Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Analytical Methods
4. Results and Discussion
4.1. Lithological Associations and Sedimentary Facies
4.2. Gas Generation Thresholds
4.3. Pore Evolution
4.4. Upper Paleozoic Transitional Shale Gas Enrichment Factors
5. Conclusions
- Gas logging and desorption revealed carbonaceous mudstone adjacent to coal seams presents a high gas content level due to abundant OM and gas migration from coal seams, and is primarily developed in swamps in the delta plain environment, and swamps and lagoons in the barrier coastal environment.
- Gas generation threshold maturity (Rmax) of transitional shale is 1.6%, and corresponding threshold depths of the northeastern Ordos Basin and southwestern Guizhou are about 2265 m and 1050 m.
- Transitional shale pore evolution is jointly controlled by hydrocarbon generation, clay minerals transformation, and compaction. When Rmax < 1.6%, pore space may decrease due to compaction and filling of liquid hydrocarbon and bitumen. When Rmax ranges between 1.6% and 3.0%, pore space may increase due to kerogen pyrolysis, liquid hydrocarbon and bitumen cracking, volatile matter release, organic acids dissolution, OM shrinkage, high pore pressure, graphitic-like structure formation in solid OM, illitization, and smectite dehydration. When Rmax > 3.0%, transitional shale pore space may decrease due to increasing external pressure.
- The continuous distribution of transitional shale gas enrichment areas can be formed along the slope adjacent to coal seams with a moderate maturity range (1.6%–3.0%) in the northeastern Ordos Basin, while transitional shale gas can be enriched in the areas adjacent to coal seams with a moderate maturity range (1.6%–3.0%), abundant fractures, and favorable sealing faults in southwestern Guizhou.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (II). Pet. Explor. Dev. 2016, 43, 182–196. [Google Scholar] [CrossRef]
- Dong, D.; Wang, Y.; Li, X.; Zou, C.; Guan, Q.; Zhang, C.; Huang, J.; Wang, S.; Wang, H.; Liu, H.; et al. Breakthrough and prospect of shale gas exploration and development in China. Nat. Gas Ind. 2016, 3, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tang, H.; Zheng, M. Micropore Structural Heterogeneity of Siliceous Shale Reservoir of the Longmaxi Formation in the Southern Sichuan Basin, China. Minerals 2019, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Ning, Z.; Wang, Q.; Zhang, R.; Krooss, B.M. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. Int. J. Coal Geol. 2016, 156, 12–24. [Google Scholar] [CrossRef]
- Liang, H.; Xu, F.; Xu, G.; Yuan, H.; Huang, S.; Wang, Y.; Wang, L.; Fu, D. Geochemical characteristics and origins of the diagenetic fluids of the Permian Changxing Formation calcites in the Southeastern Sichuan Basin: Evidence from petrography, inclusions and Sr, C and O isotopes. Mar. Pet. Geol. 2019, 103, 564–580. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Zhang, R.; Liu, S.; Zhou, Q. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel 2019, 241, 360–371. [Google Scholar] [CrossRef]
- Guo, X. Rules of two-factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area. Acta Geol. Sin. 2014, 88, 1209–1218, (In Chinese with English abstract). [Google Scholar]
- Guo, X.; Hu, D.; Li, Y.; Wei, X.; Liu, Z. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Pet. Explor. Dev. 2017, 44, 513–523. [Google Scholar] [CrossRef]
- Jin, Z.; Hu, Z.; Gao, B.; Zhao, J. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin. Earth Sci. Front. 2016, 23, 1–10, (In Chinese with English abstract). [Google Scholar]
- Zhao, W.; Li, J.; Yang, T.; Wang, S.; Huang, J. Geological difference and its significance of marine shale gases in South China. Pet. Explor. Dev. 2016, 43, 547–559. [Google Scholar] [CrossRef]
- He, C.; Ji, L.; Wu, Y.; Su, A.; Zhang, M. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry. Sediment. Geol. 2016, 345, 33–41. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Yang, H.; Fu, J.; Wei, X.; Liu, X. Sulige field in the Ordos Basin: Geological setting, field discovery and tight gas reservoirs. Mar. Pet. Geol. 2008, 25, 387–400. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Hou, X.; Shao, L. Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. Int. J. Coal Geol. 2003, 55, 117–138. [Google Scholar] [CrossRef]
- Ma, X.; Guo, S. Comparative Study on shale characteristics of different sedimentary microfacies of Late Permian Longtan Formation in Southwestern Guizhou, China. Minerals 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Hower, J.C.; Liu, X. Petrographic characteristics of the brecciated coals from Panxian county, Guizhou, southwestern China. Fuel 2019, 243, 1–9. [Google Scholar] [CrossRef]
- Luo, W.; Hou, M.; Liu, X.; Huang, S.; Chao, H.; Zhang, R.; Deng, X. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan formation, Northwestern Guizhou, China. Mar. Pet. Geol. 2018, 89, 58–67. [Google Scholar] [CrossRef]
- Erzinger, J.; Wiersberg, T.; Dahms, E. Real-time mud gas logging during drilling of the SAFOD Pilot Hole in Parkfield, CA. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Erzinger, J.; Wiersberg, T.; Zimmer, M. Real-time mud gas logging and sampling during drilling. Geofluids 2006, 6, 225–233. [Google Scholar] [CrossRef]
- McKinney, D.E.; Flannery, M.; Elshahawi, H.; Stankiewicz, A.; Clarke, E.; Breviere, J.; Sachin, S. Advanced mud gas logging in combination with wireline formation testing and geochemical fingerprinting for an improved understanding of reservoir architecture. In SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Anaheim, CA, USA, 2007. [Google Scholar]
- Diamond, W.P.; Levine, J.R. Direct method determination of the gas content of coal: Procedures and results. In Bureau of Mines Report of Investigations; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1981. [Google Scholar]
- Lewan, M.D.; Bjorøy, M.; Dolcater, D.L. Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. Geochim. Cosmochim. Acta 1986, 50, 1977–1987. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, T.; Wiggins-Camacho, J.; Ellis, G.; Lewan, M.; Zhang, X. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis. Mar. Pet. Geol. 2015, 59, 114–128. [Google Scholar] [CrossRef]
- Spigolon, A.L.; Lewan, M.D.; de Barros Penteado, H.L.; Coutinho, L.F.C.; Mendonça Filho, J.G. Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: A case study using a Brazilian source rock with Type I kerogen. Org. Geochem. 2015, 83, 27–53. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S. Shale gas content evolution in the Ordos Basin. Int. J. Coal Geol. 2019, 211, 103231. [Google Scholar] [CrossRef]
- Lo, H.B.; Wilkins, R.W.T.; Ellacott, M.V.; Buckingham, C.P. Assessing the maturity of coals and other rocks from north america using the fluorescence alteration of multiple macerals (FAMM) technique. Int. J. Coal Geol. 1997, 33, 61–71. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Jiang, Z.; Pang, X.; Li, Z.; Li, Q.; Li, W.; Tang, X.; Pan, A. Influencing factors and mathematical prediction of shale adsorbed gas content in the Upper Triassic Yanchang Formation in the Ordos Basin, China. Minerals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Bustin, R.M.; Clarkson, C.R. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38, 3–26. [Google Scholar] [CrossRef]
- Meng, Z.; Yan, J.; Li, G. Controls on gas content and carbon isotopic abundance of methane in Qinnan-East coal bed methane block, Qinshui Basin, China. Energy Fuels 2017, 31, 1502–1511. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Liu, K.; Su, L.; Bai, B.; Zhang, X.; Yuan, X.; Wang, J. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria. J. Pet. Sci. Eng. 2012, 88, 82–91. [Google Scholar] [CrossRef]
- Nichols, G. Sedimentology and Stratigraphy, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Jasper, K.; Hartkopf-Fröder, C.; Flajs, G.; Littke, R. Evolution of Pennsylvanian (Late Carboniferous) peat swamps of the Ruhr Basin, Germany: Comparison of palynological, coal petrographical and organic geochemical data. Int. J. Coal Geol. 2010, 83, 346–365. [Google Scholar] [CrossRef]
- McLaughlin, M.R.; Brooks, J.P.; Adeli, A. Characterization of selected nutrients and bacteria from anaerobic swine manure lagoons on sow, nursery, and finisher farms in the Mid-South USA. J. Environ. Qual. 2009, 38, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Suggate, R.P. Relations between depth of burial, vitrinite reflectance and geothermal gradient. J. Pet. Geol. 1998, 21, 5–32. [Google Scholar] [CrossRef]
- Law, B.E.; Nuccio, V.F.; Barker, C.E. Kinky vitrinite reflectance well profiles: Evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain foreland basins. AAPG Bull. 1989, 73, 999–1010. [Google Scholar]
- International Union of Pure and Applied Chemistry. Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids. (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y. Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 501–521. [Google Scholar] [CrossRef]
- Lu, J.; Ruppel, S.C.; Rowe, H.D. Organic matter pores and oil generation in the Tuscaloosa marine shale. AAPG Bull. 2015, 99, 333–357. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, H. Petroleum Geology, 4th ed.; Petroleum Industry Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- The Division of Diagenetic Stages in Clastic Rocks. In Chinese Oil and Gas Industry Standard; State Economic and Trade Commission: Beijing, China, 2003. (In Chinese)
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry: Chapter 5. AAPG Mem. 1994, 60, 93–120. [Google Scholar]
- Zhao, W.; Zhang, S.; Wang, F.; Cramer, B.; Chen, J.; Sun, Y.; Zhang, B.; Zhao, M. Gas systems in the Kuche Depression of the Tarim Basin: Source rock distributions, generation kinetics and gas accumulation history. Org. Geochem. 2005, 36, 1583–1601. [Google Scholar] [CrossRef]
- Wei, L.; Mastalerz, M.; Schimmelmann, A.; Chen, Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol. 2014, 132, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Bentabol, M.; Cruz, M.D.R.; Huertas, F.J.; Linares, J. Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions. Appl. Clay Sci. 2006, 32, 111–124. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. J. Coal Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Gai, H.; Xiao, X.; Cheng, P.; Tian, H.; Fu, J. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment. Org. Geochem. 2015, 78, 69–78. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Y.; Li, Y.; Peng, P. Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocene Maoming oil shale, south China. Mar. Pet. Geol. 2017, 86, 526–536. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L. BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area, Germany. Int. J. Coal Geol. 2016, 158, 78–89. [Google Scholar] [CrossRef]
- Dias, R.F.; Freeman, K.H.; Lewan, M.D.; Franks, S.G. δ13C of low-molecular-weight organic acids generated by the hydrous pyrolysis of oil-prone source rocks. Geochim. Cosmochim. Acta 2002, 66, 2755–2769. [Google Scholar] [CrossRef]
- Baruch, E.T.; Kennedy, M.J.; Löhr, S.C.; Dewhurst, D.N. Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bull. 2015, 99, 1745–1770. [Google Scholar] [CrossRef]
- Huang, S.J.; Huang, K.K.; Feng, W.L.; Tong, H.P.; Liu, L.H.; Zhang, X.H. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis-a case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, western Sichuan depression. Geochimica 2009, 38, 498–506, (In Chinese with English abstract). [Google Scholar]
- Hu, H.; Hao, F.; Lin, J.; Lu, Y.; Ma, Y.; Li, Q. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int. J. Coal Geol. 2017, 173, 40–50. [Google Scholar] [CrossRef]
- Surdam, R.C.; Crossey, L.J.; Eglinton, G.; Durand, B.; Pigott, J.D.; Raiswell, R.; Berner, R.A. Organic-inorganic reactions during progressive burial: Key to porosity and permeability enhancement and preservation [and discussion]. Philos. Trans. R. Soc. 1985, 315, 135–156. [Google Scholar]
- Saffer, D.M.; Marone, C. Comparison of smectite-and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet Sci. Lett. 2003, 215, 219–235. [Google Scholar] [CrossRef]
- Lee, S.; Fischer, T.B.; Stokes, M.R.; Klingler, R.J.; Ilavsky, J.; McCarty, D.K.; Wigand, M.O.; Derkowski, A.; Winans, R. Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: Ultrasmall-angle X-ray scattering study. Energy Fuels 2014, 28, 6772–6779. [Google Scholar] [CrossRef]
Sample ID | Well | Study Area | Formation | Depth (m) | TOC (wt%) | Kerogen Type | Rmax (%) |
---|---|---|---|---|---|---|---|
M1-1 | M1 | Northeastern Ordos Basin | Shanxi | 1130.4 | 1.23 | III | 0.96 |
M2-1 | M2 | Northeastern Ordos Basin | Shanxi | 1123.1 | 4.65 | III | 0.87 |
L1-1 | L1 | Northeastern Ordos Basin | Shanxi | 2047.0 | / | III | 1.03 |
L2-1 | L2 | Northeastern Ordos Basin | Shanxi | 2092.3 | / | III | 1.07 |
L2-2 | L2 | Northeastern Ordos Basin | Taiyuan | 2199.8 | / | III | 1.15 |
L2-3 | L2 | Northeastern Ordos Basin | Taiyuan | 2222.8 | / | III | 1.21 |
Y1-1 | Y1 | Northeastern Ordos Basin | Shanxi | 2397.2 | 0.97 | III | 2.63 |
Y1-2 | Y1 | Northeastern Ordos Basin | Shanxi | 2407.5 | 1.46 | III | 2.65 |
Y1-3 | Y1 | Northeastern Ordos Basin | Shanxi | 2427.2 | 1.90 | III | 2.68 |
Y1-4 | Y1 | Northeastern Ordos Basin | Shanxi | 2455.1 | 4.62 | III | 3.20 |
Y1-5 | Y1 | Northeastern Ordos Basin | Taiyuan | 2497.3 | 3.06 | III | 3.30 |
Y1-6 | Y1 | Northeastern Ordos Basin | Taiyuan | 2501.9 | 3.21 | III | 3.32 |
V1-1 | V1 | Southwestern Guizhou | Longtan | 358.5 | 5.38 | III | 0.86 |
V1-2 | V1 | Southwestern Guizhou | Longtan | 587.0 | 2.36 | III | 1.03 |
V1-3 | V1 | Southwestern Guizhou | Longtan | 678.0 | 6.53 | III | 1.06 |
V1-4 | V1 | Southwestern Guizhou | Longtan | 852.6 | 2.56 | III | 1.23 |
X1-1 | X1 | Southwestern Guizhou | Longtan | 1318.2 | 2.84 | III | 2.75 |
X1-2 | X1 | Southwestern Guizhou | Longtan | 1365.5 | 5.23 | III | 2.80 |
X1-3 | X1 | Southwestern Guizhou | Longtan | 1420.0 | 3.52 | III | 2.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Guo, S. Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China. Minerals 2020, 10, 194. https://doi.org/10.3390/min10020194
Wang F, Guo S. Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China. Minerals. 2020; 10(2):194. https://doi.org/10.3390/min10020194
Chicago/Turabian StyleWang, Feiteng, and Shaobin Guo. 2020. "Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China" Minerals 10, no. 2: 194. https://doi.org/10.3390/min10020194
APA StyleWang, F., & Guo, S. (2020). Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China. Minerals, 10(2), 194. https://doi.org/10.3390/min10020194