Trace-Element and Pb Isotope Evidence on Extracting Sulfides from Potassic Melts beneath Longmenshan and Molabushan Volcanoes, Wudalianchi, Northeast China
Abstract
:1. Introduction
2. Geological Background
3. Methods and Materials
3.1. Analytical Techniques
3.2. Sampling Strategy
4. Results
4.1. Low- and Moderate-Mg Volcanic Units
4.2. Old Lithospheric, Recent Homogeneous, and Modified Pb Isotopic Signatures
4.3. Anomalous Pb Range in Moderate-Mg Rocks
5. Discussion
5.1. Hypothesis on Extraction of Sulfides from Melts of the Molabu Source
5.2. Hypothesis on Generation of Wudalianchi Magmas in Sources of Enriched Sub-Continental Mantle (ESCM) Related to the Primordial Mantle (PM) Evolution
5.3. Trace-Element Modeling of Batch Partial Melting
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Menzies, M.A.; Suddaby, P.; Thirlwall, M.F. EM1 signature from the post-Archaean subcontinental lithospheric mantle: Isotopic evidence from the potassic volcanic rocks in NE China. Geochem. J. 1991, 25, 387–398. [Google Scholar] [CrossRef]
- Zhang, M.; Suddaby, P.; Thompson, R.N.; Thirlwall, M.F.; Menzies, M.A. Potassic rocks in NE China: Geochemical constraints on mantle source and magma genesis. J. Petrol. 1995, 36, 1275–1303. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, H. Tectonic controls on the Pleistocene-Holocene Wudalianchi volcanic field (northeastern China). J. Asian Earth Sci. 2005, 24, 419–431. [Google Scholar] [CrossRef]
- Basu, A.R.; Junwen, W.; Wankang, H.; Guanghong, X.; Tatsumoto, M. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth Planet. Sci. Lett. 1991, 105, 149–169. [Google Scholar] [CrossRef]
- Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of east China: Enriched components EMI and EMII in subcontinental lithosphere. Earth Planet. Sci. Lett. 1992, 113, 107–128. [Google Scholar] [CrossRef]
- Zou, H.; Zindler, A.; Xu, X.; Qi, Q. Major, trace element, and Nd, Sr, and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 171, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Mukasa, S.B.; Kwon, S.-T.; Andronikov, A.V. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem. Geol. 2006, 232, 134–151. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Graham, D.; Su, S.; Deng, J. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 2007, 96, 108–126. [Google Scholar] [CrossRef]
- Rasskazov, S.V.; Yasnygina, T.A.; Chuvashova, I.S. Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sub-lithospheric convection, and the lithosphere. Russ. J. Pac. Geol. 2014, 8, 360–378. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Chen, L.-H.; Wang, X.-J.; Zhong, Y.; Yu, X.; Zeng, G.; Erdmann, S. The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, northeast China. J. Geophys. Res. Solid Earth 2017, 122, 1–19. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Zhu, B.-Q.; Liu, R.-X.; Chen, W.-J. Cenozoic basaltic rocks in Eastern China. Continental flood basalts. Kluwer Acad. Publ. 1988, 311–330. [Google Scholar]
- Wang, Y.; Mu, L.; Liu, W. Regularity and characteristic of volcanic activity at Wudalianchi, Heilongjiang. In Proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996. [Google Scholar]
- Liu, J.; Taniguchi, H. Active volcanoes in China. Northeast Asian Stud. 2001, 6, 173–189. [Google Scholar]
- Wei, H.; Sparks, R.S.J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; et al. Three active volcanoes in China and their hazards. J. Asian Earth Sci. 2003, 21, 515–526. [Google Scholar] [CrossRef]
- Chuvashova, I.S.; Rasskazov, S.V.; Yasnygina, T.A.; Saranina, E.V.; Fefelov, N.N. Holocene volcanism in Central Mongolia and Northeast China: Asynchronous decompression and fluid melting of the mantle. Volcanol. Seismol. 2007, 1, 19–45. [Google Scholar] [CrossRef]
- McGee, L.E.; McLeod, C.; Davidson, J.P. A spectrum of disequilibrium melting preserved in lava-hosted, partially melted crustal xenoliths from the Wudalianchi volcanic field, NE China. Chem. Geol. 2015, 417, 184–199. [Google Scholar] [CrossRef]
- Sun, C.; Németh, K.; Zhan, T.; You, H.; Chu, G.; Liu, J. Tephra evidence for the most recent eruption of Laoheishan volcano, Wudalianchi volcanic field, northeast China. J. Volcanol. Geotherm. Res. 2019, 383, 103–111. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk region: Implication for the origin of the Ni–Cu–PGE sulfide ores. Econ. Geol. 2005, 100, 439–462. [Google Scholar] [CrossRef]
- Hart, S.R.; Gaetani, G.A. Mantle paradoxes: The sulfide solution. Contrib. Mineral. Petrol. 2006, 152, 295–308. [Google Scholar] [CrossRef]
- Song, X.-Y.; Zhou, M.-F.; Keays, R.R.; Cao, Z.-M.; Sun, M.; Qi, L. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China: Implications for sulfide segregation. Contrib. Mineral. Petrol. 2006, 152, 53–74. [Google Scholar] [CrossRef]
- Kiseeva, E.S.; Wood, B.J. A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 2013, 383, 68–81. [Google Scholar] [CrossRef]
- Mao, Y.J.; Qin, K.Z.; Barnes, S.J.; Ferraina, C.; Iacono-Marziano, G.; Verrall, M.; Tang, D.; Xue, S. A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni–Cu deposits in the southern Central Asian Orogenic Belt. Miner. Depos. 2018, 53, 731–755. [Google Scholar] [CrossRef]
- Grinenko, L.N. Sources of sulfur of the nickeliferous and barren gabbrodolerite intrusions of the northwest Siberian platform. Int. Geol. Rev. 1985, 27, 695–708. [Google Scholar] [CrossRef]
- Wallace, P.; Carmichael, I.S.E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 1992, 56, 1863–1874. [Google Scholar] [CrossRef]
- Holzheid, A.; Grove, T.L. Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. Am. Mineral. 2002, 87, 227–237. [Google Scholar] [CrossRef]
- Almukhamedov, A.I.; Medvedev, A.Y. Sulfur Geochemistry in the Processes of Evolution of Basic Magmas; Nauka Publisher: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Zhang, M.; O’Reilly, S.Y.; Wang, K.-L.; Hronsky, J.; Griffin, W.L. Flood basalts and metallogeny: The lithospheric mantle connection. Earth-Sci. Rev. 2008, 86, 145–174. [Google Scholar] [CrossRef]
- Fleet, M.E.; MacRae, N.D. Partition of Ni between olivine and sulfide: Equilibria with sulfide-oxide liquids. Contrib. Mineral. Petrol. 1988, 100, 462–469. [Google Scholar] [CrossRef]
- Rasskazov, S.; Xie, Z.; Yasnygina, T.; Chuvashova, I.; Wang, X.; Arsentev, K.; Sun, Y.-M.; Fang, Z.; Zeng, Y. Geochemical and clay-mineral study of healing mud from Wudalianchi, NE China. Geodyn. Tectonophys. 2017, 8, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Rasskazov, S.V.; Chuvashova, I.S.; Sun, Y.-M.; Yang, C.; Xie, Z.; Yasnygina, T.A.; Saranina, E.V.; Zhengxing, F. Sources of Quaternary potassic volcanic rocks from Wudalianchi, China: Control by transtension at the lithosphere–asthenosphere boundary layer. Geodyn. Tectonophys. 2016, 7, 495–532. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Han, J.; Fyfe, W.S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K–Ar geochronology. Tectonophysics 2001, 339, 385–401. [Google Scholar] [CrossRef]
- Ma, K.; Zhou, Z.; Li, X.; Liu, J.; Li, J.; Wood, C.; Xu, H.; Yang, R.; Zhuang, Y.; Xiao, S.; et al. Guide Book for Field Mission to Wudalianchi National Park, China; Wudalianchi National Park; Nature Management Committee Heilongjiang Province: Wudalianchi, China, 2010. [Google Scholar]
- Zhao, Y.-W.; Li, N.; Fan, Q.-C.; Zou, H.; Xu, Y.-G. Two episodes of volcanism in the Wudalianchi volcanic belt, NE China: Evidence for tectonic controls on volcanic activities. J. Volcanol. Geotherm. Res. 2014, 285, 170–179. [Google Scholar] [CrossRef]
- Rasskazov, S.V.; Chuvashova, I.S.; Yasnygina, T.A.; Fefelov, N.N.; Saranina, E.V. Potassic and Potassic-Sodic Volcanic Series in the Cenozoic of Asia; Academic Publishing House “GEO”: Novosibirsk, Russia, 2012. (In Russian) [Google Scholar]
- Yasnygina, T.A.; Markova, M.E.; Rasskazov, S.V.; Pakhomova, N.N. Determination of rare earth elements, Y, Zr, Nb, Hf, Ta, and Th in geological reference materials of the DV series by ICP-MS. Zavod. Lab. Diagn. Mater. 2015, 81, 10–20. (In Russian) [Google Scholar]
- Khudonogova, E.V.; Revenko, A.G.; Akulova, V.V.; Shtelmakh, S.I. The development of a method for determination of phosphorus oxide, sulfur and chlorine in soils and sedimentary rocks by the X-ray fluorescence analysis. In The Structure, Functioning, and Evolution OF Mountain Landscapes of the Western Baikal Region; IG; SB; RAS: Irkutsk, Russia, 2005; pp. 105–111. (In Russian) [Google Scholar]
- Kuritani, T.; Nakamura, E. Precise isotope analysis of nanogram-level Pb of natural rock samples without use of double spikes. Chem. Geol. 2002, 186, 31–43. [Google Scholar] [CrossRef]
- Rudge, J.; Reynolds, B.; Bourdon, B. The double spike toolbox. Chem. Geol. 2009, 265, 420–431. [Google Scholar] [CrossRef]
- Todt, W.; Cliff, R.A.; Hanser, A.; Hofmann, A.W. Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. In Earth Processes; Reading the Isotope Code; Hart, S.R., Basu, A., Eds.; American Geophysical Union: Washington, DC, USA, 1996; Volume 95, pp. 429–437. [Google Scholar]
- Kamenov, G.D.; Perfit, M.R.; Jonasson, I.R.; Mueller, P.A. High precision Pb isotope measurements reveal magma recharge as a mechanism for ore deposit formation: Examples from Lihir Island and Conical seamount, Papua New Guinea. Chem. Geol. 2005, 219, 131–148. [Google Scholar] [CrossRef]
- Thirwall, M.F. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb/204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 2002, 184, 255–271. [Google Scholar] [CrossRef]
- Makishima, A.; Nath, B.N.; Nakamura, E. Precise determination of Pb isotope ratios by simple double spike MC-ICP-MS technique without Tl addition. J. Anal. At. Spectrom. 2007, 22, 407–410. [Google Scholar] [CrossRef]
- Tanimizu, M.; Ishikawa, T. Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochem. J. 2006, 40, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Tuena, A.; La Gatta, A.B.; Langmuir, C.H.; Goldstein, S.L.; Ortega-Gutierrez, F.; Carrasco-Núñez, G. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochem. Geophys. Geosyst. 2003, 4, 1–33. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Volkes, F.; McCulloch, M.T. Routine lead isotope determinations using a Lead–204—Lead–207 double spike: A long-term assessment of analytical precision and accuracy. Analyst 1995, 120, 35–39. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Streckeisen, A.L. The IUGS systematics of igneous rocks. J. Geol. Soc. Lond. 1991, 148, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Zartman, R.E.; Futa, K.; Peng, Z.C. A comparison of Sr–Nd–Pb isotopes in young and old continental lithospheric mantle: Patagonia and Eastern China. Aust. J. Earth Sci. 1991, 38, 545–557. [Google Scholar] [CrossRef]
- Ludwig, K.R. Using Isoplot/Ex, Version 2.01: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 1999, 1, 47. [Google Scholar]
- Chu, Z.-Y.; Harvey, J.; Liu, C.-Z.; Guo, J.-H.; Wu, F.-Y.; Tian, W.; Zhang, Y.-L.; Yang, Y.-H. Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chem. Geol. 2013, 357, 52–66. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef] [Green Version]
- Brenan, J.M.; Caciagli, N.C. Fe–Ni exchange between olivine and sulphide liquid: Implications for oxygen barometry in sulphidesaturated magmas. Geochim. Cosmochim. Acta 2000, 64, 307–320. [Google Scholar] [CrossRef]
- Li, Y.; Audétat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet. Sci. Lett. 2012, 355–356, 327–340. [Google Scholar] [CrossRef]
- Koerber, A.J.; Thakurta, J. PGE-enrichment in magnetite-bearing olivine gabbro: New observations from the midcontinent rift-related Echo Lake intrusion in Northern Michigan, USA. Minerals 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Miller, D.M.; Goldstein, S.L.; Langmuir, C.H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 1994, 368, 514–519. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.L., Norry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Shaw, D.M. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 1970, 34, 237–243. [Google Scholar] [CrossRef]
- Ashchepkov, I.V.; Travin, A.V.; Saprykin, A.I.; Andre, L.; Gerasimov, P.A.; Khmelnikova, O.S. Age of xenolith-bearing basalts and mantle evolution in the Baikal rift zone. Russ. Geol. Geophys. 2003, 44, 1121–1149. [Google Scholar]
- Ashchepkov, I.V.; Andre, L.; Downes, H.; Belyatsky, B.A. Pyroxenites and megacrysts from Vitim picrite–basalts (Russia): Polybaric fractionation of rising melts in the mantle? J. Asian Earth Sci. 2011, 42, 14–37. [Google Scholar] [CrossRef]
- Glaser, S.M.; Foley, S.F.; Günter, D. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 1999, 48, 263–285. [Google Scholar] [CrossRef]
- Ionov, D.A.; Griffin, W.L.; O’Reilly, S.Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 1997, 141, 153–184. [Google Scholar] [CrossRef]
- La Tourrette, T.; Hervig, R.L.; Holloway, J.R. Trace element partitioning between amphibole, phlogopite and basanite melt. Earth Planet. Sci. Lett. 1995, 135, 13–30. [Google Scholar] [CrossRef]
- Litasov, K.D.; Foley, S.F.; Litasov, Y.D. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): Evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos 2000, 54, 83–114. [Google Scholar] [CrossRef]
- O’Reilly, S.Y.; Griffin, W.L. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 2000, 53, 217–232. [Google Scholar]
- Chuvashova, I.; Rasskazov, S.; Yasnygina, T. Mid-Miocene thermal impact on the lithosphere by sub-lithospheric convective mantle material: Transition from high- to moderate-Mg magmatism beneath Vitim Plateau, Siberia. Geosci. Front. 2017, 8, 753–774. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.F.; Jackson, S.E.; Fryer, B.J.; Greenough, I.D.; Jenner, G.A. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim. Cosmochim. Acta. 1996, 60, 629–638. [Google Scholar] [CrossRef]
Method of Normalizing | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | References |
---|---|---|---|---|
ID (TIMS) | 16.9356 ± 7 | 15.4891 ± 9 | 36.7006 ± 34 | [39] |
ID (MC-ICP-MS) | 16.9377 ± 14 | 15.4922 ± 25 | 36.6941± 35 | This work |
Tl (MC-ICP-MS) | 16.9369 ± 39 | 15.4904 ± 34 | 36.6949 ± 87 | [40] |
ID (MC-ICP-MS) | 16.9376 ± 46 | 15.4917 ± 35 | 36.6986 ± 90 | MACQUARIE University, GEMOC ANKC |
ID (MC-ICP-MS) Tl (MC-ICP-MS) | 16.9417 ± 29 16.9356 ± 55 | 15.4996 ± 31 15.4911 ± 74 | 36.724 ± 9 36.697 ± 23 | [41] |
ID (MC-ICP-MS) | 16.9413 ± 17 | 15.4983 ± 27 | 36.7182 ± 38 | [42] |
Tl (MC-ICP-MS) | 16.9308 ± 10 | 15.4839 ± 11 | 36.6743 ± 30 | [43] |
ID (TIMS) | 16.9356 ± 48 | 15.4912 ± 47 | 36.702 ± 14 | [44] |
ID (TIMS) | 16.936 ± 1 | 15.492 ± 2 | 36.705 ± 5 | [45] |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Sample | CH-15-43 | CH-15-39 | CH-15-66 | CH-15-58 | CH-15-19 | CH-16-135 |
PT | BTA | PT | TA | BTA | TA | |
SiO2, wt.% | 48.45 | 52.31 | 47.83 | 53.98 | 52.77 | 56.70 |
TiO2 | 2.59 | 2.59 | 2.35 | 2.47 | 2.24 | 2.08 |
Al2O3 | 12.87 | 14.01 | 13.12 | 13.95 | 14.45 | 15.03 |
Fe2O3 | 9.99 | 3.17 | 9.72 | 2.71 | 3.28 | 3.09 |
FeO | 0.62 | 4.80 | 0.41 | 5.11 | 5.27 | 4.46 |
MnO | 0.15 | 0.13 | 0.13 | 0.10 | 0.09 | 0.10 |
MgO | 7.73 | 6.43 | 7.57 | 6.35 | 6.15 | 3.25 |
CaO | 7.30 | 5.90 | 8.19 | 5.56 | 5.76 | 5.23 |
Na2O | 3.75 | 3.44 | 3.48 | 3.48 | 2.99 | 3.81 |
K2O | 4.58 | 5.45 | 4.49 | 5.11 | 4.27 | 4.65 |
P2O5 | 0.97 | 0.96 | 1.01 | 0.94 | 0.88 | 0.79 |
H2O− | 0.11 | 0.06 | 0.12 | 0.07 | 0.31 | 0.10 |
H2O+ | 0.81 | 0.66 | 1.43 | 0.53 | 1.54 | 0.73 |
Total | 99.92 | 99.91 | 99.85 | 100.36 | 100.01 | 100.03 |
Be, ppm | 3.1 | 3.1 | 2.8 | 2.7 | 3.0 | 3.6 |
Stot | 280 | 270 | 130 | 70 | <60 | 70 |
Sc | 13.1 | 11.2 | 14.8 | 10.8 | 16.5 | 13.2 |
V | 144 | 119 | 158 | 127 | 118 | 102 |
Co | 38 | 30 | 39 | 31 | 31 | 22 |
Ni | 183 | 167 | 150 | 177 | 157 | 42 |
Cu | 30 | 30 | 35 | 42 | 27 | 26 |
Zn | 85 | 77 | 116 | 226 | 76 | 128 |
Rb | 88.6 | 97.9 | 105.8 | 95.9 | 68.3 | 86.7 |
Sr | 1455 | 1431 | 1467 | 1446 | 1519 | 1111 |
Y | 22.6 | 20.4 | 23.3 | 18.9 | 19.6 | 20.4 |
Zr | 359 | 394 | 322 | 371 | 409 | 402 |
Nb | 75.3 | 56.6 | 68.1 | 49.7 | 56.4 | 40.1 |
Cs | 0.94 | 0.81 | 1.19 | 0.47 | 0.70 | 0.52 |
Ba | 1671 | 1714 | 1708 | 1753 | 1784 | 1176 |
La | 94.1 | 83.1 | 91.9 | 77.7 | 80.9 | 85.4 |
Ce | 164 | 149 | 166 | 144 | 146 | 159 |
Pr | 18.47 | 16.68 | 18.6 | 16.4 | 16.4 | 17.2 |
Nd | 69.3 | 63.5 | 68.9 | 61.0 | 62.4 | 62.0 |
Sm | 11.39 | 10.57 | 11.67 | 10.51 | 10.34 | 10.16 |
Eu | 3.13 | 2.91 | 3.22 | 2.84 | 2.88 | 2.70 |
Gd | 9.00 | 8.05 | 9.14 | 7.99 | 7.87 | 7.49 |
Tb | 1.11 | 1.05 | 1.14 | 1.02 | 1.00 | 1.02 |
Dy | 4.70 | 4.38 | 5.02 | 4.30 | 4.17 | 4.38 |
Ho | 0.82 | 0.75 | 0.87 | 0.73 | 0.74 | 0.76 |
Er | 1.89 | 1.74 | 2.04 | 1.61 | 1.67 | 1.76 |
Yb | 1.27 | 1.22 | 1.31 | 1.13 | 1.14 | 1.30 |
Lu | 0.16 | 0.16 | 0.19 | 0.17 | 0.14 | 0.18 |
Hf | 9.24 | 9.89 | 8.22 | 9.39 | 10.31 | 9.96 |
Ta | 3.75 | 2.79 | 3.82 | 2.71 | 2.74 | 2.34 |
Pb | 12.8 | 12.8 | 3.7 | 11.9 | 12.7 | 13.3 |
Th | 9.28 | 7.04 | 9.31 | 6.34 | 6.44 | 6.39 |
U | 1.66 | 1.36 | 1.47 | 1.14 | 1.02 | 1.04 |
206Pb/204Pb | 17.1469 ± 11 | 16.9000 ± 13 | 17.2420 ± 21 | 16.8707 ± 17 | 16.8860 ± 13 | 16.5903 ± 24 |
207Pb/204Pb | 15.4372 ± 10 | 15.4468 ± 13 | 15.4563 ± 19 | 15.4515 ± 16 | 15.4465 ± 14 | 15.4120 ± 22 |
208Pb/204Pb | 37.2631 ± 27 | 36.9245 ± 34 | 37.4077 ± 49 | 36.8949 ± 39 | 36.8779 ± 36 | 36.6785 ± 53 |
Source | Gelaqiu | Molabu Source | ||
---|---|---|---|---|
Wi | Xi | Wi | Xi | |
Ol | 0.5877 | 0.0997 | 0.5227 | 0.3297 |
Opx | 0.1 | 0.1 | 0.1 | 0.1 |
Cpx | 0.15 | 0.47 | 0.15 | 0.25 |
Grt | 0.082 | 0.25 | 0.047 | 0.14 |
Phl | 0.05 | 0.05 | 0.12 | 0.12 |
Am | 0.03 | 0.03 | 0.06 | 0.06 |
Ap | 0.0003 | 0.0003 | 0.0003 | 0.0003 |
F | 0.02–0.06 (West Longmenshan) 0.05–0.10 (Old Gelaqiushan) | 0.001–0.08 (Molabushan cone) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasskazov, S.; Sun, Y.-M.; Chuvashova, I.; Yasnygina, T.; Yang, C.; Xie, Z.; Saranina, E.; Gerasimov, N.; Vladimirova, T. Trace-Element and Pb Isotope Evidence on Extracting Sulfides from Potassic Melts beneath Longmenshan and Molabushan Volcanoes, Wudalianchi, Northeast China. Minerals 2020, 10, 319. https://doi.org/10.3390/min10040319
Rasskazov S, Sun Y-M, Chuvashova I, Yasnygina T, Yang C, Xie Z, Saranina E, Gerasimov N, Vladimirova T. Trace-Element and Pb Isotope Evidence on Extracting Sulfides from Potassic Melts beneath Longmenshan and Molabushan Volcanoes, Wudalianchi, Northeast China. Minerals. 2020; 10(4):319. https://doi.org/10.3390/min10040319
Chicago/Turabian StyleRasskazov, Sergei, Yi-Min Sun, Irina Chuvashova, Tatyana Yasnygina, Chen Yang, Zhenhua Xie, Elena Saranina, Nikolay Gerasimov, and Tatyana Vladimirova. 2020. "Trace-Element and Pb Isotope Evidence on Extracting Sulfides from Potassic Melts beneath Longmenshan and Molabushan Volcanoes, Wudalianchi, Northeast China" Minerals 10, no. 4: 319. https://doi.org/10.3390/min10040319
APA StyleRasskazov, S., Sun, Y. -M., Chuvashova, I., Yasnygina, T., Yang, C., Xie, Z., Saranina, E., Gerasimov, N., & Vladimirova, T. (2020). Trace-Element and Pb Isotope Evidence on Extracting Sulfides from Potassic Melts beneath Longmenshan and Molabushan Volcanoes, Wudalianchi, Northeast China. Minerals, 10(4), 319. https://doi.org/10.3390/min10040319