Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Chemistry
2.2. Whole Rock Analysis
3. A Brief Outline of Characteristics for the Studied Sulphides
4. Mineralogical Features
4.1. Cyprus-Type Sulphides
4.2. Breccia Pipe
4.3. Massive Fe–Cu–Co–Zn-Type Sulphides Associated with Magnetite
5. Geochemical Characteristics of Sulphides
6. Discussion
6.1. A Comparison between Magmatic Sulphides and Those Hosted in Mafic–Ultramafic Ophiolites
6.2. Genetic Significance of Trace Elements
6.3. Stability of Sulphides
7. Conclusions
- Elevated contents of Au as invisible submicroscopic Au in pyrite and Cu minerals in the Pindos sulphides may reflect main collectors of Au at the time of the sulphide mineralization.
- The occurrence of clausthalite (PbSe) and fine-grained gold in chalcopytite–bornite–sphalerite intergrowths of a subsequent stage mineralization in the Pindos sulphides indicates their re-mobilization/re-deposition.
- Sulphides (pyrrhotite, chalcopyrite, bornite, and sphalerite) associated with magnetite, at deeper parts of the Pindos (Tsoumes), exhibit Cu/(Cu + Ni), Ni/Co, and Pt/(Pt + Pd) ratios, suggesting either no magmatic origin or a complete transformation of a preexisting magmatic assemblages.
- Textural features and the presence of the (Fe/Mg) phyllosilicate resembling Mg–hisingerite, and calcite in the matrix of the Pindos sulphides, suggest precipitation of the sulphide-magnetite ore at the deeper levels from a Fe-rich and alkaline ore-forming system.
- The preferential leaching of Fe and S and neo-formed high Cu sulphides on bornite, in contrast to neighboring pyrite, may be the result of a preferred dissolution of Cu sulphides over pyrite, confirming literature data on differing surface potentials between those sulphides.
- Assuming that trace elements in epigenetic minerals are derived from the decomposition of primary minerals, and coupled with the higher Zn, Se, Mo, Au, Ag, Hg, and Sb and lower Ni contents in the Pindos compared to the Othrys sulphides, this may reflect inheritance of a primary magmatic signature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Franklin, J.M.; Sangster, D.M.; Lydon, J.W. Volcanic-associated massive sulfide deposits. Econ. Geol. 1991, 75, 485–627. [Google Scholar]
- Hannington, M.D.; Galley, A.; Gerzig, P.; Petersen, S. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. Proc. Ocean Drill. Program 1998, 158, 389–415. [Google Scholar]
- Barrie, C.T.; Hannington, M.D. Classification of volcanic-associated massive sulfide deposits based on host-rock composition. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 1–11. [Google Scholar]
- Galley, A.; Hannington, M.; Jonasson, I. Volcanogenic massive sulphide deposits. mineral deposits of Canada Spec. Publ. 2007, 5, 141–161. [Google Scholar]
- Nimis, P.; Zaykov, V.V.; Omenetto, P.; Melekestseva, I.Y.; Tesalina, S.G.; Orgeval, J.J. Peculiarities of some mafic–ultramafic- and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals. Ore Geol. Rev. 2008, 33, 49–69. [Google Scholar] [CrossRef]
- Yıldırım, N.; Dönmez, C.; Kang, J.; Lee, I.; Pirajno, F.; Yıldırım, E.; Günay, K.; Seo, J.H.; Farquhar, J.; Chang, S.W. A magnetite-rich Cyprus-type VMS deposit in Ortaklar: A unique VMS style in the 1373 Tethyan metallogenic belt, Gaziantep, Turkey. Ore Geol. Rev. 2016, 79, 425–442. [Google Scholar] [CrossRef]
- Toffolo, L.; Nimis, P.; Martin, S.; Tumiati, S.; Bach, W. The Cogne magnetite deposit (Western Alps, Italy): A Late Jurassic seafloor ultramafic-hosted hydrothermal system? Ore Geol. Rev. 2017, 83, 103–126. [Google Scholar] [CrossRef] [Green Version]
- Foose, M.P. The Setting of a Magmatic Sulfide Occurrence in a Dismembered Ophiolite, Southwest Oregon; Distribution Branch, USA Geological Survey: Reston, VA, USA, 1985; p. 1626.
- Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block. Zambales ophiolite Complex, Philippines. J. Geochem. Explor. 1990, 37, 113–145. [Google Scholar] [CrossRef]
- Lachize, M.; Lorand, J.P.; Juteau, T. Calc-alkaline differentiation trend in the plutonic sequence of the Wadi Haymiliyah section, Haylayn Massif, Semail Ophiolite, Oman. Lithos 1996, 38, 207–232. [Google Scholar] [CrossRef]
- Karaj, N. Reportition des platinoides chromites et sulphures dans le massif de Bulqiza, Albania. In Incidence sur le Processus Metallogeniques dans les Ophiolites (These); Universite de Orleans: Orleans, France, 1992; p. 379. [Google Scholar]
- Prichard, H.M.; Lord, R.A. A model to explain the occurrence of platinum- and palladium-rich 3065 ophiolite complexes. J. Geol. Soc. 1996, 153, 323–328. [Google Scholar] [CrossRef]
- Proenza, J.A.; Gervilla, F.; Melgarejo, J.; Vera, O.; Alfonso, P.; Fallick, A. Genesis of sulfide-rich chromite ores by the interaction between chromitite and pegmatitic olivine–norite dikes in the Potosí Mine (Moa-Baracoa ophiolitic massif, eastern Cuba). Miner. Depos. 2001, 36, 658–669. [Google Scholar] [CrossRef]
- Panayiotou, A. Cu-Ni-Co-Fe Sulphide Mineralization, Limassol Forest, Cyprus; Panayiotou, A., Ed.; Intern. Ophiolite Symposium: Nicosia, Cyprus, 1980; pp. 102–116. [Google Scholar]
- Economou, M.; Naldrett, A.J. Sulfides associated with podiform bodies of chromite at Tsangli, Eretria, Greece. Miner. Depos. 1984, 19, 289–297. [Google Scholar] [CrossRef]
- Thalhammer, O.; Stumpfl, E.F.; Panayiotou, A. Postmagmatic, hydrothermal origin of sulfide and arsenide mineralizations at Limassol Forest, Cyprus. Miner. Depos. 1986, 21, 95–105. [Google Scholar] [CrossRef]
- Foose, M.P.; Economou, M.; Panayotou, A. Compositional and mineralogic constraints in the Limassol Forest portion of the Troodos ophiolite complex, Cyprus. Miner. Depos. 1985, 20, 234–240. [Google Scholar] [CrossRef]
- Melekestzeva, I.Y.; Zaykov, V.V.; Nimis, P.; Tret’yakov, G.A.; Tessalina, S.G. Cu–(Ni–Co–Au)- bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geol. Rev. 2013, 52, 18–36. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Eliopoulos, D.; Chryssoulis, S. A comparison of high-Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: Genetic significance. Ore Geol. Rev. 2008, 33, 81–100. [Google Scholar] [CrossRef]
- Kostopoulos, D.K. Geochemistry, Petrogenesis and Tectonic Setting of the Pindos Ophiolite, NW Greece. Ph.D. Thesis, Univ. of Newcastle, Newcastle, UK, 1989. [Google Scholar]
- Jones, G.; Robertson, A.H.F. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. J. Geol. Soc. Lond. 1991, 148, 267–288. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Tsikouras, B.; Hatzipanagiotou, K. Evolution of boninites and island-arc tholeiites in the Pindos ophiolite, Greece. Geol. Mag. 2004, 141, 455–469. [Google Scholar] [CrossRef]
- Kapsiotis, A.; Grammatikopoulos, T.; Tsikouras, B.; Hatzipanagiotou, K.; Zaccarini, F.; Garuti, G. Chromian spinel composition and Platinum-group element mineralogy of chromitites from the Milia area, Pindos ophiolite complex, Greece. Can. Miner. 2009, 47, 1037–1056. [Google Scholar] [CrossRef]
- Skounakis, S.; Economou, M.; Sideris, C. The ophiolite complex of Smolicas and the associated Cu-sulfide deposits. In Proceedings, International Symposium on the Metallogeny of Mafic and Ultramafic Complexes, UNESCO, GCP Project 169; Augoustidis, S.S., Ed.; Theophrastus Publications S.A.: Athens, Greece, 1980; Volume 2, pp. 361–374. [Google Scholar]
- Barlas, C.; Economou-Eliopoulos, M.; Skounakis, S. Selenium-bearing minerals in massive sulfide ore from the Pindos ophiolite complex. In Mineral. Deposits at the Beginning of the 21st Century; Piestrzyiski, A., Ed.; CRC Press: Rotterdam, The Netherlands, 2001; pp. 565–568. [Google Scholar]
- Sideris, C.; Skounakis, S.; Laskou, M.; Economou, M. Brecciated pipeform diabase from the Pindos ophiolite complex. Chem. Der Erde 1984, 43, 189–195. [Google Scholar]
- Tutolo, B.M.; Evans, B.W.; Kuehner, S.M. Serpentine–hisingerite solid solution in altered ferroan peridotite and olivine gabbro. Minerals 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Metsios, C. Mobility of selenium—Environmental Impact. Master’s Thesis, National University of Athens, Athens, Greece, 1999; 132p. (In Greek). [Google Scholar]
- Constantinou, G. Metalogenesis associated with Troodos ophiolite. In Proceedings of the International Ophiolite Synposium, Nicosia, Cyprus, 1–8 April 1979; pp. 663–674. [Google Scholar]
- Constantinou, G.; Govett, G.J.S. Genesis of sulphide deposits, ochre and umber of Cyprus. Trans. Inst. Min. Met. 1972, 81, B34–B46. [Google Scholar]
- Rassios, A. Geology and copper mineralization of the Vrinena area, east Othris ophiolite, Greece. Ofioliti 1990, 15, 287–304. [Google Scholar]
- Robertson, A.H.F.; Varnavas, S.P. The origin of hydrothermal metalliferous sediments associated with the early Mesozoic Othris and Pindos ophiolites, mainland Greece. Sediment. Geol. 1993, 83, 87–113. [Google Scholar] [CrossRef]
- Naldrett, A. Magmatic Sulfide Deposits—Geology, Geochemistry and Exploration; Springer: Heidelberg, NY, USA, 2004; pp. 1–727. [Google Scholar]
- Barnes, S.J.; Mungall, J.E.; Le Vaillant, M.; Godel, B.; Lesher, C.M.; Holwell, D.; Lightfoot, P.C.; Krivolutskaya, N.; Wei, B. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores. Am. Miner. 2017, 102, 473–506. [Google Scholar] [CrossRef] [Green Version]
- Naldrett, A.J.; Barnes, S.-J. The behaviour of platinum group elements during fractional crystallization and partial melting with special reference to the composition of magmatic sulfide ores. Fortschr. Miner. 1986, 63, 113–133. [Google Scholar]
- Maier, W.D.; Barnes, S.J.; Campbell, I.H.; Fiorentini, M.L.; Peltonen, P.; Barnes, S.J.; Smithies, R.H. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 2009, 460, 620–623. [Google Scholar] [CrossRef]
- Lesher, C.M.; Burnham, O.M.; Keays, R.R.; Barnes, S.J.; Hulbert, L. Trace-element geochemistry and petrogenesis of barren and ore-associated komatiites. Can. Miner. 2001, 39, 673–696. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Prichard, H.M.; Cox, R.A.; Fisher, P.C.; Godel, B. The location of the chalcophile and siderophile elements in platinum-group element ore deposits (atextural, microbeam and whole rock geochemical study): Implications for the formationof the deposits. Chem. Geol. 2008, 248, 295–317. [Google Scholar] [CrossRef]
- Hinchey, J.G.; Hattori, K.H. Magmatic mineralization and hydrothermal enrichment of the High Grade Zone at the Lac des Iles palladium mine, northern Ontario. Can. Miner. 2005, 40, 13–23. [Google Scholar] [CrossRef]
- Su, S.G.; Lesher, C.M. Genesis of PGE mineralization in the Wengeqi mafic-ultramafic complex, Guyang County, Inner Mongolia, China. Miner. Depos. 2012, 47, 197–207. [Google Scholar] [CrossRef]
- Naldrett, A.J. Nickel sulfide deposits: Classification, composition and genesis. Econ. Geol 1981, 75, 628–655. [Google Scholar]
- Konnunaho, J.P.; Hanski, E.J.; Karinen, T.T.; Lahaye, Y.; Makkonen, H.V. The petrology and genesis of the Paleoproterozoic mafic intrusion-hosted Co–Cu–Ni deposit at Hietakero, NW Finnish Lapland. Bull. Geol. Soc. Finl. 2018, 90, 104–131. [Google Scholar] [CrossRef]
- Shiga, Y. Behavior of iron, nickel, cobalt and sulfur during serpentinization, with reference to the Hayachine ultramafic rocks of the Kamaishi mining distric, northeastern Japan. Can. Miner. 1987, 25, 611–624. [Google Scholar]
- Alt, J.C.; Shanks, W.C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 2003, 67, 641–653. [Google Scholar] [CrossRef]
- Etiope, G.; Ifandi, E.; Nazzari, M.; Procesi, M.; Tsikouras, B.; Ventura, G.; Steele, A.; Tardini, R.; Szatmari, P. Widespread abiotic methane in chromitites. Sci. Rep. 2018, 8, 8728. [Google Scholar] [CrossRef] [Green Version]
- Economou-Eliopoulos, M.; Tsoupas, G.; Skounakis, V. Occurrence of graphite-like carbon in podiform chromitites of Greece and its genetic significance. Minerals 2019, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Ifandi, E.; Zaccarini, Z.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Karipi, S. First occurrences of Ni–V–Co phosphides in chromitite from the Agios Stefanos Mine, Othrys Ophiolite, Greece. Ofioliti 2018, 43, 131–145. [Google Scholar]
- Zaccarini, F.; Bindi, L.; Ifandi, E.; Grammatikopoulos, T.; Stanley, C.; Garuti, G.; Mauro, D. Tsikourasite, Mo3Ni2P1 + x (x < 0.25), a new phosphide from the chromitite of the Othrys Ophiolite, Greece. Minerals 2019, 9, 248. [Google Scholar]
- Bindi, L.; Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Stanley, C.; Garuti, G.; Mauro, D. Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys Ophiolite, Greece. Minerals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Bindi, L.; Zaccarini, F.; Bonazzi, P.; Grammatikopoulos, T.; Tsikouras, B.; Stanley, C.; Garuti, G. Eliopoulosite, V7S8, a new sulfide from the podiform chromitite of the othrys ophiolite, Greece. Minerals 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, R.A.; Tilley, D.B. Hisingerite: A ferric kaolin mineral with curved morphology. Clays Clay Miner. 1998, 46, 400–413. [Google Scholar] [CrossRef]
- Wicks, F.J.; O’Hanley, D.S. Volume 19, hydrous phyllosilicates: Serpentine minerals: Structures and petrology. In Reviews in Mineralogy; BookCrafters: Chelsea, MI, USA, 1988; pp. 91–167. [Google Scholar]
- Andreani, M.; Munoz, M.; Marcaillou, C.; Delacour, A. Mu XANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 2013, 178, 70–83. [Google Scholar] [CrossRef]
- Klein, F.; Bach, W.; Humphris, S.E.; Kahl, W.-A.; Jons, N.; Moskowitz, B.; Berquo, T.S. Magnetite in seafloor serpentinite–Some like it hot. Geology 2014, 42, 135–138. [Google Scholar] [CrossRef]
- Bonnemains, D.; Carlut, J.; Escartı’n, J.; Me’vel, C.; Andreani, M.; Debret, B. Magnetic signatures of serpentinization at ophiolite complexes. Geochem. Geophys. Geosyst. 2016, 17, 2969–2986. [Google Scholar] [CrossRef] [Green Version]
- Eliopoulos, D.; Economou-Eliopoulos, M. Trace element distribution in magnetite separates of varying origin: Genetic and exploration significance. Minerals 2019, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.F.A.; Barriga, F.; Scott, S.D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Mar. Geol. 2007, 245, 20–39. [Google Scholar] [CrossRef]
- Toffolo, L.; Nimis, P.; Tret’yakov, G.A.; Melekestseva, I.Y.; Beltenev, V.E. Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth-Sci. Rev. 2020, in press. [Google Scholar] [CrossRef]
- Belogub, E.V.; Ayupovaa, N.R.; Krivovichevb, V.G.; Novoselov, K.A.; Blinov, I.A.; Charykova, M.V. Se minerals in the continental and submarine oxidation zones of the South Urals volcanogenic-hosted massive sulfide deposits: A review. Ore Geol. Rev. 2020, 122, 103500. [Google Scholar] [CrossRef]
- Fitton, J.G. Coupled molybdenum and niobium depletion in continental basalts. Earth Planet. Sci. Lett. 1995, 136, 715–721. [Google Scholar] [CrossRef]
- Kullerud, G. The Cu–Fe–S system. In Washington Year Book; Carnegie Institution of Washington: Washington, DC, USA, 1964; Volume 63, pp. 200–202. [Google Scholar]
- Goble, J.; Robinson, G. Geerite, Cu1.60S, a new copper sulfide from Dekalb Township, New York. Can. Miner. 1980, 18, 519–523. [Google Scholar]
- Goble, J.R. Copper sulfides from Alberta: Yarrowite Cu9S8 and Spionkopite Cu39S28. Can. Miner. 1980, 18, 511–518. [Google Scholar]
Sulphides of Cyprus Type Kondro | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | Pyrite | Sphalerite | Chalcopyrite | Bornite | 1 = Fe3.2Bi0.02Cu0.05S6.8 | ||||||||
wt% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 = Fe3.1Co0.1Cu0.03S6.7 |
Fe | 44.6 | 43.7 | 42.8 | 3.6 | 1.9 | 1.8 | 28.7 | 29.9 | 29.2 | 11 | 11.7 | 11.9 | 3 = Fe3.0Cu0.14S6.8 |
Cu | n.d. | 0.5 | 2.1 | 4.2 | 1.2 | 0.4 | 33.6 | 34.0 | 35.3 | 60.6 | 60 | 62.2 | 4 = Zn4,3Fe0.3Bi0.04Cu0.3S5.0 |
Zn | n.d. | n.d. | n.d. | 57.7 | 62.7 | 63.3 | 1.6 | n.d. | n.d. | n.d. | n.d. | n.d. | 5 = Zn4,7Fe0.2Bi0.03Cu0.09S5.0 |
Co | n.d. | 1.2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 6 = Zn4.8Fe0.2Bi0.04S5.0 |
Bi | 1.2 | n.d. | n.d. | 1.7 | 1.4 | 1.5 | 0.8 | 1.2 | n.d. | 1.2 | n.d. | n.d. | 7 = Cu2.4Fe2.4Zn0.02S5.1 |
Se | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.1 | n.d. | n.d. | 0.6 | 8 = Cu2.5Fe2.4Bi0.02S5.1 |
S | 54.1 | 53.9 | 53.9 | 32.8 | 33.3 | 32.9 | 35.3 | 35.4 | 32.9 | 27.1 | 27.8 | 25.3 | 9 = Cu2.5Fe2.4Bi0.04S5.1 |
Total | 99.9 | 99.3 | 99.3 | 100 | 100.5 | 99.9 | 100 | 100.4 | 99.8 | 99.9 | 99.5 | 100 | 10 = Cu4.8Fe1.0Bi0.03S4.3 |
Mineral | Epigenetic Cu-minerals (Figure 2 and Figure 3) | Selenides-claousthalite | Tellurides-Melonite | 11 = Cu4.8Fe1.0S4.2 | |||||||||
12 = Cu4.9Fe1.1Se0.04S4.0 | |||||||||||||
wt% | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 13 = Cu5.7Fe0.4S4.1 |
Fe | 3.8 | 3.2 | 2.2 | 0.8 | 3.2 | 1.4 | 0.6 | 3.2 | 2.2 | 2.1 | 0.9 | 1.2 | 14 = Cu5.8Fe0.3Zn0.4S3.5 |
Cu | 70.8 | 70.6 | 71.1 | 82.4 | 73.2 | 73.2 | 76.2 | 4.6 | 1.9 | 2.3 | 1.5 | 0.9 | 15 = Cu5.8Fe0.2Zn0.2S3.9 |
Zn | n.d. | 4.6 | 1.8 | n.d. | n.d. | n.d. | 0.9 | n.d. | n.d. | n.d. | n.d. | n.d. | 16 = Cu6.1Fe0.0S3.8 |
Se | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 21.6 | 25.1 | 24.8 | 1.4 | 0.5 | 17 = Cu5.9Fe0.3Co0.3S3.9 |
Pb | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 70.5 | 71 | 69.8 | n.d. | n.d. | 18 = Cu5.9Fe0.12S4.0 |
Co | 0.3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.9 | 3.8 | 19 = Cu6.2Fe0.06Zn0.07S3.7 |
Ni | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 13.8 | 12.4 | 20 = Pb4.6Se3.7Fe0.8Cu1.0 |
Te | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 80.4 | 80.9 | 21 = Pb4.7Se4.4Fe0.5Cu0.4 |
S | 24.5 | 21.6 | 23.9 | 26.2 | 24.2 | 25 | 23 | n.d. | n.d. | n.d. | n.d. | n.d. | 22 = Pb4.6Se4.3Fe0.5Cu0.5 |
Total | 99.4 | 100 | 99 | 99.4 | 100.6 | 99.6 | 100.7 | 99.9 | 100.2 | 99 | 99.9 | 99.7 | 23 = Te6.97Ni2.6Fe0.2Cu0.2Se0.2 |
Sulphides associated with Magnetite Tsoumes | 24 = Te7,17Ni2.4Fe0.3Cu0.6Se0.07 | ||||||||||||
25 = Fe4.7S5.1 | |||||||||||||
26 = Fe4.6Zn0.05Bi3.03S5.3 | |||||||||||||
Pyrrhotite | Pyrite | Chalcopyrite | Sphalerite | 27 = Fe4,6S5.4 | |||||||||
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 28 = Fe3.2S6.8 | |||
Fe | 61.0 | 58.9 | 59.7 | 44.9 | 44.5 | 32.0 | 30.6 | 30.4 | 7.5 | 6.4 | 29 = Fe3.2S6.8 | ||
Cu | n.d. | n.d. | n.d. | n.d. | n.d. | 31.4 | 33.8 | 33.6 | n.d. | n.d. | 30 = Fe2.6Cu2.3Zn1.6S4.9 | ||
Zn | n.d. | 0.8 | n.d. | n.d. | n.d. | 2.3 | n.d. | n.d. | 57.8 | 58.6 | 31 = Fe2.5Cu2.4S5.1 | ||
Bi | n.d. | 1.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.4 | 1.9 | 32 = Fe2.5Cu2.4S5.1 | ||
S | 39.4 | 39.8 | 40 | 55.3 | 54.2 | 34.3 | 35.9 | 10 | 33.1 | 33.2 | 33 = Zn4.3Fe0.6Bi0.03S5.0 | ||
Total | 100.4 | 100.6 | 99.7 | 100.2 | 99.7 | 100 | 100.3 | 99.6 | 99.8 | 100.1 | 34 = Zn4.4Fe0.6Bi0.04S5.0 |
wt % | Tsoumes | Laramie Complex [28] | ||
---|---|---|---|---|
(Fe,Mg)-Silicate | Hisingerite | |||
SiO2 | 35 | 33.2 | 42.7 | 37.8 |
Al2O3 | 0.9 | 1.1 | 1.2 | 0.03 |
Cr2O3 | n.d. | n.d. | 0.03 | 0.04 |
Fe2O3t | 42.3 | 43.2 | 35.83 | 46.94 |
MnO | n.d. | n.d. | 0.15 | 0.49 |
MgO | 11.9 | 12.1 | 7.46 | 2.15 |
NiO | n.d. | n.d. | 0.05 | 0.01 |
CaO | n.d. | n.d. | 0.81 | 0.39 |
Total | 90.1 | 89.6 | 88.22 | 87.85 |
Location | wt % | wt % | wt % | ppm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Description | Fe | Cu | Zn | Co | Ni | Mo | Se | As | Au | Ag | Hg | Sb | Cu/(Cu + Ni) | Ni/Co | Pt/(Pt + Pd) |
Pindos | |||||||||||||||
Kondro Massive ore | 26.9 | 6.9 | 2.9 | 1400 | 20 | 50 | 170 | 140 | 1.1 | 56 | 40 | 9.5 | >0,99 | 0.014 | __ |
21.2 | 6.1 | 2.6 | 1250 | 32 | 80 | 400 | 150 | 1.3 | 34 | 70 | 7.1 | >0,99 | 0.026 | __ | |
26.5 | 16.4 | 3.2 | 600 | 12 | 310 | 1500 | 90 | 3.3 | 38 | 170 | 8.1 | >0,99 | 0.02 | __ | |
22.5 | 10.1 | 9.8 | 500 | 11 | 40 | 1900 | 64 | 3.6 | 32 | 280 | 10 | >0,99 | 0.022 | __ | |
11.9 | 25.4 | 1.1 | 2200 | 27 | 80 | 850 | 40 | 3.2 | 39 | 60 | 2.1 | >0,99 | 0.012 | __ | |
20.8 | 7.2 | 2.2 | 910 | 110 | 91 | 350 | 140 | 3 | 35 | 48 | 6.6 | >0,99 | 0.12 | __ | |
9.5 | 18.9 | 1 | 870 | 60 | 76 | 1100 | 10 | 2.1 | 40 | 128 | 1.3 | >0,99 | 0.07 | __ | |
26.4 | 11.6 | 8.3 | 280 | 8 | 36 | 1900 | 64 | 1.9 | 38 | 280 | 10 | >0,99 | 0.028 | __ | |
23.2 | 8.1 | 2.5 | 1000 | 13 | 370 | 1400 | 200 | 1.9 | 48 | 168 | 1.4 | >0,99 | 0.013 | __ | |
Aspropotamos | |||||||||||||||
Disseminated Diabase breccia | 7.1 | 0.006 | 0.007 | 27 | <5 | <5 | <5 | 25 | 0.018 | <1 | <1 | 0.3 | __ | __ | 0.95 |
6.9 | 0.007 | 0.009 | 15 | <5 | <5 | <5 | 25 | 0.025 | <1 | <1 | 0.6 | __ | __ | 0.97 | |
Tsoumes | 49.8 | 1.8 | 0.4 | 600 | 9 | 80 | 130 | 20 | 0.15 | 6 | 10 | 1 | >0,99 | 0.015 | 0.12 |
33.4 | 2.5 | 0.12 | 1100 | 12 | 150 | 350 | 27 | 0.14 | 7 | 30 | 0.8 | >0,99 | 0.01 | 0.87 | |
31.2 | 1.4 | 0.11 | 540 | 8 | 70 | 95 | 20 | 0.11 | 8 | 11 | 0.9 | >0,99 | 0.015 | 0.22 | |
30.3 | 1.7 | 0.1 | 520 | 7 | 58 | 41 | 11 | 0.03 | 5 | 16 | 0.4 | >0,99 | 0.013 | 0.87 | |
Othrys | 39.4 | 3.3 | 0.02 | 2300 | 2400 | 40 | 6 | 2 | 0.01 | <1 | 1 | 0.2 | 0.93 | 1.04 | 0.99 |
Eretria | 35.9 | 0.44 | 0.12 | 400 | 3700 | 30 | 7 | <5 | 0.02 | <1 | 0.3 | 0.2 | 0.49 | 12.33 | 0.61 |
37.4 | 0.89 | 0.01 | 2000 | 2500 | 46 | 8 | <5 | 0.01 | <1 | 0.6 | 0.2 | 0.78 | 1.25 | 0.86 | |
Cyprus | 38.8 | 1.8 | 0.12 | 1500 | 12,000 | 40 | 35 | 47 | 3.5 | 2.1 | 2 | 18 | 0.6 | 8 | __ |
Limassol | 43.5 | 1.74 | 0.03 | 1800 | 17,100 | 610 | 5 | 12,800 | 8.2 | 8.2 | <1 | 73 | 0.5 | 9.5 | __ |
43.8 | 3.8 | 0.34 | 2300 | 1400 | 70 | 110 | 190 | 4.5 | 4.5 | <1 | 10 | 0.96 | 0.61 | __ | |
38.7 | 0.91 | 0.007 | 3600 | 48,500 | 40 | 45 | 54,800 | 6.2 | 0.91 | 2 | 94 | 0.66 | 13.5 | 0.95 | |
54.4 | 0.35 | 0.009 | 1700 | 12,500 | 10 | 44 | 5600 | 2.5 | 0.35 | 1.5 | 13 | 0.21 | 7.35 | 0.5 | |
13.2 | 0.31 | 0.006 | 500 | 3500 | 12 | 6 | 730 | 0.53 | 0.31 | 1 | 6.6 | 0.53 | 7 | 0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliopoulos, D.G.; Economou-Eliopoulos, M.; Economou, G.; Skounakis, V. Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex. Minerals 2020, 10, 454. https://doi.org/10.3390/min10050454
Eliopoulos DG, Economou-Eliopoulos M, Economou G, Skounakis V. Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex. Minerals. 2020; 10(5):454. https://doi.org/10.3390/min10050454
Chicago/Turabian StyleEliopoulos, Demetrios G., Maria Economou-Eliopoulos, George Economou, and Vassilis Skounakis. 2020. "Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex" Minerals 10, no. 5: 454. https://doi.org/10.3390/min10050454
APA StyleEliopoulos, D. G., Economou-Eliopoulos, M., Economou, G., & Skounakis, V. (2020). Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex. Minerals, 10(5), 454. https://doi.org/10.3390/min10050454