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Abstract: Nature is often characterized by systems that are far from thermodynamic equilibrium,
and rivers are not an exception for the Earth’s critical zone. When the chemical composition of stream
waters is investigated, it emerges that riverine systems behave as complex systems. This means that
the compositions have properties that depend on the integrity of the whole (i.e., the composition with
all the chemical constituents), properties that arise thanks to the innumerable nonlinear interactions
between the elements of the composition. The presence of interconnections indicates that the
properties of the whole cannot be fully understood by examining the parts of the system in isolation.
In this work, we propose investigating the complexity of riverine chemistry by using the CoDA
(Compositional Data Analysis) methodology and the performance of the perturbation operator in
the simplex geometry. With riverine bicarbonate considered as a key component of regional and
global biogeochemical cycles and Ca2+ considered as mostly related to the weathering of carbonatic
rocks, perturbations were calculated for subsequent couples of compositions after ranking the data
for increasing values of the log-ratio ln(Ca2+/HCO3

−). Numerical values were analyzed by using
robust principal component analysis and non-parametric correlations between compositional parts
(heat map) associated with distributional and multifractal methods. The results indicate that HCO3

−,
Ca2+, Mg2+ and Sr2+ are more resilient, thus contributing to compositional changes for all the
values of ln(Ca2+/HCO3

−) to a lesser degree with respect to the other chemical elements/components.
Moreover, the complementary cumulative distribution function of all the sequences tracing the
compositional change and the nonlinear relationship between the Q-th moment versus the scaling
exponents for each of them indicate the presence of multifractal variability, thus revealing scaling
properties of the fluctuations.

Keywords: riverine chemistry; complex dynamics; compositional data analysis; perturbation operator;
compositional changes; multifractality

1. Introduction

The relations between the whole and its parts have fascinated human beings throughout time, starting
from the observation of nature (e.g., spirals of seashells, the form of flowers, proportions of the human
body) to mathematical studies (e.g., the Fibonacci series, where the ratio of two subsequent terms tends to
a constant irrational value equal to 1.618, the golden section, inversely proportional to 0.618) [1].

Part–whole relations are fundamental to governing the dynamics of a complex system and to
moving from linear to nonlinear regimes. This occurs since the whole is not only given by the sum of
the constituting parts, but it is affected by the nature of their complex interactions [2,3].

Compositional data are a typical example of relations between the whole (the composition) and
the constituting parts (the concentration of single elements or chemical components) [4]. The nature of
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the link is given by the proportionality of the concentration measure unit as, for example, %, ppm,
mg/L, meq/L and so on, so that each value is part (a proportion) of the same whole [5]. It is evident that
univariate or bivariate analysis of such entangled data can give a partial idea of the natural processes
affecting a given medium. In fact, a composition acts as a whole since all the variables respond to an
environmental perturbation, thus giving birth to a new compositional state. The statistical analysis of
this type of data should take into account this feature, and the application of multivariate methods is
not sufficient if cases continue to move in the Euclidean world [6,7].

It is well known that a D-part composition is a (row) vector x = [x1, x2, . . . , xD], where all its xi
components are strictly positive real numbers and carry relative information. This means that the
information is contained in the ratios between the components of the composition so that the numerical
value of each isolate component is practically irrelevant [4]. The consequence is that compositional
data pertain to a sample space called simplex SD (note that k depends on the unit of measurement
or rescaling):

SD =
{
x = [x1, x2, . . . , xd] | xi >0, i = 1, 2, . . . , D;

∑D

i=1
xi = k

}
(1)

where the Euclidean geometry, on which classical statistics is developed, is not valid [7]. The treatment
of compositional data thus requires two possible strategies. The first one, called “stay in the simplex”
approach, adopts the Aitchison geometry to work in a so-constrained sample space. The second one is
based on the transformation of the data to move cases out from the simplex in the real Euclidean space,
and it is known as “working in coordinates” [4,8,9].

In this work, our interest focused on the first approach and, in particular, on the use of the
perturbation operator. The latter is one of the basic tools required to give to the simplex a vector space
structure, an operator having a strategic role in monitoring changes [4,10]. Application examples of
European riverine geochemical systems will illustrate the proposed procedure. The research question
is whether the perturbation operator is able to give us information about the dynamic of compositional
changes and to indicate similarity among chemical elements under this perspective, thus offering a
new geochemical tool of investigation.

2. Materials and Methods

2.1. Monitoring the Compositional Change

The real space with its (Euclidean) geometry is a linear vector space with a metric structure. It is
not a proper framework for compositional data and operations such as the addition of vectors or their
multiplication by a constant or scalar value, or properties such as orthogonality or the calculus of the
distance between points cannot be correctly performed [8,9]. If an analogous sensible geometry to
work with compositional data is required, it is necessary to define basic operations to give a vector
space structure to the simplex sample space. Two operations are able to achieve the aim; the first one is
perturbation (⊕), which is analogous to addition in real space; the second one is powering (�), which
is analogous to multiplication by a scalar in real space. The simplex

(
SD, ⊕, �

)
with perturbation and

powering is a vector space, and with the definition of an inner product, norm and distance, it becomes
a Euclidean vector space [7–9].

Consider two compositions x and y in the simplex sample space SD. The perturbation of x by y,
representing the addition of two vectors (shifting operation), is a composition defined as

x⊕ y = C(x1y1, x2y2, . . . , xDyD), (2)

where C is the closure operator given by

C(x) =

 kx1∑D
i=1 xi

, . . . ,
kxD∑D
i=1 xi

, (3)
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with κ closure constant (1, 100, 106, . . . ). The x	 y perturbation operation (perturbation-subtraction) is
obtained by a component-wise division of the elements of the x and y vectors, thus representing the
analogous of the difference operation in the R (real) space.

The perturbation operation appears to have interesting features for the investigation of the
dynamic of compositional changes. In fact, in several geochemical processes, change may be modeled
by perturbation mechanisms when an initial specimen of composition x0 is subjected to a sequence of
perturbations p1, p2, . . . , pn and then reaches its current state xn [4,10]:

x1 = p1 ⊕ x0, x2 = p2 ⊕ x1, . . . , xn = pn ⊕ xn−1 (4)

so that
xn = (p1 ⊕ p2 . . . ⊕ pn) ⊕ x0 (5)

The perturbation operator could be a strategic tool for the investigation of the complexity of
the critical zone (CZ), the near-surface layer of the Earth where the interlink between different
reservoirs is at the base of the biogeochemical cycles of the elements. Its role could be particularly
interesting in the understanding of compositional changes for riverine systems, where reactions work
in thermodynamically open conditions [11].

By considering our proposal, compositional data pertaining to river chemistry are ranked
under some physical-chemical hypothesis and the x	 y perturbation-subtraction calculated between
subsequent compositions. The original data set n ×D (n number of cases, D number of variables)
is transformed in the (n− 1) ×D perturbation-subtraction matrix. Each column of the matrix is a
compositional signal tracing the contribution of a chemical component to the change. As an alternative,
the matrix perturbation-subtraction can be determined by considering the compositional difference
from the same composition as a reference (e.g., seawater, spring water or pristine water), or by using
time or space to define sequences of observations. After this step, perturbations can be visualized
in three different ways: as compositions expressed in percentage (%), as multiplicative (non-closed)
factors and as percentages of increase/decrease, the last one being the traditional form of presenting
perturbations [12]. Each of these ways is able to give us useful information about the dynamic
governing the cycle of the elements, their mobility and the effect of environmental factors on their
geochemistry [13].

2.2. The Data Set

In order to present a general application of the proposed methodology, stream water data
of the FOREGS (Forum of European Geological Survey) repository were chosen. The database
has largely contributed to defining standardized methods of sampling, chemical analysis and data
management, thus offering a reference framework for the understanding of the biogeochemical
cycles of the elements. Details, references and data sets can be found at the website of the project
(http://weppi.gtk.fi/publ/foregsatlas/). By considering the stream waters, the main chemical composition
(HCO3

−, Cl−, SO4
2−, NO3

−, K+, Na+, Mg2+, Ca2+, SiO2 and Sr2+ in mg/L) of 805 cases was studied.
Each sample represents a drainage area of 100 km2, corresponding to a density of about one sample
per 4700 km2. Running stream water samples were collected from small second-order drainage
basins (<100 km2) at the same site as the active stream sediment. The sampling, whenever possible,
was carried out during the winter and early spring months.

2.3. Ranking Data and Perturbation Calculus

The FOREGS repository does not contain adequate information to rank data by considering time or
any other non-compositional criteria to obtain a sequence of observations. Thus, a certain geochemical
choice is needed to order the waters. Since riverine bicarbonate (HCO3

−) is a key component of
regional and global biogeochemical cycles, the matrix could be ordered by considering increasing
values of this chemical component. It mainly derives from mineral weathering with carbonic acid

http://weppi.gtk.fi/publ/foregsatlas/
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and globally represents an important sink for atmospheric CO2 [14,15]. Anthropogenic activities
have greatly modified fluxes of elements in land–ocean–atmosphere systems, even though impacts
on riverine carbon fluxes remain poorly resolved [15–18]. Interesting compositional changes are
expected to be detected on a European scale and should be able to provide information about the
behavior of this chemical component inside the composition it belongs to, enhancing the parts–whole
relationships. However, under CoDA, this aim can be achieved by ranking the data by considering the
increasing values of the log-ratio ln(Ca2+/HCO3

−). Like HCO3
−, Ca2+ in river water is almost entirely

due to rock weathering, and the sources consist mainly of carbonate rocks containing calcite and
dolomite, with a lesser proportion derived from Ca-silicate minerals and a minor amount from sulfate
minerals [19]. As reported in the FOREGS Atlas (http://weppi.gtk.fi/publ/foregsatlas/), bicarbonate is
the most abundant anion having a dominant role in determining the electrical conductivity. It ranges
from <5 to 730 mg/L (excluding an outlier of 1804 mg/L) with a median of 126.4 mg/L. Calcium values
in stream water range over three orders of magnitude, from 0.02 to 592 mg/L, with a median value of
40 mg/L, and show a correlation with pH, conductivity and bicarbonate.

3. Results and Discussion

After having ranked the data matrix for increasing values of the log-ratio ln(Ca2+/HCO3
−),

the xi+1 	 xi perturbation-subtraction matrix was determined. The perturbation data matrix was
expressed in the real space by using the centered log-ratio (clr) transformation to permit further
statistical analysis [4]. The clr-transformation represents a D-part composition using D clr-coefficients,
and it is defined as

clr(x) = ln
[

x1

gm(x)
,

x2

gm(x)
, . . . ,

xD

gm(x)

]
(6)

where gm(x) =
(∏D

i=1 xi
)1/D

stands for the geometric mean.
The results for 804 cases are reported in Figure 1. Each subplot is related to the dominance of one

chemical component over the geometric mean of the whole composition (according to interpretation of
the clr coefficients) ranked by the increasing ln(Ca2+/HCO3

−) values.
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The first features emerging from the plot inspection are the wide oscillations that characterize the
clr-transformed values for the NO3

− perturbation, with an intermittent behavior for the entire range of
the increasing values of the log-ratio ln(Ca2+/HCO3

−). This indicates that on a European-scale stream,
water compositional changes are governed by the variability of NO3

− and, consequently, by pollution
phenomena able to hide other geogenic signals. Nitrate concentrations in large rivers worldwide are
intimately related to human population density [20–22], and a similar result was found for the river
chemistry of the Alpine region and the Tiber River basin in central Italy [11,23]. Thus, this condition
appears to also affect running stream water samples collected from the small second-order drainage
basins on a European scale, confirming that diffuse pollution is altering the nitrogen cycle on different
scales [24]. With the aim of highlighting compositional changes in geogenic signals, the analysis
was performed after having eliminated the NO3

− contribution. The obtained results are reported in
Figure 2.
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As we can see, now the sequential signal of the variables is clearer, and all the variables related
to the carbonatic cycle (HCO3

−, Ca2+, Mg2+ and mostly Sr2+) show lower fluctuations. In this
framework, Cl− is the variable that presents the relative higher fluctuations, followed by SiO2(aq) and
K+. Thus, the analysis appears to be able to discriminate two groups of variables: one given by HCO3

−,
Ca2+, Mg2+ and mostly Sr2+ that is more resilient to the carbonate weathering increases, as represented
by the log-ratio Ca2+/HCO3

−, and another given by Cl−, SO4
2−, K+, Na+ and SiO2(aq) that is more

sensitive to the environmental changes traced by it. This condition could reflect on a European scale
the different responses of carbonate and silicate lithologies to runoff and relief [19]. Monitoring plans to
point out important changes, also to be related to climate, should consider the more resilient variables.

The application of the run-test to the clr-transformed perturbation-subtraction data indicates
the presence of non-random behavior with respect to the median value (run-test, p < 0.01) for all
the sequences. This reveals that the stationarity of compositional changes for all the variables
when ln(Ca2+/HCO3

−) increases is not a sustainable hypothesis and that the concentration–discharge
relationship has not canceled or obscured the effect of the biogeochemical processes on a European scale.
Rates of solute production and/or mobilization that are nearly proportional to water fluxes, on both
event and inter-annual time scales, lead to a chemostatic behavior of solute concentrations [25–28].
This occurs when solute concentrations can vary little relative to changes in discharge, depending
on catchment features (e.g., lithology, geomorphology, use of the soil) and chemical properties of the
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solute (e.g., availability, reactivity, mobility) [29]. However, recently this concept has been revised [30]
considering the effect of phenomena working at different scales (groundwater storage and fast chemical
reactions versus critical zone evolution driven by climatic change). The compositional changes revealed
here for each chemical component could reflect this condition.

Similarities in compositional changes among variables could be better identified by the
investigation of the biplot of Figure 3, obtained through a robust principal component analysis [31,32].
The biplot takes into account 65% of the data variability, with a value of about 40% related to the first
component (PC1). The biplot confirms the discrimination of the variables in two different groups,
as previously reported, also adding SO4

2− to the carbonatic group, and highlights the strong relationship
between Ca2+ and HCO3

− (co-linear vectors) during processes affecting compositional changes.
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The results are also fully confirmed by the correlation analysis for compositional data based
on the non-parametric Spearman correlation coefficient according to the method developed by [33].
The method takes into consideration all relative information of two variables (compositional parts) to
that of the remaining variables and constructs orthonormal coordinates, for which standard correlations
are computed. This is repeated for all pairs of variables, and the results are visualized by means of the
so-called “heat map” in which chemical variables are rearranged according to their similarity using a
hierarchical cluster analysis [33]. The results reported in Figure 4 confirm the presence of two distinct
associations of chemical components, which are positively correlated in their chemical changes: (i)
Na+, Cl−, K+ and SiO2(aq) and (ii) Ca2+, HCO3

−, Sr2+, Mg2+ and SO4
2−.

When in the evolution of dynamic systems, dissipative processes should not be negligible,
and intermittent behavior is a typical result [34,35]. It implies a tendency for a chemical variable to
concentrate into small-scale features of high intensity surrounded by extended areas of less intense
fluctuations in temporal and spatial domains. Large fluctuations in intermittent processes are not as
rare as those in Gaussian processes and contribute to the modification of statistical moments leading
to multifractality [36]. A way to check for this behavior is to investigate the shape of the frequency
distribution to search for power laws. If X has a power-law distribution, then in a log–log plot of
Pr[X ≥ x]—the complementary cumulative distribution function—asymptotically, a straight line will
appear. Plotting the cumulative number N ≥ x versus x in log–log coordinates enables a comparison of
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the presence of the power-law distribution versus the normal (Gaussian), log-normal or exponential
ones that show distinctly curved graphs [37].
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The result for the clr-perturbation-subtraction values is reported in Figure 5, with the log-normal
model represented by the continuous line [12,13,37]. As we can see, a log-normal model could work
for most of the compositional changes, particularly when the values are low and dilution prevails,
describing an interaction-dominant dynamic [38]. However, the fragmentation of the curve could reveal
the presence of a multifractal pattern and changing scaling relations [36]. In this case, multiplicative
interactions are associable with feedback loops across different scales, thereby modifying dynamics
and resilience to change.

With the aim of verifying if compositional changes exhibit nonlinear power-law behavior that
depends on higher-order moments and scale, an explorative multifractal analysis was performed.
If power-law scaling exists for various statistical moments at different scales, the process is multifractal,
and the scaling exponents are not a linear function of the moments of the distribution [36,39–41].
The Q-th moment versus the scaling exponents plot is reported in Figure 6 [41–43]. Departures from
linearity are evaluable for each variable, thus confirming the tendency towards multifractality, although
with different patterns [44,45].
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4. Final Thoughts and Conclusions

Geochemical elements are constituents of a composition, and their behavior cannot be analyzed
by separating each part from the others. The risk is the loss of the information related to the laws
governing the interdependence and the emerging of a complex dynamic. The only way to investigate
the joint behavior of all the elements of a composition is to adopt multivariate methods, but this strategy
could be insufficient if the Euclidean geometry does not represent the natural support of compositional
data. If the “stay in the simplex“ approach under CoDA is chosen to investigate compositional data,
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the perturbation operator is an interesting tool to probe the nature of the chemical change [4,10], adding
valuable information about the dynamics of a geochemical system.

A signal related to the compositional change can be obtained after having ranked data by using
some criteria and applying the difference perturbation at subsequent couples of compositions. When the
compositional changes of the joint distribution of HCO3

−, Cl−, SO4
2−, NO3, K+, Na+, Mg2+, Ca2+,

SiO2 and Sr2+ (mg/L) from the European stream waters of the FOREGS repository are analyzed, after
having ordered the cases for the increasing values of the log-ratio ln(Ca2+/HCO3

−), interesting features
emerge that cannot be deduced from a classical non-compositional analysis. The chosen log-ratio is an
important index of alkalinity and carbonate weathering.

First of all, our results indicate that N-bearing species, and in particular NO3
−, due to their

high variability also in compositional changes, are able to obscure variations in the multivariate
geogenic signal [11,23,24]. When the data are cleaned up from this contribution, the plot of the relative
fluctuations is clearer, and it is possible to appreciate the contribution of each chemical component in
governing the compositional change. The application of the run-test indicates that the sequences are not
stationary with respect to the increase of the log-ratio ln(Ca2+/HCO3

−). Consequently, the hypothesis
of chemostatic behavior is not sustainable, and the concentration–discharge relationship has not
canceled or obscured the effect of the biogeochemical processes on a European scale [25–28,30].
However, some variables (HCO3

−, Mg2+, Ca2+ and Sr2+) appear to be more resilient to change (lower
contribution to compositional changes for the entire range of values of ln Ca2+/HCO3

−) with respect
to the others. These variables could be used to construct potential indices for monitoring plans on
a long timescale to also trace the effect of climate change on water–rock interactions (early warning
signals). Moreover, as revealed by the robust principal component analysis and the heat map of
correlations, both applied on the perturbation-subtraction matrix, variables aggregate each other for
similar dynamics to HCO3

−, Mg2+, Ca2+, SO4
2− and Sr2+ versus Cl−, K+, Na+ and SiO2(aq), confirming

the different resilience to change previously reported.
The complementary cumulative distribution function of the clr-perturbation-subtraction values

suggests that most of the variables move thanks to an interaction-dominant dynamic, particularly for
the lower values [38]. However, the nonlinear relationship between the scaling exponents versus the
Q-th moments of the distribution indicates multifractality, which is the potential existence of different
scaling regimes of the compositional changes at different spatial/temporal scales. These outcomes
can be interpreted as a result of the superimposition of several processes acting at multiple spatial
scales since sampling covered a reduced time interval. However, the scale-invariant nature of spatial
patterns can also be considered an indication of self-organization, underlying the possible role of
scale-dependent feedback in geochemical processes. In this perspective, for HCO3

−, Ca2+, Mg2+ and
Sr2+, more resilient to compositional changes, multifractality could be associated with the capacity
to organize a complex network of interactions as an efficient answer to the different environmental
factors. This condition could be favored by the rapid dissolution reaction of carbonates with respect
to silicates, to the maintenance of near-saturation conditions in river waters and to the diffusion of
carbonatic lithotype [14,19]. For the other variables, Cl−, K+, Na+ and SiO2(aq), the intermittency in
space could reveal heterogeneity and, consequently, a maintained fingerprint of environmental factors
as, for example, the difference in the climate of the drainage basin and geology.

In any case, multifractality indicates the presence of dissipative systems working far from the
thermodynamic equilibrium since when a field is intermittent, the structure of its energy dissipation
is not homogeneous, but it is intermittent too [35,46,47]. This one appears to be a profitable path of
research in light of the compositional data analysis approach.
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