-(Fe) new Ca-Cu arsenate mineral species, from Murcia Province, southeastern Spain, and Gold Hill, Utah. Can. Mineral. 2008, 46, 205–217. [Google Scholar] [CrossRef]
- Siidra, O.I.; Nazarchuk, E.; Agakhanov, A.A.; Polekhovsky, Y.S. Aleutite, IMA 2018-014. Mineral. Mag. 2018, 82, 779–785. [Google Scholar]
- Siidra, O.I.; Nazarchuk, E.; Zaitsev, A.N.; Shilovskikh, V.V. Majzlanite, K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulphate mineral with complex cation substitutions from Tolbachik volcano. Mineral. Mag. 2019. [Google Scholar] [CrossRef]
Sample | Macroscopic Description | Main Components 1 | Rietveld Refinement Statistics 2 |
---|---|---|---|
CuR1 | azure, light-blue, and green crystals/aggregates on a dolomitic shale | chalconatronite 37.5(2), quartz 36.1(2), illite 9.1(5), malachite 7.7(5), juangodoyite 4.4(3), orthoclase 1.7(3). | Rwp = 9.67%, GOF (χ2) = 1.37% |
CuR1A | shiny greenish-blue crystals + matrix, same sample | chalconatronite 62.5(7), illite 23.5(8), microcline 8.1(1), Mg-calcite 1.0(6), clinoatacamite 0.8(3). | Rwp = 20.54%, GOF (χ2) = 2.84% |
CuR1B | white to greenish socket-like aggregates, same sample | aragonite 57.2(4), quartz 25.6(3), hydromagnesite 5.9(4), microcline 4.1(3), herbertsmithite 2.7(8), halite 1.9(1), albite 1.8(2), northupite 0.07(4). | Rwp = 11.48%, GOF (χ2) = 0.97% |
CuR2A | white sandstone with disseminated green mineral and surface black dendritic specks | quartz 47.1(2), halite 19.4(9), gypsum 8.2(4), clinoatacamite 9.9(7), herbertsmithite 5.3(6), illite 4.1(4), microcline 3.4(6), orthoclase 1.8(4), albite 0.8(5). | Rwp = 10.38%, GOF (χ2) = 1.18% |
CuR2B | colorless crystalline cover of the former | halite 90.3(7), gypsum 3.4(3), quartz 3.4(4), clinoatacamite 2.0(4), herbertsmithite 0.9(3). | Rwp = 29.42%, GOF (χ2) = 2.31% |
CuR3 3 | light-blue and minor azure and green aggregates/crystals on a white sandstone | quartz 69.6(7), calcite 9.1(3), chalconatronite 5.0(3), halite 4.3(2), microcline 2.9(5), albite 2.7(5), malachite 2.5(3), orthoclase 1.8(3), juangodoyite 1.2(2), dolomite 0.5(1). | Rwp = 18.57%, GOF (χ2) = 2.02% |
CuR3A | separate white accumulations, same sample | quartz 58.9(2), aragonite 17.2(7), gypsum 6.7(3), calcite 3.9(3), dolomite 3.5(3), orthoclase 1.2(2), langite 0.4(1); wroewolfeite, illite (trace). | Rwp = 13.69%, GOF (χ2) = 1.12% |
CuR3B | separate white accumulations, same sample | gypsum 61.9(5); quartz 19.6(3), aragonite 10.4(4), monohydrocalcite 3.9(3), baryte 2.8(4), calcite 2.7(3), dolomite 1.5(4). | Rwp = 14.86%, GOF (χ2) = 1.34% |
CuR4 3 | intergrown azure crystals + coarse green botryoids + cellular white infillings in a dolomitic shale | albite 28.7(1), calcite 11.2(2), aragonite 17.7(2), quartz 5.8(8), juangodoyite 5.5(7), cornwallite 4.4(6), chalcocite 2.0(9). | Rwp = 12.98%, GOF (χ2) = 1.93% |
CuR6 | similar to CuR2 but with black material replaced by a limonite-like one | quartz 58.2(7), halite 15.2(6), herbertsmithite 9.1(2), gypsum 5.3(2), microcline 7.0(6), orthoclase 1.8(4), albite 3.5(4). | Rwp = 14.01%, GOF (χ2) = 1.26% |
RSR9-1 | small rounded bluish-green aggregates | eriochalcite 38.7(1), halite 36.7(1), ktenasite 12.4(4), kröhnkite 9.7(1), chlorite group 2.4(1). | Rwp = 29.75%, GOF (χ2) = 2.83% |
RSR9-2 | small bluish-green crust | kröhnkite 86.2(2), halite 8.2(2), gypsum 2.6(3). | Rwp = 11.23%, GOF (χ2) = 0.96% |
RSR9-3 | light to medium-blue compact masses on a dolomitic shale | chalconatronite 54.7(7), clinoatacamite 2.9(3), albite 5.1(4), eriochalcite 3.2(5), lavendulan group 1.8(1). | Rwp = 22.60%, GOF (χ2) = 1.76% |
RSR9-4 | white spray-forming needles covering the above | aragonite 73.2(5), hydromagnesite 13.4(5), melanterite 7.7(2), lavendulan group 3.1(1), quartz 2.7(2). | Rwp = 15.63%, GOF (χ2) = 0.75% |
Sample | Macroscopic Description | Main Components 1 | Rietveld Refinement Statistics 2 |
---|---|---|---|
MSCu-1 3 | thin light blue crusts (A) with white/beige/gray protrusions (B), all on a white-pinkish sandstone | aragonite 40.4(4), quartz 20.9(3), gypsum 19.4(3), calcite 7.6(4), monohydrocalcite 7.2(2), vaterite 1.5(4), dolomite 1.2(2) | Rwp = 13.53%, GOF (χ2) = 1.10% |
Cu4 3 | thick greenish-blue dripstones (A) covered by gray/white protrusions (B) and colourless sprays (C) | dolomite 30.2(5), monohydrocalcite 15.5(4), aragonite 14.4(5), rapidcreekite 11.2(4), gypsum 7.6(4), quartz 7.4(3), calcite 6.8(3), vaterite 5.2(6) | Rwp = 16.97%, GOF (χ2) = 1.53% |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
wt.% 2 | |||||||||||
CuO | 33.12 | 32.43 | 33.80 | 33.18 | 32.87 | 33.31 | 32.91 | 33.63 | 33.86 | 32.80 | 33.77 |
Na2O | 29.18 | 30.46 | 30.42 | 29.04 | 33.38 | 31.89 | 32.65 | 33.44 | 33.88 | 32.35 | 28.27 |
Total-1 | 62.30 | 62.88 | 64.23 | 62.22 | 66.26 | 65.20 | 65.55 | 67.08 | 67.75 | 65.15 | |
CO2 3 | 36.65 | 35.88 | 37.41 | 36.71 | 36.38 | 36.86 | 36.41 | 37.22 | 37.47 | 36.30 | 38.45 |
Total-2 | 98.95 | 98.77 | 101.63 | 98.93 | 102.63 | 102.06 | 101.97 | 104.30 | 105.22 | 101.45 | 100.49 |
apfu [1 Cu cation basis] | |||||||||||
Cu | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Na | 2.26 | 2.41 | 2.31 | 2.25 | 2.61 | 2.46 | 2.55 | 2.55 | 2.57 | 2.53 | |
NaN 4 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
(CO32–) 4 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
beam amperage [nA] | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
spot size [μm] | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
Unit Cell Parameters | |||||||||||
sample | a [Å] | b [Å] | c [Å] | β [o] | Rwp [%] | GOF [%] | |||||
CuR1 | 6.170(1) | 8.177(4) | 5.565(4) | 116.20(4) | 8.11 | 1.21 | |||||
CuR3 | 6.110(8) | 8.10(1) | 5.655(3) | 116.47(11) | 17.09 | 2.14 | |||||
CuR4 | 6.110(9) | 8.25(2) | 5.618(5) | 116.23(12) | 10.54 | 1.65 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 11 1 | 12 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% 3 | ||||||||||||
SiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.48 | |
CuO | 33.51 | 33.03 | 34.19 | 33.72 | 32.61 | 33.39 | 33.89 | 32.55 | 32.75 | 36.59 | 38.97 | 29.2 |
CaO | 0.18 | 0.22 | 0.00 | 0.25 | 0.27 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | |
Na2O | 30.49 | 30.23 | 31.89 | 31.63 | 29.72 | 30.27 | 29.27 | 30.83 | 29.43 | 25.76 | 28.75 | 19.7 |
Total-1 | 64.60 | 63.48 | 66.08 | 65.61 | 62.60 | 63.65 | 63.16 | 63.41 | 62.39 | 62.59 | 68.20 | |
CO2 4 | 37.85 | 36.89 | 37.83 | 37.71 | 36.51 | 36.94 | 37.50 | 36.07 | 36.56 | 38.36 | 41.62 | 30.5 |
H2O 5 | 0.89 | 0.52 | 1.05 | 19.0 | ||||||||
Total-2 | 102.24 | 100.37 | 103.91 | 103.32 | 99.11 | 100.60 | 100.66 | 99.48 | 98.95 | 100.95 | 109.82 | 99.4 |
apfu [Σ(Cu,Ca,Mg) = 1 basis (analyses 1–9); 3 cations (analyses 10 & 11)] | ||||||||||||
Si | 0.01 | 0.02 | ||||||||||
Cu | 0.98 | 0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 1.07 | 1.04 | |
Mg | 0.01 | |||||||||||
Ca | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |||||||
Na | 2.29 | 2.33 | 2.39 | 2.38 | 2.31 | 2.33 | 2.22 | 2.43 | 2.29 | 1.93 | 1.96 | |
NaN 6 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
(CO32−) 6 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
beam amperage (nA) | 10 | 10 | 10 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
spot size (μm) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
Unit Cell Parameters | ||||||||||||
sample | a [Å] | b [Å] | c [Å] | β [o] | Rwp [%] | GOF [%] | ||||||
CuR1 | 9.694(1) | 6.0937(7) | 13.7845(1) | 91.902(8) | 8.11 | 1.21 | ||||||
CuR3 | 9.61(1) | 6.099(5) | 13.788(6) | 91.77(7) | 17.09 | 2.14 | ||||||
RSR9-3 | 9.686(2) | 6.096(2) | 13.786(3) | 91.88(21) | 19.53 | 1.48 |
Analysis no.: | 1 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% 2 | ||||||||||||
SO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 |
SiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.71 |
FeO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.88 |
CuO | 67.34 | 67.02 | 67.72 | 70.04 | 66.34 | 67.92 | 65.01 | 66.48 | 68.08 | 67.17 | 67.31 | 81.86 |
MgO | 0.76 | 0.70 | 0.35 | 0.87 | 0.38 | 2.23 | 2.40 | 2.05 | 2.03 | 1.50 | 1.57 | 0.00 |
CaO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 |
Na2O | 0.50 | 0.63 | 0.63 | 0.52 | 0.25 | 0.80 | 0.79 | 0.69 | 0.63 | 0.59 | 0.68 | 0.00 |
Total-1 | 68.60 | 68.38 | 68.69 | 71.42 | 66.98 | 70.95 | 68.26 | 69.43 | 70.73 | 69.29 | 69.55 | 84.45 |
CO2 3 | 19.04 | 18.93 | 18.92 | 19.85 | 18.56 | 20.01 | 19.31 | 19.51 | 19.94 | 19.40 | 19.48 | |
H2O 4 | 12.36 | 12.69 | 12.38 | 8.73 | 14.46 | 9.04 | 12.42 | 11.06 | 9.33 | 11.34 | 10.97 | |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
apfu [2 cations basis] | ||||||||||||
SO42– | 0.01 | |||||||||||
Cu | 1.92 | 1.91 | 1.93 | 1.92 | 1.96 | 1.83 | 1.81 | 1.84 | 1.85 | 1.87 | 1.87 | |
Mg | 0.04 | 0.04 | 0.02 | 0.05 | 0.02 | 0.12 | 0.14 | 0.11 | 0.11 | 0.08 | 0.09 | |
Na | 0.04 | 0.05 | 0.05 | 0.04 | 0.02 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.05 | |
(CO32–) 5 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | |
(OH–) 6 | 1.96 | 1.95 | 1.95 | 1.98 | 1.98 | 1.96 | 1.96 | 1.95 | 1.96 | 1.97 | 1.99 | |
End-Members [%] 7 | ||||||||||||
Mal | 98 | 98 | 99 | 97 | 99 | 93 | 93 | 94 | 94 | 95 | 94 | |
Mcg | 2 | 2 | 1 | 3 | 1 | 7 | 7 | 6 | 6 | 5 | 6 | |
beam amperage (nA) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
spot size (μm) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Unit Cell Parameters | ||||||||||||
sample | a [Å] | b [Å] | c [Å] | β [o] | Rwp [%] | GOF [%] | ||||||
CuR1 | 9.499(3) | 11.952(2) | 3.243(1) | 98.72(4) | 8.11 | 1.21 | ||||||
CuR3 | 9.50(2) | 11.95(2) | 3.238(4) | 98.61(1) | 17.09 | 2.14 |
Analysis no.: | 1 1 | 2 | 3 | 4 |
---|---|---|---|---|
SO3 | 0.00 | 1.45 | 0.26 | 0.00 |
SiO2 | 51.33 | 50.29 | 15.29 | 31.25 |
TiO2 | n.a. 2 | 0.00 | 0.00 | 0.00 |
Al2O3 | 24.41 | 25.35 | 7.08 | 13.93 |
FeO | 1.15 | 0.60 | 0.00 | 0.00 |
MnO | 0.00 | 0.00 | 0.00 | 0.00 |
CuO | 7.65 | 5.98 | 4.58 | 7.31 |
ZnO | 0.00 | 0.00 | 0.00 | 0.00 |
MgO | 2.49 | 2.49 | 0.71 | 1.45 |
CaO | 0.41 | 0.82 | 33.60 | 15.65 |
Na2O | 0.00 | 1.14 | 0.31 | 0.42 |
SrO | 0.00 | 0.00 | 0.00 | 0.00 |
K2O | 7.57 | 6.94 | 1.78 | 3.82 |
Total-1 | 94.81 | 95.06 | 63.62 | 73.84 |
H2O 3 | 5.19 | 4.94 | 36.39 | 26.16 |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 |
apfu (7 cations basis) | ||||
Si | 3.58 | 3.49 | ||
Al | 1.99 | 2.07 | ||
Fe3+ | 0.07 | 0.03 | ||
Cu | 0.40 | 0.31 | ||
Mg | 0.26 | 0.26 | ||
Ca | 0.03 | 0.06 | ||
Na | 0.15 | |||
K | 0.67 | 0.61 | ||
OH– | 1.45 | 0.62 | ||
O2– | 0.55 | 1.30 | ||
S2– | 0.55 | 0.08 | ||
VIAl | 1.57 | 1.56 | ||
IVAl | 0.42 | 0.51 | ||
beam amperage (nA) | 10 | 10 | 10 | 10 |
spot size (μm) | 5 | 5 | 5 | 5 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
wt.% 1 | |||||
SO3 | 0.26 | 0.34 | 0.44 | 0.46 | 0.00 |
MgO | 0.85 | 0.00 | 0.00 | 0.00 | 0.56 |
CaO | 52.45 | 53.96 | 53.65 | 54.08 | 52.71 |
SrO | 1.12 | 0.84 | 0.90 | 0.84 | 0.96 |
Na2O | 1.50 | 0.67 | 0.64 | 0.79 | 1.34 |
Total-1 | 56.17 | 55.81 | 55.63 | 56.17 | 55.58 |
CO2 2 | 44.70 | 43.66 | 43.40 | 43.91 | 44.30 |
Total-2 | 100.87 | 99.47 | 99.02 | 100.08 | 99.87 |
apfu [1 cation basis] | |||||
SO42− | 0.01 | 0.01 | |||
Mg | 0.02 | 0.01 | |||
Ca | 0.92 | 0.97 | 0.97 | 0.97 | 0.93 |
Sr | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Na | 0.05 | 0.02 | 0.02 | 0.03 | 0.04 |
(CO32–) 3 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 |
End-Members [%] 4 | |||||
Ar | 92 | 97 | 97 | 97 | 93 |
Mgs | 2 | 1 | |||
Str | 1 | 1 | 1 | 1 | 1 |
Ntr | 5 | 2 | 2 | 3 | 4 |
beam amperage (nA) | 3 | 3 | 3 | 3 | 3 |
spot size (μm) | 15 | 15 | 15 | 15 | 15 |
Unit Cell Parameters | |||||
sample | a [Å] | b [Å] | c [Å] | Rwp | GOF |
CuR1b | 4.9645(4) | 7.9692(7) | 5.7542(4) | 11.79 | 1.04 |
CuR3b | 4.963(1) | 7.974(3) | 5.760(1) | 17.75 | 1.35 |
CuR4 | 5.00(1) | 8.08(3) | 5.80(2) | 10.54 | 1.65 |
RSR9-4 | 4.9610(5) | 7.9788(8) | 5.7611(8) | 14.34 | 0.68 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
wt.% 1 | ||||||
CuO | 1.13 | 1.29 | 1.54 | 0.00 | 0.00 | 0.90 |
MgO | 40.53 | 40.84 | 40.71 | 30.64 | 24.65 | 29.17 |
CaO | 0.15 | 0.23 | 0.27 | 0.16 | 0.00 | 0.18 |
Total-1 | 41.81 | 42.36 | 42.52 | 30.79 | 24.65 | 30.25 |
CO2 2 | 36.00 | 36.39 | 36.41 | 26.86 | 21.53 | 25.99 |
H2O 3 | 22.19 | 21.25 | 21.07 | 42.35 | 53.81 | 43.76 |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
apfu or mpfu [5 cations basis] | ||||||
Mg | 4.92 | 4.90 | 4.88 | |||
Cu | 0.07 | 0.08 | 0.09 | |||
Ca | 0.01 | 0.02 | 0.02 | |||
(CO32–) 4 | 4.00 | 4.00 | 4.00 | |||
(OH–) 4 | 2.00 | 2.00 | 2.00 | |||
(H2O) 5 | 5.02 | 4.71 | 4.66 | |||
Mg-dominant member content (%) | 98 | 98 | 98 | 98 | 100 | 98 |
beam amperage (nA) | 3 | 3 | 3 | 3 | 3 | 3 |
spot size (μm) | 15 | 15 | 15 | 15 | 15 | 15 |
Unit Cell Parameters | ||||||
sample | a [Å] | b [Å] | c [Å] | β [o] | Rwp | GOF |
CuR1B | 10.10(3) | 8.947(9) | 8.372(9) | 114.54(25) | 11.79 | 1.04 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 |
---|---|---|---|---|---|---|---|---|---|
wt.% 2 | |||||||||
SO3 | 0.38 | 0.50 | 0.49 | 0.45 | 0.43 | 0.42 | 0.41 | 0.46 | 0.08 |
CuO | 1.25 | 1.17 | 1.09 | 1.25 | 1.05 | 1.05 | 1.11 | 1.05 | |
MgO | 28.08 | 23.27 | 21.59 | 21.41 | 22.28 | 24.59 | 21.00 | 23.79 | 16.08 |
CaO | 0.37 | 0.35 | 0.27 | 0.16 | 0.19 | 0.72 | 0.48 | 0.38 | |
Na2O | 25.02 | 29.23 | 28.94 | 30.95 | 29.14 | 25.29 | 28.91 | 26.77 | 36.99 |
Cl | 9.57 | 11.92 | 11.13 | 11.24 | 11.67 | 11.79 | 12.04 | 11.49 | 14.10 |
Total-1 | 64.66 | 66.44 | 63.51 | 65.45 | 64.75 | 63.86 | 63.94 | 63.94 | |
CO2 3 | 43.25 | 39.37 | 38.01 | 38.94 | 38.26 | 38.41 | 36.75 | 38.48 | 35.12 |
Total-2 | 107.91 | 105.81 | 101.52 | 104.39 | 103.01 | 102.27 | 100.69 | 102.42 | |
apfu [5 cations basis] | |||||||||
SO42− | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
Cu | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.05 | 0.05 | 0.04 | |
Mg | 2.28 | 1.87 | 1.80 | 1.72 | 1.83 | 2.10 | 1.76 | 2.00 | |
Ca | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.04 | 0.03 | 0.02 | |
Na | 2.64 | 3.06 | 3.14 | 3.22 | 3.11 | 2.81 | 3.16 | 2.93 | |
Cl | 0.88 | 1.09 | 1.05 | 1.02 | 1.09 | 1.14 | 1.15 | 1.10 | |
CO32−(tot) 4 | 3.22 | 2.90 | 2.88 | 2.86 | 2.88 | 3.00 | 2.83 | 2.97 | |
CO32−(northupite) 4 | 1.74 | 0.92 | 2.06 | 2.08 | 1.99 | 1.81 | 1.99 | 1.90 | |
surplus MgCO3 | 1.48 | 1.98 | 0.82 | 0.78 | 0.89 | 1.19 | 0.84 | 1.07 | |
Na:Cl | 2.99 | 2.81 | 2.98 | 3.15 | 2.86 | 2.45 | 2.75 | 2.67 | |
beam amperage (nA) | 5 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | |
spot size (μm) | 10 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Unit Cell Parameters | |||||||||
sample | a [Å] | Rwp | GOF | ||||||
CuR1B | 14.05(2) | 11.79 | 1.04 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% 1 | ||||||||||||
CuO | 70.25 | 69.17 | 70.26 | 69.27 | 66.62 | 67.26 | 67.06 | 69.46 | 66.80 | 68.11 | 69.13 | 66.90 |
MgO | 0.00 | 0.21 | 0.29 | 1.23 | 1.67 | 0.00 | 1.30 | 0.21 | 1.19 | 0.20 | 0.82 | 0.49 |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.07 | 0.00 | 0.00 |
Cl | 16.14 | 16.06 | 15.29 | 13.83 | 13.36 | 16.10 | 15.99 | 15.60 | 14.79 | 15.92 | 15.13 | 15.56 |
Total-1 | 86.39 | 85.43 | 85.84 | 84.33 | 81.64 | 83.37 | 84.36 | 85.27 | 82.90 | 84.30 | 85.07 | 82.95 |
H2O 2 | 13.61 | 14.57 | 14.16 | 15.67 | 18.37 | 16.63 | 15.56 | 14.73 | 17.10 | 15.70 | 14.93 | 17.05 |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
apfu [2 cations basis] | ||||||||||||
Cu | 2.00 | 1.99 | 1.98 | 1.93 | 1.91 | 2.00 | 1.93 | 1.99 | 1.93 | 1.99 | 1.95 | 1.97 |
Mg | 0.01 | 0.02 | 0.07 | 0.09 | 0.07 | 0.01 | 0.07 | 0.01 | 0.05 | 0.03 | ||
K | 0.01 | |||||||||||
Cl | 1.03 | 1.04 | 0.97 | 0.87 | 0.86 | 1.07 | 1.03 | 1.00 | 0.96 | 1.04 | 0.96 | 1.03 |
OH 3 | 3.39 | 3.67 | 3.47 | 3.74 | 4.52 | 4.30 | 3.97 | 3.72 | 4.27 | 3.99 | 3.71 | 4.38 |
OHN 4 | 2.97 | 2.96 | 3.03 | 3.13 | 3.14 | 2.93 | 2.97 | 3.00 | 3.05 | 2.96 | 3.04 | 2.97 |
beam amperage (nA) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
spot size (μm) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Unit Cell Parameters | ||||||||||||
sample | a [Å] | b [Å] | c [Å] | β [o] | Rwp | GOF | ||||||
CuR1A | 6.148(3) | 6.830(4) | 9.153(5) | 99.55(7) | 11.79 | 1.04 | ||||||
CuR1B | 6.18(5) | 6.750(8) | 9.06(2) | 100.65(69) | 12.14 | 1.09 | ||||||
RSR9-3 | 6.17(4) | 6.80(3) | 9.21(2) | 100.27(49) | 19.53 | 1.48 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
wt.% 2 | |||||||||||
SO3 | 26.60 | 25.47 | 25.40 | 24.45 | 24.90 | 24.23 | 24.83 | 24.75 | 24.83 | 24.25 | 26.1 |
CuO | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CaO | 38.51 | 36.35 | 36.48 | 35.86 | 36.07 | 36.11 | 36.04 | 36.48 | 36.31 | 36.61 | 36.3 |
Total-1 | 65.10 | 61.82 | 62.12 | 60.40 | 60.97 | 60.34 | 60.87 | 61.24 | 61.14 | 60,86 | |
CO2 3 | 15.60 | 14.53 | 14.81 | 14.66 | 14.63 | 15.02 | 14.64 | 15.03 | 14.85 | 15.40 | 14.0 |
H2O 4 | 19.30 | 23.66 | 23.05 | 24.94 | 24.40 | 24.64 | 24.49 | 23.74 | 24.02 | 23.74 | 23.6 |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
apfu [2 cations basis] | |||||||||||
SO42– | 0.97 | 0.98 | 0.97 | 0.96 | 0.97 | 0.94 | 0.97 | 0.95 | 0.96 | 0.93 | |
Cu | 0.01 | ||||||||||
Ca | 2.00 | 2.00 | 1.99 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
(CO32–) 5 | 1.03 | 1.02 | 1.03 | 1.04 | 1.03 | 1.06 | 1.03 | 1.05 | 1.04 | 1.07 | |
H2O 6 | 3.11 | 4.04 | 3.91 | 4.32 | 4.20 | 4.24 | 4.22 | 4.04 | 4.11 | 4.03 | |
beam amperage (nA) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
spot size (μm) | 10 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Unit Cell Parameters | |||||||||||
sample | a [Å] | b [Å] | c [Å] | Rwp [%] | GOF [%] | ||||||
Cu4 | 15.505(3) | 19.22(2) | 6.165(2) | 16.46 | 1.37 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
As2O5 | 0.80 | 0.56 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | n.a. | n.a. | n.a. 1 |
P2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SO3 | 0.33 | 0.37 | 0.57 | 0.38 | 0.41 | 0.41 | 0.39 | 0.42 | 0.50 | 0.47 | 0.62 |
SiO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FeO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MnO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CuO | 3.53 | 3.01 | 2.37 | 0.42 | 1.95 | 0.32 | 1.47 | 1.21 | 0.97 | 1.55 | 1.55 |
ZnO | 0.34 | 0.53 | 0.59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MgO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CaO | 41.77 | 42.50 | 41.83 | 45.93 | 43.59 | 45.03 | 44.43 | 44.18 | 43.96 | 42.34 | 42.59 |
SrO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Na2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total-1 | 46.75 | 46.96 | 45.60 | 46.73 | 45.96 | 45.76 | 46.29 | 45.81 | 45.44 | 44.36 | 44.76 |
CO2 1 | 34.50 | 34.94 | 34.07 | 36.08 | 35.07 | 35.29 | 35.47 | 35.11 | 34.77 | 33.83 | 33.95 |
Total-2 | 81.26 | 81.90 | 79.68 | 82.81 | 81.02 | 81.06 | 81.76 | 80.93 | 80.20 | 78.19 | 78.70 |
apfu [1 cation basis] | |||||||||||
SO42– | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Cu | 0.06 | 0.05 | 0.04 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 |
Zn | 0.01 | 0.01 | 0.01 | ||||||||
Ca | 0.94 | 0.94 | 0.95 | 0.99 | 0.97 | 0.99 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 |
(CO32–) 2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
beam amperage (nA) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
spot size (μm) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Unit Cell Parameters | |||||||||||
sample | a [Å] | c [Å] | Rwp [%] | GOF [%] | |||||||
MS-Cu1 | 10.564(2) | 7.548(3) | 16.00 | 1.33 | |||||||
Cu4 | 10.5512(9) | 7.5483(1) | 16.46 | 1.37 |
Analysis no.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
wt.% 1 | |||||||||
As2O5 | 19.78 | 20.41 | 19.75 | 20.53 | 20.67 | 16.90 | 19.66 | 17.60 | 20.22 |
Sb2O5 | 0.00 | 0.22 | 0.19 | 0.21 | 0.19 | 0.15 | 0.16 | 0.00 | 0.17 |
P2O5 | 0.00 | 0.12 | 0.00 | 0.00 | 0.17 | 0.11 | 0.00 | 0.00 | 0.00 |
SO3 | 0.35 | 0.29 | 0.29 | 0.18 | 0.25 | 0.27 | 0.43 | 0.22 | 0.11 |
SiO2 | 0.25 | 0.21 | 0.28 | 0.23 | 0.27 | 0.36 | 0.38 | 0.38 | 0.39 |
MnO | 0.00 | 0.37 | 0.35 | 0.33 | 0.33 | 0.42 | 0.00 | 0.00 | 0.00 |
CuO | 29.70 | 33.60 | 30.71 | 32.24 | 31.68 | 24.48 | 26.18 | 25.35 | 28.51 |
ZnO | 16.01 | 15.59 | 16.57 | 15.86 | 16.05 | 19.60 | 17.08 | 16.90 | 16.99 |
CoO | 1.31 | 1.12 | 1.35 | 1.11 | 1.34 | 1.48 | 1.32 | 1.35 | 1.22 |
NiO | 1.17 | 1.08 | 1.47 | 1.01 | 1.37 | 1.41 | 1.10 | 1.14 | 1.39 |
MgO | 0.49 | 0.40 | 0.39 | 0.48 | 0.42 | 0.53 | 0.62 | 0.58 | 0.64 |
CaO | 4.36 | 3.86 | 4.33 | 3.77 | 3.76 | 5.59 | 5.70 | 8.55 | 6.47 |
Na2O | 0.00 | 0.00 | 0.00 | 0.51 | 0.48 | 0.58 | 0.52 | 0.75 | 0.00 |
Total-1 | 73.41 | 77.27 | 75.68 | 76.46 | 76.99 | 71.87 | 73.16 | 72.81 | 76.09 |
H2O 2 | 26.59 | 22.73 | 24.32 | 23.54 | 23.01 | 28.13 | 26.85 | 27.19 | 23.91 |
Total-2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
apfu [9 cations basis] | |||||||||
AsO43− | 2.23 | 2.20 | 2.15 | 2.21 | 2.22 | 1.83 | 2.18 | 1.84 | 2.16 |
SiO44− | 0.05 | 0.04 | 0.06 | 0.05 | 0.06 | 0.07 | 0.08 | 0.08 | 0.08 |
SbO43− | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | ||
PO43− | 0.02 | 0.03 | 0.02 | ||||||
SO42− | 0.06 | 0.04 | 0.05 | 0.03 | 0.04 | 0.04 | 0.07 | 0.03 | 0.02 |
Mn | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | ||||
Cu | 4.85 | 5.23 | 4.83 | 5.01 | 4.91 | 3.82 | 4.20 | 3.82 | 4.40 |
Zn | 2.55 | 2.37 | 2.55 | 2.41 | 2.43 | 2.99 | 2.68 | 2.49 | 2.56 |
Co | 0.23 | 0.18 | 0.23 | 0.18 | 0.22 | 0.25 | 0.23 | 0.22 | 0.20 |
Ni | 0.20 | 0.18 | 0.25 | 0.17 | 0.23 | 0.23 | 0.19 | 0.18 | 0.23 |
Mg | 0.16 | 0.12 | 0.12 | 0.15 | 0.13 | 0.16 | 0.20 | 0.17 | 0.19 |
Ca | 1.01 | 0.85 | 0.97 | 0.83 | 0.83 | 1.24 | 1.30 | 1.83 | 1.42 |
Na | 0.20 | 0.19 | 0.23 | 0.21 | 0.29 | ||||
H | 38.26 | 31.16 | 33.72 | 32.22 | 31.47 | 38.71 | 37.96 | 36.13 | 32.52 |
beam amperage (nA) | 10 | 10 | 10 | 10 | 10 | 10 | 5 | 5 | 5 |
spot size (μm) | 5 | 5 | 5 | 5 | 5 | 6 | 7 | 5 | “0” |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruszewski, Ł.; Świerk, M.; Siuda, R.; Szełęg, E.; Marciniak-Maliszewska, B. Third Worldwide Occurrence of Juangodoyite, Na2Cu(CO3)2, and Other Secondary Na, Cu, Mg, and Ca Minerals in the Fore-Sudetic Monocline (Lower Silesia, SW Poland). Minerals 2020, 10, 190. https://doi.org/10.3390/min10020190
Kruszewski Ł, Świerk M, Siuda R, Szełęg E, Marciniak-Maliszewska B. Third Worldwide Occurrence of Juangodoyite, Na2Cu(CO3)2, and Other Secondary Na, Cu, Mg, and Ca Minerals in the Fore-Sudetic Monocline (Lower Silesia, SW Poland). Minerals. 2020; 10(2):190. https://doi.org/10.3390/min10020190
Chicago/Turabian StyleKruszewski, Łukasz, Mateusz Świerk, Rafał Siuda, Eligiusz Szełęg, and Beata Marciniak-Maliszewska. 2020. "Third Worldwide Occurrence of Juangodoyite, Na2Cu(CO3)2, and Other Secondary Na, Cu, Mg, and Ca Minerals in the Fore-Sudetic Monocline (Lower Silesia, SW Poland)" Minerals 10, no. 2: 190. https://doi.org/10.3390/min10020190
APA StyleKruszewski, Ł., Świerk, M., Siuda, R., Szełęg, E., & Marciniak-Maliszewska, B. (2020). Third Worldwide Occurrence of Juangodoyite, Na2Cu(CO3)2, and Other Secondary Na, Cu, Mg, and Ca Minerals in the Fore-Sudetic Monocline (Lower Silesia, SW Poland). Minerals, 10(2), 190. https://doi.org/10.3390/min10020190