Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of Previous Research
2.2. Methods
- primary mine network, placed out of the influence zone,
- measuring points network (for accessing detail), and
- connecting network, which connected the networks 1 and 2
- —standard deviation of a control point G-i (i = 1, 2, …, 5),
- —standard deviation of a polygonometry point j,
- —standard deviation of the height difference between P-j and C-i, and
- —standard deviation of measured height of TS over the polygonometry point.
3. Results
- —the height of the control point i obtained by GNSS RTK,
- —the height of the control point i obtained by UAV photogrammetry, and
- i = 1, 2, …,5 is the index of the control point.
- —dispersions from Table 2,
- , with degrees of freedom, and
- and
- m = 5 series (points).
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, F.T.; Abel, J.F. Subsidence from Underground Mining: Environmental Analysis and Planning Considerations; U.S. Geological Survey: Reston, VA, USA, 1983.
- Vukelić, Ž.; Dervarič, E.; Šporin, J.; Vižintin, G. The Development of Dewatering Predictions of the Velenje Coalmine. Energies 2016, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Kanduč, T.; Grassa, F.; McIntosh, J.; Stibilj, V.; Ulrich-Supovec, M.; Supovec, I.; Jamnikar, S. A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Slovenia. Hydrogeol. J. 2014, 22, 971–984. [Google Scholar] [CrossRef]
- Brezigar, A. Geology of the Šalek valley and the surrounding areas from written sources. Geologija 2007, 50, 233–245. [Google Scholar] [CrossRef]
- Rošer, J.; Potocnik, D.; Vulic, M. Analysis of Dynamic Surface Subsidence at the Underground Coal Mining Site in Velenje, Slovenia through Modified Sigmoidal Function. Minerals 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Laklar, B.; Medved, M.; Jeromel, G.; Beškovnik, M. The Velenje Mining Method. Available online: http://www.rlv.si/en/files/default/BROSURA ODKOPNA METODA ENG september2012.pdf (accessed on 20 February 2020).
- Vrankar, L. Slovenia and Its Coal Regions: 4th Working Group Meeting—Platform for Coal Regions in Transition; European Commission: Brussels, Belgum, 2019; Available online: https://ec.europa.eu/energy/en/content/presentations-4th-working-group-meeting-platform-coal-regions-transition-8th-april (accessed on 20 February 2020).
- Potočnik, D.; Rošer, J.; Lamot, A.; Vulić, M. Technical Observation of Large Objectes - Geodetic Monitoring of Large Objects and Lakes in Explotation Area of Velenje Coal Mine. Gradb. Vestn. 2014, 63, 240–245. [Google Scholar]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Chang, C.C. Estimation of local subsidence using GPS and leveling data. Surv. L. Inf. Syst. 2000, 60, 85–94. [Google Scholar]
- Wang, X.; Yue, Z.; Xingge, J.; Peng, Z. A Dynamic Prediction Method of Deep Mining Subsidence Combines D-InSAR Technique. Procedia Environ. Sci. 2011, 10, 2533–2539. [Google Scholar]
- Yue, H. Coal mining induced land subsidence monitoring using multiband spaceborne differential interferometric synthetic aperture radar data. J. Appl. Remote Sens. 2011, 5, 053518. [Google Scholar] [CrossRef]
- Fan, H.; Lu, L.; Yao, Y. Method Combining Probability Integration Model and a Small Baseline Subset for Time Series Monitoring of Mining Subsidence. Remote Sens. 2018, 10, 1444. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yu, H.; Shen, Y.; Li, W.; Guo, B. A new method to monitor the coal mining subsidence by gravimetry. Open Fuels Energy Sci. J. 2015, 10, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Palamara, D.R.; Nicholson, M.; Flentje, P.; Baafi, E.; Brassington, G.M. An evaluation of airborne laser scan data for coalmine subsidence mapping. Int. J. Remote Sens. 2007, 28, 3181–3203. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Shao, Z.F.; Du, Z.Q. 3D reconstruction of mining area based on terrestrial laser scanner and calculation of extraction. Appl. Mech. Mater. 2013, 327, 1787–1791. [Google Scholar] [CrossRef]
- Gasperini, D.; Pisa, U.; Maria, S.; Lyon, L.D.G.; Lyon, U.; Brest, U.; Iuem, U.M.R. Potential and limitation of UAV for monitoring subsidence in municipal landfills Pascal Allemand Christophe Delacourt Philippe Grandjean. Int. J. Environ. Technol. Manag. 2014, 17, 1–13. [Google Scholar] [CrossRef]
- Ge, L.; Li, X.; Ng, A.H.M. UAV for mining applications: A case study at an opencut mine and a longwall mine in New South Wales, Australia. IGARSS 2016, 5422–5425. [Google Scholar]
- Vervoort, A.; Declercq, P.-Y. Surface movement above old coal longwalls after mine closure. Int. J. Min. Sci. Technol. 2017, 27, 481–490. [Google Scholar] [CrossRef]
- Pal, A.; Rošer, J.; Vulić, M. Surface Subsidence Prognosis above an Underground Longwall Excavation and Based on 3D Point Cloud Analysis. Minerals 2020, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Potočnik, D.; Rošer, J.; Vulić, M. Monitoring and Predicting Surface Movements in the Velenje Coal Mine Area. In Proceedings of the 5th Jubilee Balkan Mining Congress, Ohrid, Republic of Macedonia, 18–21 September 2013. [Google Scholar]
- Lamot, A.; Rošer, J.; Vulić, M. Spremljanje Premikov Terena Lokalne, Mreže na Področju Sanacij Ugreznin»Psu-80c«z Različnimi Metodami Meritev-Vmesno Poročilo; Internal Mine Surveying Lecture Series; University of Ljubljana, Faculty of Natural Sciences and Engineering: Ljubljana, Slovenia, 2017. (In Slovenian) [Google Scholar]
- 3D Survey, Mapping and Aerial Image Processing Software—User Manual. Available online: http://www.3dsurvey.si/upload/downloads/3Dsurvey-user-manual_v2-7-0.pdf (accessed on 20 February 2020).
No | Date | Δ1 (m) | Δ2 (m) | Δ3 (m) | Δ4 (m) | Δ5 (m) |
---|---|---|---|---|---|---|
1 | 2017-02-01 | 0.085 | −0.079 | −0.051 | ||
2 | 2017-02-15 | −0.004 | −0.022 | 0.020 | −0.077 | |
3 | 2017-03-01 | −0.002 | 0.023 | −0.033 | 0.055 | |
4 | 2017-03-15 | 0.041 | −0.053 | 0.015 | ||
5 | 2017-04-01 | −0.021 | −0.045 | −0.047 | 0.009 | 0.052 |
6 | 2017-04-21 | −0.047 | −0.035 | −0.095 | −0.082 | |
7 | 2017-05-16 | −0.030 | −0.062 | 0.034 | −0.050 | 0.051 |
8 | 2017-06-02 | −0.060 | −0.032 | |||
9 | 2017-06-28 | 0.072 | −0.068 | |||
10 | 2017-07-21 | 0.016 | 0.010 | N/A | −0.090 | N/A |
11 | 2017-08-01 | 0.043 | 0.048 | N/A | N/A | |
12 | 2017-09-05 | −0.033 | N/A | N/A | ||
13 | 2017-10-05 | −0.082 | N/A | N/A | N/A | |
# of usable meas. | 9 | 10 | 7 | 7 | 6 |
Indicator | G1 | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|
n | 9 | 10 | 7 | 7 | 6 |
(m) | 0.014 | −0.020 | −0.028 | −0.050 | −0.001 |
(m) | 0.044 | 0.048 | 0.040 | 0.045 | 0.061 |
w (m) | 0.118 | 0.130 | 0.113 | 0.110 | 0.137 |
Δ1 | Δ2 | Δ3 | Δ4 | Δ5 | |
---|---|---|---|---|---|
T (Equation (10)) | 0.317 | 0.429 | 0.678 | 1.106 | 0.018 |
Point | ||||||
---|---|---|---|---|---|---|
G1 | 370.095 | 370.023 | 370.054 | −0.072 | −0.041 | 0.031 |
G4 | 371.645 | 371.718 | 371.682 | 0.073 | 0.037 | −0.036 |
G4 | 370.926 | 370.866 | 370.912 | −0.060 | −0.014 | 0.046 |
Point | ||
---|---|---|
G1 | 0.76 | 0.58 |
G4 | 0.68 | 0.66 |
G4 | 0.26 | 0.85 |
Method | UAV | GNSS | TS |
---|---|---|---|
amount of collected data | high | medium | low |
amount of field work | low | medium | high |
amount of office work | medium | low | low |
DEM resolution | high | low | low |
Standard deviation of height | up to 5 cm | 2–5 cm | 1–5 cm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignjatović Stupar, D.; Rošer, J.; Vulić, M. Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring. Minerals 2020, 10, 196. https://doi.org/10.3390/min10020196
Ignjatović Stupar D, Rošer J, Vulić M. Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring. Minerals. 2020; 10(2):196. https://doi.org/10.3390/min10020196
Chicago/Turabian StyleIgnjatović Stupar, Danijela, Janez Rošer, and Milivoj Vulić. 2020. "Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring" Minerals 10, no. 2: 196. https://doi.org/10.3390/min10020196
APA StyleIgnjatović Stupar, D., Rošer, J., & Vulić, M. (2020). Investigation of Unmanned Aerial Vehicles-Based Photogrammetry for Large Mine Subsidence Monitoring. Minerals, 10(2), 196. https://doi.org/10.3390/min10020196