Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages
Abstract
:1. Introduction
2. Geological Background and Methods
3. Results
4. Discussion
4.1. Sediment Dispersal over the SKB
4.1.1. Northern vs. Southern Signature
4.1.2. Potential Eastern Signature
4.2. Tectonic Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, Y.; Zhou, L.; Zhao, L.; Ji, M.; Gao, H. Palaeozoic uplands and unconformity in the North China Block: Constraints from zircon LA-ICP-MS dating and geochemical analysis of Bauxite. Terra Nova 2010, 22, 264–273. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Liu, A.; Zhang, S.; Yang, Z.; Zhuo, S. Origin of Late Palaeozoic bauxites in the North China Craton: Constraints from zircon U–Pb geochronology and in situ Hf isotopes. J. Geol. Soc. 2014, 171, 695–707. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Q.; Liu, X.; Feng, Y.; Zhang, Y. Petrography and detrital zircon study of late Carboniferous sequences in the southwestern North China Craton: Implications for the regional tectonic evolution and bauxite genesis. J. Asian Earth Sci. 2015, 98, 421–435. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X. Metallogenic and tectonic implications of detrital zircon U–Pb, Hf isotopes, and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China Craton. Lithos 2019, 350–351, 105222. [Google Scholar] [CrossRef]
- Jia, L.; Zhong, D.; Sun, H.; Yan, R.; Zhang, C.; Mo, W.; Qiu, C.; Dong, Y.; Li, B.; Liao, G. Sediment provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin. Acta Sediment. Sin. 2019, 37, 1087–1103. (In Chinese) [Google Scholar]
- Wang, A.-Q.; Yang, D.-B.; Yang, H.-T.; Mu, M.-S.; Quan, Y.-K.; Hao, L.-R.; Xu, W.-L. Late Palaeozoic tectonic evolution of the southern North China Craton: Constraints from detrital zircon dating and Hf–O isotopic compositions of the Benxi Formation, Sanmenxia area, North China Craton. Geol. J. 2020, 55, 1320–1331. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, J.; Liu, X.; Zhao, R.; Cai, S. Provenance of Late Carboniferous bauxite deposits in the North China Craton: New constraints on marginal arc construction and accretion processes. Gondwana Res. 2016, 38, 86–98. [Google Scholar] [CrossRef]
- Li, H.-Y.; He, B.; Xu, Y.-G.; Huang, X.-L. U–Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: Insights into interactions of the North China Craton with surrounding plates. J. Asian Earth Sci. 2010, 39, 335–346. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Zhu, W.-B.; Ge, R.-F.; Wang, X. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth. Gondwana Res. 2014, 25, 383–400. [Google Scholar] [CrossRef]
- Liu, G. Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South China continental plates. Int. J. Coal. Geol. 1990, 16, 73–117. [Google Scholar] [CrossRef]
- Yang, Z. The Carboniferous system. In The geology of China; Yang, Z., Cheng, Y., Wang, H., Eds.; Oxford University Press: New York, NY, USA, 1986; pp. 102–112. [Google Scholar]
- Lee, C.Z. The Late Paleozoic strata. In Geology of Korea; Cheng, C.H., Ed.; Sigma Press: Seoul, Korea, 1999; pp. 129–203. [Google Scholar]
- Doh, S.-J.; Piper, J.D.A. Palaeomagnetism of the (Upper Palaeozoic-Lower Mesozoic) Pyongan Supergroup, Korea: A Phanerozoic link with the North China Block. Geophys. J. Int. 1994, 117, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Lee, Y.I. Late Cambrian biogeography: Conodont bioprovinces from Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 119–136. [Google Scholar] [CrossRef]
- Choi, D.K.; Kim, D.H.; Sohn, J.W. Ordovician trilobite faunas and depositional history of the Taebaeksan Basin, Korea: Implications for palaeogeography. Alcheringa 2001, 25, 53–68. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, Y.I.; Li, M.; Bai, Z. Comparison of the Ordovician-Carboniferous boundary between Korea and NE China: Implications for correlation and tectonic evolution. Gondwana Res. 2001, 4, 39–53. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, Y.I. Nd isotopic study of Upper Cambrian conodonts from Korea and implications for early Paleozoic paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 212, 77–94. [Google Scholar] [CrossRef]
- Choi, D.K.; Kim, E.Y. Occurrence of Changshania (Trilobita, Cambrian) in the Taebaeksan Basin, Korea and its stratigraphic and paleogeographic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 242, 343–354. [Google Scholar] [CrossRef]
- Li, Z.; Ni, L.; Xu, J. The Upper Proterozoic-Paleozoic records of sedimentary sequences and detrital zircon geochronology in Korean Peninsula and North China: Implications for tectonic attributes and division. Acta Petrol. Sin. 2016, 32, 3139–3154. [Google Scholar]
- Kim, M.G.; Lee, Y.I. The Pyeongan Supergroup (upper Paleozoic–Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Sci. Rev. 2018, 185, 1170–1186. [Google Scholar] [CrossRef]
- Chough, S.K.; Kwon, S.-T.; Ree, J.-H.; Choi, D.K. Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Sci. Rev. 2000, 52, 175–235. [Google Scholar] [CrossRef]
- Ishiwatari, A.; Tsujimori, T. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: A synthesis. Isl. Arc 2003, 12, 190–206. [Google Scholar] [CrossRef]
- Chang, K.-H.; Zhao, X. North and South China suturing in the east end: What happened in Korean Peninsula? Gondwana Res. 2012, 22, 493–506. [Google Scholar] [CrossRef]
- Cho, M.; Kim, T.; Yang, S.-y.; Yi, K. Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: Tectonic correlation with the North China craton. In Linkages and Feedbacks in Orogenic Systems; Law, R.D., Thigpen, J.R., Merschat, A.J., Stowell, H.H., Eds.; Geological Society of America: Boulder, CO, USA, 2017; pp. 165–198. [Google Scholar]
- Kim, H.M. Paleozoic and Mesozoic paleocurrents of the Danyang coalfield district, Korea. J. Geol. Soc. Korea 1971, 7, 257–276. [Google Scholar]
- Kim, H.M. Neritic paleocurrent analysis of Pennsylvanian Tethyan sea at Samcheog coalfield, Korea. J. Korea Inst. Min. Geol. 1978, 11, 21–38. (In Korean) [Google Scholar]
- Lee, Y.I.; Lim, C. Provenance and compositional variance of the Carboniferous Manhang sandstones, central eastern Korea. J. Geol. Soc. Korea 1995, 31, 637–652. [Google Scholar]
- Lee, Y.I.; Sheen, D.-H. Detrital modes of the Pyeongan Supergroup (Late Carboniferous–Early Triassic) sandstones in the Samcheog coalfield, Korea: Implications for provenance and tectonic setting. Sediment. Geol. 1998, 119, 219–238. [Google Scholar] [CrossRef]
- Kim, H.S.; Ree, J.-H.; Kim, J. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: Evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. Int. J. Earth Sci. 2012, 101, 483–498. [Google Scholar] [CrossRef]
- Kim, H.S.; Seo, B.; Yi, K. Medium Temperature and Lower Pressure Metamorphism and Tectonic Setting of the Pyeongan Supergroup in the Munkyeong Area. J. Petrol. Soc. Korea 2014, 23, 311–324. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Lee, Y.I.; Choi, T.; Orihashi, Y. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (late Paleozoic–Early Triassic), Korea. Geol. Mag. 2019, 156, 471–484. [Google Scholar] [CrossRef]
- Windley, B.F.; Maruyama, S.; Xiao, W.J. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am. J. Sci. 2011, 310, 1250–1293. [Google Scholar] [CrossRef] [Green Version]
- Kusky, T.M.; Windley, B.F.; Wang, L.; Wang, Z.; Li, X.; Zhu, P. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics 2014, 630, 208–221. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhao, Y.; Song, B.; Yang, Z.-Y.; Hu, J.-M.; Wu, H. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. J. Geol. Soc. 2007, 164, 451–463. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhao, Y.; Liu, J.-M.; Hu, Z.-C. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block. Lithos 2016, 240–243, 382–401. [Google Scholar] [CrossRef]
- Eizenhöfer, P.R.; Zhao, G.; Zhang, J.; Sun, M. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 2014, 33, 441–463. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Meng, Q.; Duan, L.; Wu, G. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton. J. Asian Earth Sci. 2014, 87, 89–101. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Liu, X.; Li, W.; Chen, Q.; Zhang, G.; Zhang, H.; Yang, Z.; Sun, S.; Zhnag, F. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. J. Asian Earth Sci. 2015, 104, 84–98. [Google Scholar] [CrossRef]
- Liu, L.; Liao, X.; Wang, Y.; Wang, C.; Santosh, M.; Yang, M.; Zhang, C.; Chen, D. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Sci. Rev. 2016, 159, 58–81. [Google Scholar] [CrossRef]
- Yang, D.-B.; Yang, H.-T.; Shi, J.-P.; Xu, W.-L.; Wang, F. Sedimentary response to the paleogeographic and tectonic evolution of the southern North China Craton during the late Paleozoic and Mesozoic. Gondwana Res. 2017, 49, 278–295. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Zheng, D.; Zuo, P.; Qi, S. Detrital zircon U–Pb ages from the Middle to Late Permian strata of the Yiyang area, southern North China Craton: Implications for the Mianlue oceanic crust subduction. Geol. J. 2019, 54, 3527–3541. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhao, Y.; Song, B.; Hu, J.-M.; Liu, S.-W.; Yang, Y.-H.; Chen, F.-K.; Liu, X.-M.; Liu, J. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Bull. 2009, 121, 181–200. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Zhang, C. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. J. Asian Earth Sci. 2013, 72, 129–151. [Google Scholar] [CrossRef]
- Dong, Y.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Cheong, C.H. Stratigraphy and paleontology of the Late Paleozoic of Korea (1). J. Korea Earth Sci. Edu. Soc. 1979, 1, 3–16. (In Korean) [Google Scholar]
- Chun, H.Y. Permo-Carboniferous plant fossils from the Samcheok coalfield, Gangweondo, Korea Part 1. J. Paleontol. Soc. Korea 1985, 1, 95–122. [Google Scholar]
- Cleal, C.J.; Ziqiang, W. A new and diverse plant fossil assemblage from the upper Westphalian Benxi Formation, Shanxi, China, and its palaeofloristic significance. Geol. Mag. 2002, 139, 107–130. [Google Scholar] [CrossRef]
- Wang, J. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. Int. J. Coal Geol. 2010, 83, 292–317. [Google Scholar] [CrossRef]
- Ma, S.; Meng, Q.; Wu, G.; Duan, L. Late Paleozoic exhumation of the Inner Mongolia Paleo-Uplift: Evidence from sedimentary records. Acta Geol. Sin. 2014, 88, 1771–1789. (In Chinese) [Google Scholar]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Lee, S.-R.; Cho, K.-O. Precambrian crustal evolution of the Korean Peninsula. J. Petrol. Soc. Korea 2012, 21, 89–112. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Cho, M.; Yi, K. In situ U–Pb and Lu–Hf isotopic studies of zircons from the Sancheong–Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ~1.86 Ga massif-type anorthosite. J. Asian Earth Sci. 2017, 138, 629–646. [Google Scholar] [CrossRef]
- Choi, T.; Lee, Y.I.; Orihashi, Y. Crustal growth history of the Korean Peninsula: Constraints from detrital zircon ages in modern river sediments. Geosci. Front. 2016, 7, 707–714. [Google Scholar] [CrossRef]
- Yang, J.; Gao, S.; Chen, C.; Tang, Y.; Yuan, H.; Gong, H.; Xie, S.; Wang, J. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim. Cosmochim. Acta 2009, 73, 2660–2673. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Lee, Y.I. The stratigraphy and correlation of the upper Paleozoic Pyeongan Supergroup of southern Korean Peninsula—A review. J. Geol. Soc. Korea 2017, 53, 321–338, (in Korean with English abstract). [Google Scholar] [CrossRef]
- Kaczmarek, M.A.; Müntener, O.; Rubatto, D. Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contrib. Mineral. Petr. 2008, 155, 295–312. [Google Scholar] [CrossRef] [Green Version]
- Linnemann, U.; Ouzegane, K.; Drareni, A.; Hofmann, M.; Becker, S.; Gärtner, A.; Sagawe, A. Sands of West Gondwana: An archive of secular magmatism and plate interactions—A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb-LA-ICP-MS detrital zircon ages. Lithos 2011, 123, 188–203. [Google Scholar] [CrossRef]
- Wang, X.; Griffin, W.L.; Chen, J.; Huang, P.; Li, X. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients. Acta Geol. Sin. Engl. 2011, 85, 164–174. [Google Scholar]
- Arakawa, Y. Rb–Sr ages of the gneiss and metamorphosed intrusive rocks of the Hida metamorphic belt in the Urushiyama area, Gifu Prefecture, central Japan. J. Jap. Ass. Min. Petr. Econ. Geol. 1984, 79, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, Y.; Saito, Y.; Amakawa, H. Crustal development of the Hida belt, Japan: Evidence from Nd–Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics 2000, 328, 183–204. [Google Scholar] [CrossRef]
- Wakita, K. Geology and tectonics of Japanese islands: A review—The key to understanding the geology of Asia. J. Asian Earth Sci. 2013, 72, 75–87. [Google Scholar] [CrossRef]
- Ehiro, M.; Tsujimori, T.; Tsukada, K.; Nuramkhaan, M. Palaeozoic basement and associated cover. In The Geology of Japan; Moreno, T., Wallis, S., Kojima, T., Gibbons, W., Eds.; Geological Society of London: London, UK, 2016; pp. 25–60. [Google Scholar]
- Kim, S.W.; Oh, C.W.; Choi, S.G.; Ryu, I.C.; Itaya, T. Ridge Subduction-Related Jurassic Plutonism in and around the Okcheon Metamorphic Belt, South Korea, and Implications for Northeast Asian Tectonics. Int. Geol. Rev. 2005, 47, 248–269. [Google Scholar] [CrossRef]
- Choi, T.; Lee, Y.I. Thermal histories of Cretaceous basins in Korea: Implications for response of the East Asian continental margin to subduction of the Paleo-Pacific Plate. Isl. Arc 2011, 20, 371–385. [Google Scholar] [CrossRef]
- Maruyama, S.; Isozaki, Y.; Kimura, G.; Terabayashi, M. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Isl. Arc 1997, 6, 121–142. [Google Scholar] [CrossRef]
- Takahashi, Y.; Cho, D.-L.; Mao, J.; Zhao, X.; Yi, K. SHRIMP U–Pb zircon ages of the Hida metamorphic and plutonic rocks, Japan: Implications for late Paleozoic to Mesozoic tectonics around the Korean Peninsula. Isl. Arc 2018, 27, e12220. [Google Scholar] [CrossRef] [Green Version]
- Isozaki, Y. Jurassic accretion tectonics of Japan. Isl. Arc 1997, 6, 25–51. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C.; Vérard, C.; Wilhem, C. The formation of Pangea. Tectonophysics 2016, 593, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.I.; Lim, H.S.; Choi, T.; Orihashi, Y. Detrital zircon U–Pb ages of the late Paleozoic Sadong Formation in the Pyeongchang coalfield, Gangweon-do Province, Korea: Implications for depositional age and provenance. J. Geol. Soc. Korea 2010, 46, 73–81. (In Korean) [Google Scholar]
- Kim, S.W.; Park, S.-I.; Jang, Y.; Kwon, S.; Kim, S.J.; Santosh, M. Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of East Asia. Gondwana Res. 2017, 50, 195–215. [Google Scholar] [CrossRef]
- Cope, T.; Ritts, B.D.; Darby, B.J.; Fildani, A.; Graham, S.A. Late Paleozoic Sedimentation on the Northern Margin of the North China Block: Implications for Regional Tectonics and Climate Change. Int. Geol. Rev. 2005, 47, 270–296. [Google Scholar] [CrossRef]
- Lee, T.-H.; Park, K.-H.; Yi, K. Nature and evolution of the Cretaceous basins in the eastern margin of Eurasia: A case study of the Gyeongsang Basin, SE Korea. J. Asian Earth Sci. 2018, 166, 19–31. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.G.; Lee, Y.I.; Choi, T. Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages. Minerals 2020, 10, 527. https://doi.org/10.3390/min10060527
Kim MG, Lee YI, Choi T. Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages. Minerals. 2020; 10(6):527. https://doi.org/10.3390/min10060527
Chicago/Turabian StyleKim, Mun Gi, Yong Il Lee, and Taejin Choi. 2020. "Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages" Minerals 10, no. 6: 527. https://doi.org/10.3390/min10060527
APA StyleKim, M. G., Lee, Y. I., & Choi, T. (2020). Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages. Minerals, 10(6), 527. https://doi.org/10.3390/min10060527