Volcanic and Saline Lithium Inputs to the Salar de Atacama
Abstract
:1. Introduction
1.1. Background to the Salar de Atacama
1.2. Hydrological Description of the Salar de Atacama Basin
2. Samples and Methods
3. Results
3.1. Elemental Characterization of Water
3.2. Strontium Isotope Compositions
3.3. Light Isotopes, Li and B
4. Discussion
4.1. Chemical Constraints on Solute Fluxes
4.2. Isotopic Approaches
4.3. Saline Influxes to the Salar de Atacama
4.4. Rock Weathering Sources:Insights from δ7Li and δ11B
4.5. A Volcanic Origin of Li
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munk, L.A.; Boutt, D.F.; Hyneck, S.; Moran, B. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chem. Geol. 2018, 493, 37–57. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.; Boutt, D.F.; Labay, K.; Jochens, H. Lithium brines: A global perspective. Rev. Econ. Geol. 2016, 18, 339–365. [Google Scholar]
- López Steinmetz, R.L.; Salvi, S.; García, M.G.; Peralta Arnold, Y.; Béziat, D.; Franco, G.; Constantitni, O.; Córdoba, F.; Caffe, P.J. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. J. Geochem. Explor. 2018, 190, 26–38. [Google Scholar] [CrossRef]
- Ide, Y.F.; Kunasz, I.A. Origin of Lithium in Salar de Atacama, Northern Chile. Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources. Earth Sci. Ser. 1989, 11, 165–172. [Google Scholar]
- Godfrey, L.V.; Chan, L.H.; Alonso, R.N.; Lowenstein, T.K.; McDonough, W.F.; Houston, J.; Li, J.; Bobst, A.; Jordan, T.E. The role of climate in the accumulation of lithium-rich brine in the central Andes. Appl. Geochem. 2013, 38, 92–102. [Google Scholar] [CrossRef]
- López Steinmetz, R.L. Lithium- and boron-bearing brines in the Central Andes: Exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S. Miner. Depos. 2017, 52, 35–50. [Google Scholar]
- Meixner, A.; Sarchi, C.; Ludassen, F.; Becchio, R.; Caffe Pj Lindsay, J.; Rosner, M.; Kasemann, S.A. Lithium concentrations and isotope signatures of Palaeozoic basement rocks and Cenozoic volcanic rocks from the Central Andean arc and back-arc. Miner. Depos. 2019, 1–14. [Google Scholar] [CrossRef]
- Garcia, M.G.; Borda, L.G.; Godfrey, L.V.; López Steinmetz, R.L.; Losada-Calderon, A. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chem. Geol. 2019, 531, 119340. [Google Scholar] [CrossRef]
- DGA-CORFO-ONU-CCC. Investigacion de Recursos Hidraulicos en el Norte Grande; CHI-535; CORFO: Santiago, Cihle, 1977; 55p. [Google Scholar]
- Moraga, B.A. Estudio geologico del Salar de Atacama, Provincia de Antofagasta. Inst. Inv. Geol. Bol. 1974, 29, 56. [Google Scholar]
- Risacher, F.; Alonso, H.; Salazar, C. Geoquímica de aguas en cuencas cerradas, I, II, III Regiones, Chile; Technical Report S.I.T. n 51; Ministerio de Obras Públicas, Dirección General de Aguas: Santiago, Chile; Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/divers2/010019475.pdf (accessed on 24 February 2020).
- Boschetti, T.; Cortecci, G.; Barbieri, M.; Mussi, M. New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 2007, 7, 33–50. [Google Scholar] [CrossRef]
- Godfrey, L.V.; Herrera, C.; Gamboa, C.; Mathur, R. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile. Chem. Geol. 2019, 518, 32–44. [Google Scholar] [CrossRef]
- Palmer, M.R.; Spivack, A.; Edmond, J.M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim. Cosmochim. Acta 1987, 51, 2319–2323. [Google Scholar] [CrossRef]
- Oi, T.; Nomura, M.; Musashi, M.; Ossaka, T.; Okamoto, M.; Kakihana, H. Boron isotopic composition of some boron minerals. Geochim. Cosmochim. Acta 1989, 53, 3189–3195. [Google Scholar] [CrossRef]
- Oi, T.; Kato, J.; Ossaka, T.; Kakihana, H. Boron isotope fractionation accompanying boron mineral formation from aqueous boric acid–sodium hydroxide solutions at 25 °C. Geochem. J. 1991, 25, 377–385. [Google Scholar] [CrossRef]
- Palmer, M.R.; Helvaci, C. The boron isotope geochemistry of the Neogene borate deposits of Western Turkey. Geochim. Cosmochim. Acta 1997, 61, 3161–3169. [Google Scholar] [CrossRef]
- Muñoz, N.; Charrier, G.R.; Jordan, T.E. Interactions between basement and cover during the evolution of the Salar de Atacama Basin, northern Chile. Revista Geológica de Chile 2002, 29, 55–80. [Google Scholar] [CrossRef]
- Pananont, P.; Mpodozis, C.; Blanco, N.; Jordan, T.E.; Brown, L.D. Tectonic Evolution of the Northwest Salar de Atacama Basin, Northern Chile. Tectonics 2004. [Google Scholar] [CrossRef]
- Jordan, T.E.; Mpodozis, C.; Muñoz, N.; Blanco, N.; Pananont, P.; Gardeweg, M. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile. J. S. Am. Earth Sci. 2007, 23, 122–146. [Google Scholar] [CrossRef]
- Jordan, T.E.; Muñoz, N.; Hein, M.; Lowenstein, T.; Godfrey, L.; Yu, J. Active faulting and folding without topographic expression in an evaporite basin, Chile. GSA Bull. 2002, 114, 1406–1421. [Google Scholar] [CrossRef]
- Jordan, T.E.; Nester, P.L.; Blanco, N.; Hoke, G.D.; Dávila, F.; Tomlinson, A.J. Uplift of the Altiplano-Puna Plateau: A view from the west. Tectonics 2010, 29, TC5007. [Google Scholar] [CrossRef]
- Lowenstein, T.K.; Hein, M.C.; Bobst, A.L.; Jordan, T.E.; Ku, T.L.; Luo, S. An assessment of stratigraphic completeness in climate-sensitive closed-basin lake sediments: Salar de Atacama, Chile. J. Sediment. Res. 2003, 73, 91–104. [Google Scholar] [CrossRef]
- Sáez, A.; Cabrera, L.; Garcés, M.; Bogaard, P.; Jensen, A.; Gimeno, D. The stratigraphic record of changing hyperaridity in the Atacama Desert over the last 10 Ma. Earth Planet. Sci. Lett. 2012, 355, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.; Kirk-Lawlor, N.E.; Blanco, P.N.; Rech, J.A.; Cosentino, N.J. Landscape modifications in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol. Soc. Am. Bull. 2014, 126, 1016–1046. [Google Scholar] [CrossRef]
- Evanstar, L.A.; Hartley, A.J.; Archert, S.G.; Neilson, J.E. Climatic and halokinetic controls on alluvial-lacustrine sedimentation during compressional deformation, Andean forearc, northern Chile. Basin Res. 2015, 1–24. [Google Scholar] [CrossRef]
- de Wet, C.B.; Godfrey, L.; de Wet, A.P. Sedimentology and stable isotopes from a lacustrine-to-palustrine limestone deposited in an arid setting, climatic and tectonic factors: Miocene-Pliocene Opache Formation, Atacama Desert, Chile. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 426, 46–67. [Google Scholar] [CrossRef]
- Corenthal, L.G.; Boutt, D.F.; Hynek, S.A.; Munk, L.A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 2016, 43, 8017–8025. [Google Scholar] [CrossRef]
- Risacher, F.; Alonso, H.; Salazar, C. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth Sci. Rev. 2003, 63, 249–293. [Google Scholar] [CrossRef]
- Risacher, F.; Fritz, B.; Hauser, A. Origin of components in Chilean thermal waters. J. S. Am. Earth Sci. 2011, 31, 153–170. [Google Scholar] [CrossRef]
- Rech, J.A.; Currie, B.S.; Michalski, G.; Cowan, A.M. Neogene climate change and uplift in the Atacama Desert, Chile. Geology 2006, 34, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.E.; Godfrey, L.V.; Munoz, N.; Alonso, R.N.; Lowenstein, T.L.; Hoke, G.; Peranginangin, N.; Isacks, B.L.; Cathles, L. Orogenic-scale ground water circulation in the Central Andes: Evidence and consequences. In Proceedings of the 5th ISAG (International Symposium on Andean Geodynamics), Toulouse, France, 16–18 September 2002; Institut de Recherche pour le Développement, Universite´ Paul Sabatier: Toulouse, France, 2002; pp. 331–334. [Google Scholar]
- Gardeweg, M.; Ramírez, C.F. La Pacana caldera and the Atana Ignimbrite—A major ash-flow and resurgent caldera complex in the Andes of northern Chile. Bull. Volcanol. 1987, 49, 547–566. [Google Scholar] [CrossRef]
- Lindsay, J.M.; de Silva, S.; Trumbull, R.; Emmermann, R.; Wemmer, K.; La Pacana caldera, N. Chile: A re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J. Volcanol. Geotherm. Res. 2001, 106, 145–173. [Google Scholar] [CrossRef]
- Rissmann, C.; Leybourne, M.; Benn, C.; Christenson, B. The origin of solutes within the groundwaters of a high Andean aquifer. Chem. Geol. 2015, 396, 164–181. [Google Scholar] [CrossRef]
- Marinovic, N.; Lahsen, A. Hoja Calama: Región de Antofagasta, escala 1:250.000, Santiago, Carta Geológica de Chile, Serie Geología Básica 58; Instituto de Investigaciones Geológicas: Santiago, Chile, 1984; p. 140. [Google Scholar]
- Ramírez, C.; Gardeweg, M. Geología de la hoja Toconao: Región de Antofagasta, escala 1:250.000, Santiago, Carta Geológica de Chile, Serie Geología Básica 54; Instituto de Investigaciones Geológicas: Santiago, Chile, 1982; p. 122. [Google Scholar]
- Becerra, J.; Henríquez, S.; Arriagada, C. Geología del área Salar de Atacama, región de Antofagasta, Escala 1:100.000, Santiago, Carta Geológica de Chile, Serie Geología Básica 166. Serv. Natl. Geol. Miner. 2014, 1, 46. [Google Scholar]
- Wang, B.S.; You, C.F.; Huang, K.F.; Wu, S.F.; Aggarwal, S.K.; Chung, C.H.; Lin, P.Y. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 2010, 82, 1378–1384. [Google Scholar] [CrossRef]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Herrera Lameli, C.; Mucchino, C.; Barbieri, M. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Tassi, F.; Aguilera, F.; Darrah, T.; Vaselli, O.; Capaccioni, B.; Poreda, R.J.; Delgado Huertas, A. Fluid geochemistry of hydrothermal systems in the Arica–Parinacota, Tarapacá and Antofagasta regions (northern Chile). J. Volcanol. Geotherm. Res. 2010, 192, 1–15. [Google Scholar] [CrossRef]
- Harmon, R.S.; Barreiro, B.A.; Moorbath, S.; Hoefs, J.; Francis, P.W.; Thorpe, R.S.; Déruelle, B.; McHugh, J.; Viglino, J.A. Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J. Geol. Soc. 1984, 141, 803–822. [Google Scholar] [CrossRef]
- Déruelle, B.; Figueroa, O.; Moorbath, S. Basalts of the Chilean Altiplano, south-central Andes. In Proceedings of the Third ISAG, St Malo, France, 17–19 September 1996; pp. 559–562. [Google Scholar]
- Mpodozis, C.; Arriagada, C.; Basso, M.; Roperch, P.; Cobbold, P.; Reich, M. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, northern Chile: Implications for the tectonic evolution of the central Andes. Tectonophysics 2005, 399, 125–154. [Google Scholar] [CrossRef]
- Carmona, V.; Pueyo, J.J.; Taberner, C.; Chong, G.; Thirlwall, M. Solute inputs in the Salar de Atacama (N. Chile). J. Geochem. Explor. 2000, 69–70, 449–452. [Google Scholar] [CrossRef]
- Lagos, L.V. Hidrogeoquímica de Fuentes Termales en Ambientes Salinos Relacionados con Salares en Los Andes del Norte de Chile. Master’s Thesis, University of Chile, Santiago, Chile, 2017. [Google Scholar]
- Rosner, M.; Erzinger, J.; Franz, G.; Trumbull, R. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem. Geophys. Geosyst. 2003, 4, 1–25. [Google Scholar] [CrossRef]
- Kay, S.M.; Coira, B.L.; Café, P.J.; Chen, C.-H. Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. J. Volcanol. Geotherm. Res. 2010, 198, 81–111. [Google Scholar] [CrossRef]
- Risacher, F.; Fritz, B. Origin of salts and brine evolution of Bolivian and Chilean salars. Aquat. Geochem. 2009, 15, 123–157. [Google Scholar] [CrossRef]
- Ouysse, S.; Wehncke, E.V.; Carrillo Rivera, J.J. Investigating regional groundwater flow systems in baja california central desert region. Int. J. Hydrol. 2018, 2, 00057. [Google Scholar] [CrossRef] [Green Version]
- Herrera, C.; Custodio, E.; Chong, G.; Lambán, L.J.; Riquelme, R.; Wilke, H.; Jódar, J.; Urrutia, J.; Urqueta, H.; Sarmiento, A.; et al. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci. Total Environ. 2016, 541, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Penniston-Dorland, S.; Liu, X.-M.; Rudnick, R.L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 2017, 82, 165–217. [Google Scholar] [CrossRef]
- Rose, E.F.; Chaussidon, M.; France-Lanord, C. Fractionation of boron isotopes during erosion processes: The example of Himalayan rivers. Geochim. Cosmochim. Acta 2000, 64, 397–408. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 2008, 359, 189–207. [Google Scholar] [CrossRef]
- Henchiri, S.; Clergue, C.; Dellinger, M.; Gaillardet, J.; Louvat, P.; Bouchez, J. The influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas. Procedia Earth Planet. Sci. 2014, 10, 223–230. [Google Scholar] [CrossRef]
- Pistiner, J.S.; Henderson, G.M. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett. 2003, 214, 327–339. [Google Scholar] [CrossRef]
- Vigier, N.; Decarreau, A.; Millot, R.; Carignan, J.; Petit, S.; France-Lanord, C. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 2008, 72, 780–792. [Google Scholar] [CrossRef]
- Wanner, C.; Sonnenthal, E.L.; Liu, X.M. Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering? Chem. Geol. 2014, 381, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Marazuela, M.A.; Vázquez-Suñéa, E.; Custodio, E.; Palma, T.; García-Gile, T.; Ayora, C. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 2018, 561, 223–235. [Google Scholar] [CrossRef]
- Díaz, D.; Brasse, H.; Ticona, F. Conductivity distribution beneath Lascar volcano (Northern Chile) and the Puna, inferred from magnetotelluric data. J. Volc. Geothermal Res. 2012, 217–218, 21–29. [Google Scholar] [CrossRef]
- Afanasyev, A.; Blundy, J.; Melnik, O.; Sparks, S. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes. Earth Planet. Sci. Lett. 2018, 486, 119–128. [Google Scholar] [CrossRef]
- Foustoukos, D.I.; Seyfield, W.E. Trace element partitioning between vapor, brine and halite under extreme phase separation conditions. Geochim. Cosmochim. Acta 2007, 71, 2056–2071. [Google Scholar] [CrossRef]
- Tóth, J. Gravitational Systems of Groundwater Flow—Theory, Evaluation, Utilization; Cambridge University Press: New York, NY, USA, 2009; p. 297. [Google Scholar]
- Hofstra, A.H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and posteruptive depletion of lithium in silicic volcanic rocks of the western United States: Implications for the origin of lithium-rich brines. Econ. Geol. 2013, 105, 1691–1701. [Google Scholar] [CrossRef]
- Benson, T.R.; Cole, M.A.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 1997, 8, 1–9. [Google Scholar] [CrossRef]
- Schmitt, A. Gas-saturated crystallization and degassing in large-volume, crystal-rich dacitic magmas from the Altiplano-Puna, northern Chile. J. Geophys. Res. 2001, 106, 30561–30578. [Google Scholar] [CrossRef]
- Castor, S.B.; Henry, C.D. Lithium-Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin. Minerals 2020, 10, 68. [Google Scholar] [CrossRef] [Green Version]
TDS g/L (g/L) | pH | alk (mg/L) | Cl (mg/L) | Br (mg/L) | SO4 (mg/L) | Ca (mg/L) | K (mg/L) | Mg (mg/L) | Na (mg/L) | Sr (mg/L) | 87Sr/86Sr | Li (mg/L) | δ7Li | B (mg/L) | δ11B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Margin samples | ||||||||||||||||
DE6 | 14.60 | 8.17 | 2.95 | 9500 | 2.54 | 3000 | 840 | 505 | 570 | 5200 | 21.6 | 0.71171 | 41.0 | 3.7 | 12.0 | −9.2 |
LF7 | 0.66 | 8.08 | 5.07 | 224 | 0.19 | 148 | 38.3 | 23.5 | 11.6 | 227 | 0.5 | 10.1 | 5.5 | 10.6 | −9.3 | |
LF5 | 1.49 | 8.25 | 8.28 | 519 | 0.63 | 299 | 30.9 | 44.9 | 19.2 | 568 | 0.2 | 0.70866 | 1.6 | 6.9 | 31.2 | −6.3 |
ELA | 66.54 | 7.88 | 6.00 | 56000 | 7.7 | 6600 | 658 | 520 | 2400 | 31500 | 6.9 | 0.70787 | 428.0 | 5.6 | 30.1 | −4.4 |
LF1 | 45.85 | 7.55 | 4.49 | 34884 | 3831 | 753 | 3326 | 1473 | 17820 | 7.6 | 0.70811 | 5.2 | 11.4 | 36.6 | −6.8 | |
SEP | 9.32 | 8.29 | 3.05 | 6800 | 0.98 | 720 | 718 | 499 | 399 | 3700 | 12.5 | 0.70787 | 33.0 | 12.6 | 10.3 | 1.0 |
LI5 | 58.15 | 7.71 | 2.03 | 58710 | 5898 | 1843 | 4551 | 2373 | 29800 | 30.7 | 0.70794 | 251.6 | 11.5 | 81.9 | −9.6 | |
LI1 | 4.70 | 7.56 | 7.86 | 2491 | 1.09 | 1175 | 177 | 262 | 271 | 1830 | 2.7 | 0.70792 | 19.8 | 10.5 | 22.7 | −3.5 |
Surface inflow | ||||||||||||||||
HON | 0.18 | 8.05 | 1.28 | 43 | 0.27 | 26 | 12 | 1 | 19 | 21 | 0.1 | 0.70864 | 0.3 | 6.5 | 4.0 | 2.7 |
PEN | 2.40 | 7.36 | 2.46 | 1000 | 1.25 | 932 | 216 | 26 | 80 | 472 | 1.8 | 0.70767 | 1.3 | 9.2 | 5.9 | 6.1 |
TIL | 3.02 | 7.04 | 2.75 | 1500 | 1.29 | 886 | 210 | 61 | 199 | 727 | 2.0 | 0.70750 | 2.2 | 8.8 | 7.0 | 6.8 |
LI4 | 3.61 | 7.32 | 5.21 | 2209 | 1.55 | 753 | 478 | 80.7 | 192 | 972 | 3.8 | 0.70792 | 3.0 | 6.8 | 11.5 | 6.4 |
SOC | 0.77 | 8.64 | 4.23 | 128 | 0.29 | 314 | 19 | 10 | 44 | 103 | 0.3 | 0.70734 | 0.2 | 6.7 | 5.4 | −0.1 |
LG3 | 7.57 | 8.68 | 1.95 | 2896 | 2.79 | 5024 | 673 | 368 | 303 | 3021 | 5.5 | 0.70715 | 2.6 | 10.6 | 51.8 | 4.0 |
Alluvial fan wells | ||||||||||||||||
W10 | 0.59 | 8.02 | 3.34 | 228 | 0.15 | 100 | 10 | 27 | 23 | 180 | 0.3 | 0.70872 | 1.4 | 8.5 | 16.0 | |
WMU | 0.95 | 7.14 | 4.48 | 381 | 0.487 | 212 | 25 | 31 | 31 | 315 | 0.6 | 0.70925 | 2.2 | 4.9 | 12.0 | −5.1 |
WAL | 2.49 | 8.91 | 2.80 | 395 | 3 | 1600 | 76 | 27 | 220 | 508 | 0.4 | 0.70740 | 0.7 | 9.1 | 10.7 | 0.4 |
W5B | 6.10 | 6.56 | 9.59 | 4000 | 1.39 | 921 | 201 | 146 | 249 | 2400 | 1.8 | 0.70790 | 14.0 | 11.2 | 4.0 | −1.4 |
WC1 | 1.67 | 9.86 | 16.13 | 366 | 0.61 | 265 | 4 | 18 | 28 | 580 | 3.1 | 10.5 | 18.9 | −2.5 | ||
WP2 | 1.33 | 7.51 | 2.75 | 668 | 0.38 | 346 | 82 | 23 | 46 | 351 | 1.5 | 0.70850 | 2.5 | 10.4 | 5.0 | 2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godfrey, L.; Álvarez-Amado, F. Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals 2020, 10, 201. https://doi.org/10.3390/min10020201
Godfrey L, Álvarez-Amado F. Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals. 2020; 10(2):201. https://doi.org/10.3390/min10020201
Chicago/Turabian StyleGodfrey, Linda, and Fernanda Álvarez-Amado. 2020. "Volcanic and Saline Lithium Inputs to the Salar de Atacama" Minerals 10, no. 2: 201. https://doi.org/10.3390/min10020201
APA StyleGodfrey, L., & Álvarez-Amado, F. (2020). Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals, 10(2), 201. https://doi.org/10.3390/min10020201