Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites
Abstract
:1. Introduction
2. Geological Outline
2.1. Regional Geology
2.2. Saf’yanovskoe Deposit
2.3. Talgan Deposit
2.4. Dergamysh Deposit
3. Materials and Methods
4. Results
4.1. Mode of Occurrence of Pyrite Nodules in Ore Diagenites
4.1.1. Saf’yanovskoe Deposit
4.1.2. Talgan Deposit
4.1.3. Dergamysh Deposit
4.2. Trace Element Composition of Pyrite Nodules
4.3. Trace Element Correlations
4.4. Trace Element Zoning of Pyrite Nodules
5. Discussion
5.1. Morphology of Pyrite Nodules
5.2. Geochemistry of Pyrite Nodules
5.3. Mode of Occurrence of Trace Elements in Pyrite Nodules
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Large, R.R.; Maslennikov, V.V.; Robert, F.; Danyushevsky, L.V. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi log deposit, Lena Gold Province, Russia. Econ. Geol. 2007, 102, 1233–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, H.; Maslennikov, V.V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, L.E.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Schoonen, M.A.A. Mechanisms of sedimentary pyrite formation. GSA Spec. Pap. 2004, 379, 117–134. [Google Scholar] [CrossRef]
- Butler, I.B.; Rickard, D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim. Cosmochim. Acta 2000, 64, 2665–2672. [Google Scholar] [CrossRef]
- Rickard, D. Sulfidic Sediments and Sedimentary Rocks: Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 65, 801p. [Google Scholar]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Huerta-Diaz, M.A.; Morse, J.W. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 1992, 56, 2681–2702. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in Sedimentary rocks, laminated quartz veins, and gold reefs, at Bendigo Mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 105, 1–40. [Google Scholar] [CrossRef]
- Gregory, D.D.; Meffre, S.; Large, R.R. Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. Am. Miner. 2014, 99, 633–644. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Safina, N.P.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Herrington, R.J.; Kotlyarov, V.A.; Blinov, I.A.; Maslennikova, S.P.; et al. Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia. Minerals 2019, 3, 150. [Google Scholar] [CrossRef] [Green Version]
- Genna, D.; Gaboury, D. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitibi, Canada, and implication for exploration. Econ. Geol. 2015, 110, 2087–2108. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Artemyev, D.A.; Tseluyko, A.S. Microtopochemistry of marcazite pyrite nodule in illit-hematite gossanites of Lahanos massive sulfide deposit (Pontides, Turkey) by LAICP-MS data. Mineralogiya 2017, 3, 48–70. (In Russian) [Google Scholar]
- Tseluyko, A.S.; Maslennikov, V.V.; Artem’yev, D.A. Microtopochemistry of pyrite nodules of siliceous siltstones from the Yubileinoe massive sulfide deposit (the Southern Urals) according to LA-ICP-MS data. Litosfera 2018, 4, 621–641. (In Russian) [Google Scholar]
- Melekestseva, I.Y.; Maslennikov, V.V.; Safina, N.P.; Nimis, P.; Maslennikova, S.P.; Beltenev, V.; Rozhdestvenskaya, I.; Danyushevsky, L.; Large, R.; Artemyev, D.A.; et al. Sulfide breccias from the Semenov-3 hydrothermal field, Mid-Atlantic Ridge: Authigenic mineral formation and trace element pattern. Minerals 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Prokin, V.A.; Buslaev, F.P. Massive copper-zinc sulfide deposits in the Urals. Ore Geol. Rev. 1999, 14, 1–69. [Google Scholar] [CrossRef]
- Puchkov, V.N. Structure and geodynamics of the Uralian orogen. Geol. Soc. Spec. Publ. 1997, 121, 201–236. [Google Scholar] [CrossRef]
- Herrington, R.J.; Maslennikov, V.V.; Zaykov, V.V.; Seravkin, I.B.; Kosarev, A.S.; Bushmann, B.; Orgeval, J.-J.; Holland, N.; Tessalina, S.G.; Nimis, P.; et al. Classification of VHMS deposits: Lessons from the Uralides. Ore Geol. Rev. 2005, 27, 203–237. [Google Scholar] [CrossRef]
- Puchkov, V.N. Ural tectonics: Modern views. Geotektonika 1997, 4, 42–60. (In Russian) [Google Scholar]
- Puchkov, V.N. Relationship between plitotectonic and plume processes. Geotectonics 2016, 4, 425–438. [Google Scholar] [CrossRef]
- Zaykov, V.V.; Maslennikov, V.V.; Zaykova, E.V.; Herrington, R. Ore-Formational and Ore-Facies Analysis of Massive Sulfide Deposits of Ural Paleo-Ocean; Imin UB RAS: Miass, Russia, 2001; 315p. (In Russian) [Google Scholar]
- Maslennikov, V.V.; Maslennikova, S.P.; Ayupova, N.R.; Zaykov, V.V.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Lein, A.T.; et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Maslennikova, S.P.; Tret׳yakov, G.A.; Melekestseva, I.Y.; Safina, N.P.; Belogub, E.V.; Large, R.R.; Danyushevsky, L.V.; Tseluyko, A.S.; et al. Toxic Elements in Massive Sulfide Systems; Rio UB RAS: Yekaterinburg, Russia, 2014; 340p. (In Russian) [Google Scholar]
- Maslennikov, V.V. Lithogenesis and Formation of Massive Sulfide Deposits; Imin UB RAS: Miass, Russia, 2006; 384p. (In Russian) [Google Scholar]
- Melekestseva, I.Y.; Zaykov, V.V.; Nimis, P.; Tret’yakov, G.A.; Tessalina, S.G. Cu-(Ni-Co-Au)-bearing massive sulfide deposits associated with mafic-ultramafic rocks of the main Urals fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geol. Rev. 2013, 52, 18–37. [Google Scholar] [CrossRef]
- Safina, N.P.; Melekestseva, I.Y.; Nimis, P.; Ankusheva, N.N.; Yuminov, A.M.; Kotlyarov, V.A.; Sadykov, S.A. Barite from the Saf’yanovka VMS deposit (Central Urals) and Semenov-1 and Semenov-3 hydrothermal sulfide fields (Mid-Atlantic Ridge): A comparative analysis of formation conditions. Miner. Depos. 2016, 54, 491–507. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Melekestseva, I.Y.; Maslennikova, S.P.; Maslennikova, A.V.; Tret’yakov, G.A.; Ayupova, N.R.; Safina, N.P.; Filippova, K.A.; Udachin, V.N.; Aminov, P.G.; et al. Differentiation of Toxic Elements in Lithogenesis and Technogenesis of Massive Sulfide Deposits; Rio UB RAS: Yekaterinburg, Russia, 2016; 368p. (In Russian) [Google Scholar]
- Ayupova, N.R.; Maslennikov, V.V.; Tessalina, S.G.; Shilovsky, O.P.; Sadykov, S.A.; Hollis, S.P.; Danyushevsky, L.V.; Safina, N.P.; Statsenko, E.O. Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions. Ore Geol. Rev. 2017, 85, 107–130. [Google Scholar] [CrossRef]
- Vikentyev, I.V.; Belogub, E.V.; Novoselov, R.A.; Moloshag, V.P. Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore Geol. Rev. 2017, 85, 30–63. [Google Scholar] [CrossRef]
- Kontar, E.S. Quantitative estimation of massive sulfide ore formation. Geol. Ore Dep. 2002, 44, 543–555. [Google Scholar]
- Zaykov, V.V. Volcanism and Sulfide Mounds of Paleocean Margins (After the Example of Ural’s and Siberia’s Massive Sulfide-Bearing Zones); Nauka: Moscow, Russia, 2006; 428p. (In Russian) [Google Scholar]
- Koroteev, V.A.; Yazeva, R.G.; Bochkarev, V.V. Geological Structure and Composition of Sulfide Ores of the Safyanov´ka Deposit (Middle Urals); IGG UB RAS: Ekaterinburg, Russia, 1997; 49p. (In Russian) [Google Scholar]
- Yazeva, R.G.; Moloshag, V.P.; Bochkarev, V.V. Geology and ore mineral assemblages of the Saf’yanovka massive sulfide deposit in the Central Urals retrooverthrust. Geol. Rudn. Mestorozhd. 1991, 33, 58–76. (In Russian) [Google Scholar]
- Maslennikova, S.P.; Maslennikov, V.V. Paleozoic Black Smoker Sulfide Chimneys; UB RAS: Yekaterinburg, Russia, 2007; 312p. (In Russian) [Google Scholar]
- Maslennikov, V.V. Sedimentogenesis, Halmyrolysis and Ecology of Massive Sulfide Paleohydrothermal Fields; Geotur: Miass, Russia, 1999; 348p. (In Russian) [Google Scholar]
- Prokin, V.A.; Buslaev, F.P.; Ismagilov, M.I. Copper Massive Sulfide Deposits of the Urals: Geological Structure; Ural Branch of the RAS: Sverdlovsk, Russia, 1988; 241p. (In Russian) [Google Scholar]
- Maslennikov, V.V.; Ayupova, N.R.; Herrington, R.J.; Danyushevskiy, L.V.; Large, R.R. Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals. Ore Geol. Rev. 2012, 47, 5–41. [Google Scholar] [CrossRef]
- Zaykov, V.V.; Melekestseva, I.Y.; Artemyev, D.A.; Yuminov, A.M.; Simonov, V.A.; Dunaev, A.Y. Geology and Massive Sulfide Mineralization of the Southern Flank of the Main Uralian Fault; Geotur: Miass, Russia, 2009; 376p. (In Russian) [Google Scholar]
- Longerich, H.P.; Jackson, S.E.; Gunter, D. Inter-laboratory note: Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atomic Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Danyushevsky, L.; Robinson, P.; Gilbert, S.; Norman, M.; Large, R.R.; McGoldric, P.; Shelley, M. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effect. Geochim. Explor. Environ. Anal. 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Maslennikov, V.V.; Artem’ev, D.A.; Blinov, I.A. Mineralogical and geochemical features of pyrite nodules from sulfide turbidites in the Talgan Cu–Zn massive sulfide deposit (Southern Urals). Lithol. Miner. Res. 2019, 54, 447–464. [Google Scholar] [CrossRef]
- Smirnov, V.I. Correlation Methods in Paragenetic Analysis; Nedra: Moscow, Russia, 1981; 174p. (In Russian) [Google Scholar]
- Yaroslavtseva, N.S.; Maslennikov, V.V.; Safina, N.P.; Leshchev, N.V.; Soroka, E.I. Carbon-bearing siltstones of the Saf’yanovskoe Cu-Zn massive sulfide deposit (Central Urals). Litosfera 2012, 2, 106–125. (In Russian) [Google Scholar]
- Ayupova, N.R.; Maslennikov, V.V.; Filippova, K.A. REE geochemistry and mineralogy in ores of the Talgan Cu–Zn massive sulfide deposit, Southern Urals. Dokl. Earth Sci. 2019, 487, 973–975. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Syndiagenesis-anadiagenesis-epidiagenesis: Phase of lithogenesis. In Diagenesis in Sediments and Sedimentary Rocks; Larsen, G., Chilingar, G.V., Eds.; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1983; Volume 2, pp. 17–114. [Google Scholar]
- Goodfellow, W.D.; Peter, J.M.; Winchester, J.A.; Van Staal, C.R. Ambient marine environment and sediment provenance during formation of massive sulfide deposits in the Bathurst Mining Camp: Importance of reduced bottom waters to sulfide precipitation and preservation. Econ. Geol. Monogr. 2003, 11, 129–156. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, J.; Algeo, T.J.; Sun, F.; Lin, R. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern south China sea. Mar. Geol. 2016, 379, 100–108. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Phases of diagenesis and authigenesis. In Diagenesis in Sediments; Larsen, G., Chilingar, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; pp. 19–89. [Google Scholar]
- Velde, B.; Medhioub, M. Approach to chemical equilibrium in diagenetic chlorites. Contrib. Mineral. Petrol. 1988, 98, 122–127. [Google Scholar] [CrossRef]
- Harvey, C.C.; Browne, P.R.L. Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays Clay Miner. 1991, 39, 614–621. [Google Scholar] [CrossRef]
- Jahred, J.S.; Aagaard, P. Compositional variations in diagenetic chlorites and illites and relationships with formation-water chemistry. Clay Miner. 1989, 24, 157–170. [Google Scholar] [CrossRef]
- Lindgreen, H.; Drits, V.A.; Sakharov, B.A.; Jakobsen, H.J.; Salyn, A.L.; Dainyak, L.G.; Kroyer, H. The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. Clay Miner. 2002, 37, 429–450. [Google Scholar] [CrossRef]
- Lanson, B.; Sakharov, B.; Claret, F.; Drits, V. Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-Ray diffraction results using the multi-specimen method. Am. J. Sci. 2009, 309, 476–516. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.; Cracknell, M.; Large, R.; McGoldrick, P.; Kuhn, S.; Maslennikov, V.; Baker, M.; Fox, N.; Belousov, I.; Figueroa, M.; et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Econ. Geol. 2019, 114, 771–786. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Maksimov, F.; Zheleznov, A.; Cherkashov, G.; Bel’tenev, V.; Lazareva, L. 230Th/U chronology of ore formation within the Semyenov hydrothermal district (13°31′ N) at the Mid-Atlantic Ridge. Geochronometria 2011, 38, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Brumsack, H.-J. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol. Rundsch. 1989, 78, 851–882. [Google Scholar] [CrossRef]
- Zierenberg, R.A.; Kosti, R.A.; Morton, J.L.; Bouse, R.M. Genesis of massive sulfide deposit on a sediment-covered spreading center, Escanaba trough, Southern Gorda Ridge. Econ. Geol. 1993, 88, 67–81. [Google Scholar] [CrossRef]
- Gaspar, O.C. Mineralogy and sulfide mineral chemistry of the Neves-Corvo ores, Portugal: Insight into their genesis. Can. Mineral. 2002, 40, 611–632. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia). Sediment. Geol. 2018, 367, 164–174. [Google Scholar] [CrossRef]
- Butler, I.B.; Nesbitt, R.V. Trace element distribution in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Safina, N.P.; Maslennikov, V.V. Litological-mineralogical zonality of sulfide cyclites of the Yaman-Kasy and Safyanovskoye massive sulfide deposits. Dokl. Earth. Sci. 2008, 419, 423–434. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Tret’yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits. Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite comparison with δS34 values and implication for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Clark, L.A. The Fe–As–S system—Phase relations and applications. Econ. Geol. 1960, 55, 1345–1381. [Google Scholar] [CrossRef]
- Kumar, R.; Ray, R.K.; Biswas, A.K. Physico-chemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode. Hydrometallurgy 1990, 25, 61–83. [Google Scholar] [CrossRef]
- Kreissl, S.; Bolanz, R.; Gottlicher, J.; Steininger, R.; Tarassov, M.; Markl, G. Structural incorporation of W6+ into hematite and goethite: A combined study of natural and synthetic iron oxides developed from precursor ferrihydrite and the preservation of ancient fluid compositions in hematite. Am. Mineral. 2016, 101, 2701–2715. [Google Scholar] [CrossRef]
- Dai, C.; Lin, M.; Hu, Y. Heterogeneous Ni- and Cd-bearing ferrihydrite precipitation and recrystallization on quartz under acidic pH condition. ACS Earth Space Chem. 2017, 110, 621–628. [Google Scholar] [CrossRef]
Values | Ti49 | V51 | Cr53 | Mn55 | Co59 | Ni60 | Cu65 | Zn66 | As75 | Se77 | Mo95 | Ag107 | Cd111 | Sn118 | Sb121 | Te125 | Ba137 | W182 | Au197 | Tl205 | Pb208 | Bi209 | U238 |
Saf’yanovskoe deposit, fine-crystalline poikilitic pyrite (Py1saf) (n = 9) | |||||||||||||||||||||||
min | 0.1 | 3.1 | 2.8 | 210 | 33.0 | 473 | 628 | 130 | 0.25 * | 172 | 58.1 | 149 | 1.5 | 0.2 | 61.5 | 0.4 | 11.7 | 0.01 | 10.2 | 11.6 | 0.1 * | 19.9 | 0.03 |
max | 17.5 | 21.8 | 13.4 | 932 | 58.7 | 747 | 2.1 * | 3.6 * | 0.36 | 360 | 230 | 335 | 236 | 18.9 | 101 | 5.6 | 68 | 0.02 | 46.4 | 28.0 | 0.76 * | 35.5 | 0.26 |
av | 4.8 | 11.2 | 7.32 | 552 | 46.8 | 599 | 0.5 * | 0.8 * | 0.32 | 228 | 120 | 220 | 50.4 | 6.79 | 80.0 | 2.81 | 43.2 | 0.01 | 32.5 | 18.6 | 0.3 * | 26.6 | 0.10 |
σ | 3.78 | 5.73 | 2.34 | 123 | 7.3 | 87.8 | 0.5 * | 0.6 * | 232 | 40.7 | 43.7 | 37.8 | 46.4 | 5.32 | 12.5 | 1.30 | 18.2 | 0.01 | 7.1 | 3.9 | 0.2 * | 4.23 | 0.06 |
med | 3.50 | 8.2 | 7.30 | 541 | 46.7 | 581 | 0.12 * | 0.5 * | 0.3 * | 218 | 97.0 | 206 | 29.0 | 4.80 | 74.6 | 2.40 | 49.2 | 0.01 | 36.2 | 17.7 | 0.2 | 24.3 | 0.08 |
Saf’yanovskoe deposit, anhedral small-grained pyrite (Py2saf) (n = 5) | |||||||||||||||||||||||
min | 9.0 | 1.92 | 2.1 | 46.2 | 1.52 | 66.4 | 624 | 12 | 0.3 * | 17.9 | 38.7 | 162 | 0.04 | 0.05 | 31.9 | 0.08 | 5.1 | 0.01 | 2.50 | 7.53 | 805 | 5.1 | 0.05 |
max | 97 | 10.8 | 6.5 | 318 | 16.7 | 233 | 1530 | 198 | 0.6 * | 159 | 156 | 227 | 2.1 | 1.58 | 77.2 | 4.8 | 44 | 0.27 | 7.4 | 20.2 | 0.7 * | 23.4 | 0.78 |
av | 34.3 | 5.69 | 3.60 | 107 | 8.79 | 149 | 939 | 98.5 | 0.5 * | 66.2 | 77.1 | 184 | 0.79 | 0.80 | 51.4 | 1.83 | 19.8 | 0.10 | 4.10 | 11.6 | 0.3 * | 11.4 | 0.30 |
σ | 28.6 | 2.85 | 1.24 | 84.4 | 5.24 | 63.1 | 291 | 69.0 | 544 | 48.5 | 38.1 | 18.2 | 0.59 | 0.51 | 15.5 | 1.65 | 11.2 | 0.10 | 1.61 | 4.1 | 0.2 * | 6.33 | 0.23 |
med | 11.4 | 6.56 | 3.00 | 56.2 | 8.00 | 158 | 791 | 121 | 0.50 * | 30.1 | 49.1 | 176 | 0.77 | 0.78 | 52.9 | 1.17 | 21.3 | 0.02 | 3.25 | 8.8 | 0.3 * | 8.14 | 0.15 |
Saf’yanovskoe deposit, subhedral coarser-crystalline pyrite (Py3saf) (n = 20) | |||||||||||||||||||||||
min | 1.1 | 0.21 | 0.14 | 41.6 | 0.21 | 14.2 | 384 | 9.8 | 0.4 * | 11.4 | 13.4 | 129 | 0.01 | 0.18 | 8.74 | 0.02 | 0.54 | 0.01 | 2.33 | 4.63 | 136 | 0.73 | 0.01 |
max | 230 | 3.99 | 3.14 | 187 | 10.7 | 180 | 1500 | 500 | 0.9 * | 61.3 | 122.4 | 247 | 2.6 | 0.67 | 57.8 | 2.5 | 20.1 | 0.4 | 5.0 | 14.6 | 0.5 * | 12.8 | 1.54 |
av | 30.5 | 1.79 | 1.55 | 107 | 4.4 | 73.6 | 662 | 58.0 | 0.7 * | 25.8 | 40.9 | 165 | 0.28 | 0.41 | 26.21 | 0.68 | 7.25 | 0.05 | 3.3 | 7.58 | 0.1 * | 5.4 | 0.26 |
σ | 25.0 | 0.79 | 0.64 | 43.3 | 2.74 | 36.8 | 223 | 66.7 | 0.2 * | 10.9 | 26.9 | 23.6 | 0.37 | 0.15 | 11.1 | 0.52 | 3.28 | 0.05 | 0.6 | 2.0 | 0.1 * | 2.6 | 0.24 |
med | 18.3 | 1.71 | 1.38 | 120 | 3.80 | 60.3 | 561 | 13.5 | 0.8 * | 21.4 | 22.05 | 159 | 0.01 | 0.36 | 22.4 | 0.42 | 6.10 | 0.01 | 3.12 | 6.89 | 756 | 4.36 | 0.13 |
Saf’yanovskoe deposit, all sulfides (n = 34) | |||||||||||||||||||||||
min | 0.1 | 0.21 | 0.14 | 41.6 | 0.21 | 14.2 | 384 | 9.8 | 0.25 * | 11.4 | 13.4 | 129 | 0.01 | 0.05 | 8.74 | 0.02 | 0.54 | 0.01 | 2.33 | 4.63 | 136 | 0.73 | 0.01 |
max | 230 | 21.8 | 13.4 | 932 | 58.7 | 747 | 2.1 * | 3.6 * | 0.9 * | 360 | 230 | 335 | 236 | 18.9 | 101 | 5.6 | 68 | 0.4 | 46.4 | 28.0 | 0.8 * | 35.5 | 1.54 |
av | 24.3 | 4.85 | 3.38 | 225 | 16.3 | 224 | 0.2 * | 0.2 * | 0.6 * | 85.4 | 67.1 | 182 | 13.6 | 2.16 | 44.1 | 1.41 | 18.6 | 0.05 | 11.2 | 11.1 | 0.2 * | 11.9 | 0.22 |
Ti49 | V51 | Cr53 | Mn55 | Co59 | Ni60 | Cu65 | Zn66 | As75 | Se77 | Mo95 | Ag107 | Cd111 | Sn118 | Sb121 | Te125 | Ba137 | W182 | Au197 | Tl205 | Pb208 | Bi209 | U238 | |
σ | 21.9 | 4.05 | 2.36 | 180 | 16.2 | 199 | 0.2 * | 0.3 * | 0.2 * | 80.6 | 42.0 | 31.8 | 21.2 | 2.70 | 24.5 | 1.24 | 15.4 | 0.05 | 11.4 | 4.94 | 0.15 * | 8.71 | 0.19 |
med | 12.6 | 2.44 | 2.23 | 136 | 6.69 | 94.4 | 770 | 31.2 | 0.5 * | 29.7 | 51.8 | 175 | 0.24 | 0.51 | 33.6 | 0.63 | 10 | 0.01 | 3.58 | 8.43 | 0.15 * | 7.0 | 0.11 |
Talgan deposit, fine-grained poikilitic pyrite (Py1tg) (n = 7) | |||||||||||||||||||||||
min | 4.9 | 5.0 | 0.02 | 94 | 260 | 197 | 571 | 145 | 849 | 0.1 | 0.2 | 143 | 4.0 | 0.1 | 234 | 16 | 1.00 | 6.0 | 0.02 | 0.8 | 1046 | 1.6 | 0.02 |
max | 246 | 27.0 | 2.4 | 981 | 1802 | 738 | 1162 | 8.3 * | 0.17 * | 1.0 | 2.5 | 660 | 622 | 0.8 | 5394 | 103 | 33.0 | 42 | 0.17 | 13.1 | 10.0 * | 32.1 | 0.53 |
av | 67 | 15.9 | 1.42 | 292 | 1026 | 456 | 847 | 1.31 * | 0.13 * | 0.50 | 1.0 | 390 | 102 | 0.4 | 1603 | 55 | 10.7 | 25 | 0.09 | 6.6 | 2.4 | 9.8 | 0.23 |
σ | 62 | 6.12 | 0.49 | 197 | 553 | 175 | 156 | 2.00 * | 286 | 0.29 | 0.71 | 195 | 149 | 0.2 | 1634 | 27 | 8.2 | 10.5 | 0.05 | 4.25 | 2.7 * | 7.4 | 0.16 |
med | 40 | 15.0 | 1.6 | 212 | 1106 | 404 | 846 | 251 | 1468 | 0.30 | 0.7 | 504 | 4.9 | 0.4 | 551 | 58 | 9.0 | 25 | 0.12 | 7.4 | 0.6 * | 7.1 | 0.18 |
Talgan deposit, subhedral coarse-crystalline pyrite (Py2tg) (n = 7) | |||||||||||||||||||||||
min | 1.5 | 0.03 | 0.04 | 93 | 0.03 | 3 | 0.2 * | 3 | 18 | 0.1 | 0.01 | 10 | 0.3 | 0.01 | 9 | 0.05 | 0.04 | 4.9 | 0.01 | 0.1 | 41 | 0.1 | 0.01 |
max | 2.5 | 0.7 | 0.8 | 2422 | 1.0 | 19 | 1.4 * | 19 | 378 | 0.6 | 0.10 | 90 | 11 | 0.1 | 136 | 3.0 | 4.40 | 58 | 0.01 | 6.0 | 7036 | 2.5 | 0.02 |
av | 1.99 | 0.2 | 0.31 | 734 | 0.38 | 6.86 | 0.8 * | 9 | 135 | 0.31 | 0.07 | 38 | 2.76 | 0.04 | 54.6 | 0.64 | 1.89 | 25 | 0.01 | 1.63 | 1782 | 0.66 | 0.01 |
σ | 0.33 | 0.14 | 0.17 | 771 | 0.36 | 3.55 | 0.3 * | 5.4 | 84.2 | 0.13 | 0.04 | 25 | 2.36 | 0.03 | 34.2 | 0.69 | 1.21 | 11.4 | 0.002 | 1.47 | 1747 | 0.77 | 0.004 |
med | 2.1 | 0.1 | 0.3 | 257 | 0.1 | 5 | 0.9 * | 7 | 112 | 0.3 | 0.1 | 23 | 1.7 | 0.03 | 58 | 0.20 | 2.00 | 24 | 0.01 | 0.9 | 769 | 0.1 | 0.01 |
Ti49 | V51 | Cr53 | Mn55 | Co59 | Ni60 | Cu65 | Zn66 | As75 | Se77 | Mo95 | Ag107 | Cd111 | Sn118 | Sb121 | Te125 | Ba137 | W182 | Au197 | Tl205 | Pb208 | Bi209 | U238 | |
Talgan deposit, all sulfides (n = 14) | |||||||||||||||||||||||
min | 1.5 | 0.03 | 0.02 | 93 | 0.03 | 3 | 571 | 3 | 18 | 0.1 | 0.01 | 10 | 0.3 | 0.01 | 9 | 0.05 | 0.04 | 4.9 | 0.01 | 0.1 | 41 | 0.1 | 0.01 |
max | 246 | 27 | 2.4 | 2422 | 1802 | 738 | 1.4 * | 8.3 * | 0.17 * | 1.0 | 2.5 | 660 | 622 | 0.8 | 5394 | 103 | 33 | 58 | 0.17 | 13.1 | 10* | 32.1 | 0.53 |
av | 34.4 | 8.03 | 0.86 | 512 | 513 | 231 | 4606 | 0.7 * | 729 | 0.41 | 0.56 | 214 | 52.3 | 0.21 | 829 | 28.0 | 6.32 | 25.0 | 0.05 | 4.11 | 1.3* | 5.25 | 0.12 |
σ | 42.6 | 8.26 | 0.68 | 515 | 516 | 230 | 4144 | 1.1 * | 594 | 0.22 | 0.58 | 198 | 83.5 | 0.20 | 1038 | 30.0 | 6.10 | 10.9 | 0.05 | 3.81 | 1.7* | 5.70 | 0.14 |
med | 3.7 | 2.85 | 0.6 | 231 | 131 | 108 | 1539 | 82 | 614 | 0.30 | 0.15 | 117 | 4.0 | 0.10 | 185 | 9.5 | 2.7 | 24 | 0.02 | 2.05 | 0.3* | 2.05 | 0.02 |
Dergamysh deposit, open-latticework pyrrhotite (Podg) (n = 11) | |||||||||||||||||||||||
min | 2.65 | 0.13 | 3.03 | 4.26 | 423 | 631 | 41 | 1.33 | 43 | 53 | 1.24 | 0.52 | 0.01 | 0.46 | 7.62 | 0.02 | 0.002 | 0.00 | 0.06 | 0.11 | 0.39 | 0.00 | 0.00 |
max | 4.23 | 0.45 | 14 | 11 | 0.4 * | 0.8 * | 1.4 * | 7.5 | 97 | 134 | 2.69 | 0.74 | 0.41 | 0.81 | 18 | 0.07 | 0.55 | 0.06 | 1.1 | 0.43 | 6.5 | 0.55 | 0.00 |
av | 3.6 | 0.27 | 6.9 | 8.0 | 0.12 * | 0.2 * | 0.4 * | 3.6 | 67.7 | 85.2 | 2.1 | 0.72 | 0.19 | 0.73 | 14.0 | 0.03 | 0.07 | 0.01 | 0.27 | 0.21 | 2.31 | 0.07 | 0.00 |
σ | 0.26 | 0.08 | 3.0 | 1.68 | 702 | 0.12 * | 0.4 * | 1.59 | 16.0 | 21.4 | 0.36 | 0.05 | 0.11 | 0.1 | 2.62 | 0.01 | 0.1 | 0.01 | 0.24 | 0.08 | 1.67 | 0.09 | 0.00 |
med | 3.24 | 0.25 | 5.4 | 7.28 | 873 | 990 | 64 | 2.84 | 53 | 77 | 1.93 | 0.66 | 0.13 | 0.66 | 12 | 0.02 | 0.001 | 0.01 | 0.09 | 0.14 | 1.21 | 0.00 | 0.00 |
Dergamysh deposit, coarse-crystalline pyrite (Pydg) (n = 37) | |||||||||||||||||||||||
min | 3.04 | 0.02 | 0.02 | 0.41 | 152 | 323 | 1 | 0.83 | 353 | 4.5 | 0.22 | 0.01 | 0.00 | 0.09 | 8.03 | 0.00 | 0.001 | 0.01 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 |
max | 4.56 | 0.35 | 10 | 3.8 | 1293 | 1423 | 490 | 25 | 1603 | 99 | 1.06 | 0.17 | 0.16 | 0.17 | 71 | 0.04 | 0.05 | 0.31 | 0.28 | 0.43 | 1.45 | 0.05 | 0.01 |
av | 3.7 | 0.08 | 1.90 | 1.48 | 639 | 758 | 161 | 3.5 | 873 | 33.3 | 0.56 | 0.05 | 0.05 | 0.13 | 41.83 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.32 | 0.01 | 0.00 |
σ | 0.4 | 0.1 | 2.6 | 0.8 | 314 | 251 | 156 | 4.7 | 430 | 29.0 | 0.2 | 0.01 | 0.02 | 0.02 | 12.9 | 0.01 | 0.01 | 0.07 | 0.05 | 0.11 | 0.34 | 0.01 | 0.001 |
med | 3.55 | 0.05 | 1.02 | 1.29 | 616 | 709 | 144 | 1.92 | 716 | 22 | 0.57 | 0.04 | 0.03 | 0.13 | 41 | 0.01 | 0.005 | 0.01 | 0.01 | 0.01 | 0.19 | 0.00 | 0.00 |
Dergamysh deposit, all sulfides (n = 48) | |||||||||||||||||||||||
min | 2.65 | 0.02 | 0.02 | 0.41 | 152 | 323 | 1 | 0.83 | 43 | 4.5 | 0.22 | 0.01 | 0.00 | 0.09 | 8.03 | 0.00 | 0.001 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 |
max | 4.56 | 0.45 | 14 | 11 | 0.4 * | 0.8 * | 1.4 * | 25 | 1603 | 134 | 2.69 | 0.74 | 0.41 | 0.81 | 71 | 0.07 | 0.55 | 0.06 | 1.1 | 0.43 | 6.5 | 0.55 | 0.01 |
av | 3.61 | 0.12 | 3.04 | 2.8 | 759 | 962 | 873 | 3.46 | 687 | 44.0 | 0.87 | 0.19 | 0.07 | 0.25 | 35.2 | 0.03 | 0.02 | 0.01 | 0.08 | 0.15 | 0.73 | 0.02 | 0.00 |
σ | 0.35 | 0.09 | 2.76 | 2.12 | 360 | 415 | 0.13 * | 2.50 | 429 | 29.3 | 0.48 | 0.21 | 0.06 | 0.19 | 13.8 | 0.03 | 0.03 | 0.01 | 0.09 | 0.08 | 0.72 | 0.03 | 0.00 |
med | 3.52 | 0.08 | 1.52 | 1.51 | 627 | 746 | 130 | 2.14 | 556 | 44 | 0.71 | 0.07 | 0.04 | 0.13 | 39.5 | 0.01 | 0.005 | 0.01 | 0.02 | 0.13 | 0.25 | 0.006 | 0.00 |
Pyrite Types | Zn | Cd | Au | Sn | Se | Co | Ni | Ba | Mn | Te | Bi | V |
Py1saf | 156.4 | 120.8 | 10.1 | 9.41 | 7.34 | 6.99 | 6.15 | 4.92 | 3.98 | 3.84 | 3.47 | 3.37 |
Zn | Cd | V | Ba | W | Pb | Te | Ni | Sb | Sn | Cr | U | |
Py2saf | 3.88 | 3.21 | 2.69 | 2.13 | 2.00 | 1.99 | 1.87 | 1.67 | 1.57 | 1.53 | 1.35 | 1.32 |
As | Ti | U | W | Ag | Mn | Au | Tl | Cu | Se | Sn | V | |
Py3saf | 1.61 | 1.45 | 1.11 | 1.00 | 0.91 | 0.88 | 0.87 | 0.82 | 0.73 | 0.72 | 0.71 | 0.70 |
Cr | Sb | Tl | Mo | Cu | Pb | Ag | W | U | As | Ti | ||
Py1saf | 3.30 | 2.22 | 2.1 | 1.87 | 1.65 | 1.34 | 1.17 | 1.00 | 0.70 | 0.67 | 0.28 | |
Co | Bi | Tl | Cu | As | Se | Ag | Mo | Au | Ti | Mn | ||
Py2saf | 1.20 | 1.16 | 1.04 | 1.03 | 1.02 | 1.01 | 1.00 | 0.95 | 0.91 | 0.90 | 0.41 | |
Sb | Te | Ni | Cr | Bi | Ba | Co | Pb | Zn | Mo | Cd | ||
Py3saf | 0.67 | 0.67 | 0.64 | 0.62 | 0.62 | 0.61 | 0.57 | 0.50 | 0.43 | 0.43 | 0.04 |
Saf’yanovskoe Deposit, all sulfides (n = 33) |
I (Cd + Zn + Sn) + II (Co + Ni + Bi + Sb + Mo + Tl + Pb + Te) + III (Ba + V + Cr) + IV (Se + Au + Mn) + V (Cu + Ag) VI (U + W) Ti, As |
Talgan deposit, all sulfides (n = 14) |
I (Cd + Zn + Ba) + II (V + U + Cr) + III (Ni + Co) + IV (Te + Ag + Au + Tl + Se) V (Pb + Bi) + VI(Sn + Ti) VII (Mo + Sb + As) VIII (Cu + Mn) W |
Dergamysh deposit, all sulfides (n = 47) |
I (Ni + Bi) + II (Ba + Au + Pb) + III (Ag + Sn) + IV (Mo + Mn) + V (V + Cr + Cu + Tl) VI (As + Sb + Ti) VII (U + Zn) VIII (Co + Se) IX (W + Cd) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safina, N.P.; Melekestseva, I.Y.; Ayupova, N.R.; Maslennikov, V.V.; Maslennikova, S.P.; Artemyev, D.A.; Blinov, I.A. Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites. Minerals 2020, 10, 193. https://doi.org/10.3390/min10020193
Safina NP, Melekestseva IY, Ayupova NR, Maslennikov VV, Maslennikova SP, Artemyev DA, Blinov IA. Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites. Minerals. 2020; 10(2):193. https://doi.org/10.3390/min10020193
Chicago/Turabian StyleSafina, Nataliya P., Irina Yu. Melekestseva, Nuriya R. Ayupova, Valeriy V. Maslennikov, Svetlana P. Maslennikova, Dmitry A. Artemyev, and Ivan A. Blinov. 2020. "Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites" Minerals 10, no. 2: 193. https://doi.org/10.3390/min10020193
APA StyleSafina, N. P., Melekestseva, I. Y., Ayupova, N. R., Maslennikov, V. V., Maslennikova, S. P., Artemyev, D. A., & Blinov, I. A. (2020). Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites. Minerals, 10(2), 193. https://doi.org/10.3390/min10020193