Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation
Abstract
:1. Introduction
2. Geological Settings
3. Samples and Analysis Methods
4. Results and Discussion
4.1. Morphology of the Fractures
4.2. Coal Quality and Petrology
4.3. Mineralogy and Geochemistry of the IMM
4.4. Discussion
4.4.1. The IMM Origin
4.4.2. The Formation of the Fractures
4.4.3. The Effect of the Fractures on CBM Behaviors
5. Conclusions
- (1)
- A Late Permian coal from Southwestern China was found to have a banded structure with intensively fractured vitrain sublayers. Those fractures exhibit patterns of leaf veins, roots or barks and were filled with massive mineral matters (mainly calcite as for No.3 coal from Songhe coal, Liupanshui coalfeld).
- (2)
- Study on coal petrology, coal quality, as well as mineralogy and REY geochemistry of the IMM show that the fractures probably resulted from tissues of coal-forming plant or of autogenetic genesis (for example shrinkage) during the peatifcation or/and coalification process, while the IMM in those fractures probably resulted from precipitation of the calcium rich groundwater and certain addition of terrigenous materials.
- (3)
- The banded structure and the intensive fractures only develop in the vitrain sublayers. This provides a potential path for CBM flow and implies that the flow direction of the CBM may be confined by the attitude of the coal seam. This, with respect to Late Permian coal from the Western Guizhou border, suggests a possible relationship between CBM migration and specific coal-forming paleogeography (such as the river dominated upper delta plain), although more evidence is necessary.
Author Contributions
Funding
Conflicts of Interest
References
- Suárez-Ruiz, I.; Flores, D.; Filho, J.G.M.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, geological applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Busse, J.; De Dreuzy, J.; Torres, S.A.G.; Bringemeier, D.; Scheuermann, A. Image processing based characterisation of coal cleat networks. Int. J. Coal Geol. 2017, 169, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Han, D. China Coal Petrology; China University of Mining and Technology Press: Beijing, China, 1996; Chapter 2; pp. 26–93. (In Chinese) [Google Scholar]
- Laubach, S.E.; Marrett, R.A.; Olson, J.E.; Scott, A.R. Characteristic and origins of coal cleat. Int. J. Coal Geol. 1998, 35, 175–208. [Google Scholar] [CrossRef]
- Flores, R.M. Coalbed methane: From hazard to resource. Int. J. Coal Geol. 1998, 35, 3–26. [Google Scholar] [CrossRef]
- Pattison, C.I.; Fielding, C.R.; McWatters, R.H.; Hamilton, L.H. Nature and Origin of Fractures in Permian Coals from the Bowen Basin, Queensland, Australia. In Special Publications—Coal Bed Methane and Coal Geology; Gayer, R., Harris, I., Eds.; Geological Society: London, UK, 1996; pp. 133–150. [Google Scholar]
- Rodrigues, C.F.A.; Laiginhas, C.; Fernandes, M.; De Sousa, M.J.L.; Dinis, M.A.P. The coal cleat system: A new approach to its study. J. Rock Mech. Geotech. Eng. 2014, 6, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Mostaghimi, P.; Armstrong, R.T.; Gerami, A.; Hu, Y.; Jing, Y.; Kamali, F.; Liu, M.; Liu, Z.; Lu, X.; Ramandi, H.L.; et al. Cleat-scale characterisation of coal: An overview. J. Nat. Gas Sci. Eng. 2017, 39, 143–160. [Google Scholar] [CrossRef]
- Ministry of Natural Resources PRC. China Mineral Resources 2019; Geological Publishing House: Beijing, China, 2019; pp. 1–64.
- Shao, Z.J.; Ren, W.Z.; Chen, J.L. Coal Geology; China Coal Industry Publishing House: Beijing, China, 1993; p. 27. (In Chinese) [Google Scholar]
- Su, X.; Feng, Y.; Chen, J. The classification of fractures in coal. Coal Geol. Explor. 2002, 30, 21–24, (In Chinese with English Abstract). [Google Scholar]
- Dawson, G.K.; Esterle, J.S. Controls on coal cleat spacing. Int. J. Coal Geol. 2010, 82, 213–218. [Google Scholar] [CrossRef]
- Cheng, Q.Y.; Huang, B.X.; Li, Z.H. Research status of pore and crack in coal. Coal Eng. 2011, 12, 91–93, (In Chinese with English Abstract). [Google Scholar]
- Jing, Y.; Armstrong, R.T.; Ramandi, H.L.; Mostaghimi, P. Coal cleat reconstruction using micro-computed tomography imaging. Fuel 2016, 181, 286–299. [Google Scholar] [CrossRef]
- Weniger, S.; Weniger, P.; Littke, R. Characterizing coal cleats from optical measurements for CBM evaluation. Int. J. Coal Geol. 2016, 154, 176–192. [Google Scholar] [CrossRef]
- Su, X.; Feng, Y.; Chen, J.; Pan, J. The characteristics and origins of cleat in coal from Western North China. Int. J. Coal Geol. 2001, 47, 51–62. [Google Scholar] [CrossRef]
- Spears, D.; Caswell, S. Mineral matter in coals: Cleat minerals and their origin in some coals from the english midlands. Int. J. Coal Geol. 1986, 6, 107–125. [Google Scholar] [CrossRef]
- Dai, S.; Wang, P.; Ward, C.R.; Tang, Y.; Song, X.; Jiang, J.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.; French, D.; O’Keefe, J.M. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfeld, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Department of Natural Resources of Guizhou Province. Natural Resources Statistical Bulletin of Guizhou; Department of Natural Resources of Guizhou Province: Guiyang, China, 2019; pp. 1–52. Available online: http://zrzy.guizhou.gov.cn/ (accessed on 2 July 2019). (In Chinese)
- Liu, G. Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South China continental plates. Int. J. Coal Geol. 1990, 16, 73–117. [Google Scholar] [CrossRef]
- Wang, H.; Shao, L.; Hao, L.; Zhang, P.; Glasspool, I.J.; Wheeley, J.R.; Wignall, P.B.; Yi, T.; Zhang, M.; Hilton, J. Sedimentary and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China. Int. J. Coal Geol. 2011, 85, 168–183. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Wang, Z.; Zheng, Q. Study of lithofacies paleogeography during the Permian Emeishan basalt explosion in Guizhou Province. J. Palaeogeogr. 2003, 5, 17–28, (In Chinese with English Abstract). [Google Scholar]
- Dai, S.; Ren, D.; Tang, Y.; Yue, M.; Hao, L. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, P.; Ren, D.; Lei, J. Late Permian coal-bearing carbonate successions in southern China: Coal accumulation on carbonate platforms. Int. J. Coal Geol. 1998, 37, 235–256. [Google Scholar] [CrossRef]
- Guizhou Bureau of Geology and Mineral Exploration. Coal Geology for Late Permian Coals from Guizhou Province (II); unpublished report; 1987; Chapter 6 to 8. (In Chinese)
- GB/T 212-2008. Proximate Analysis of Coal. (GB: National Standard of P.R. China). Available online: http://www.cssn.net.cn (accessed on 14 May 2020). (In Chinese).
- GB/T 214-2007. Determination of Total Sulfur in Coal. (GB: National Standard of P.R. China). Available online: http://www.cssn.net.cn (accessed on 14 May 2020). (In Chinese).
- GB/T 6948-2008. Method of Determining Microscopically the Reflectance of Vitrinite in Coal. (GB: National Standard of P.R. China). Available online: http://www.cssn.net.cn (accessed on 14 May 2020). (In Chinese).
- GB/T 16773-2008. Method of Preparing Coal Samples for the Coal Petrographic Analysis. (GB: National Standard of P.R. China). Available online: http://www.cssn.net.cn (accessed on 14 May 2020). (In Chinese).
- Schatzel, S.J.; Stewart, B.W. Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: Implications for the origin of coal mineral matter and rare earth element exposure in underground mines. Int. J. Coal Geol. 2003, 54, 223–251. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, Y.; Wu, L.; Rong, H.; Wang, X.; Song, J. Rare earth element geochemistry and fractionation in Jurassic coal from Dongsheng–Shenmu area, Ordos Basin. Fuel 2014, 136, 233–239. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Dai, S.; Belkin, H. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment? Int. J. Coal Geol. 2016, 160–161, 73–81. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfeld, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, R.; Zhang, Q. Distribution Characteristics, Enrichment Genesis and Cleaning Potentials of Trace Elements in Late Permian Coal from Liupanshui Coalfield, SW China; Guizhou Science and Technology Publishing House Co., Ltd.: Guiyang, China, 2015; pp. 94–178. [Google Scholar]
- Liao, B. Study of Petrology and Geochemistry of the Permian Alkaline Basalts in Guizhou Province. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Yang, R.; Liu, L.; Wei, H.-R.; Cui, Y.-C.; Cheng, W. Geochemical characteristics of Guizhou Permian coal measure strata and analysis of the control factors. J. Coal Sci. Eng. (China) 2011, 17, 55–68. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Liu, J.; Du, Y.; Chai, R. Provenance of the Late Permian Longtan Formation in SW Guizhou Province and Implication for Reconstruction of Regional Sedimentation and Paleogeography. Acta Geol. Sin. 2017, 91, 1374–1385, (In Chinese with English Abstract). [Google Scholar]
- Deng, X.-S.; Yang, J.; Cawood, P.A.; Wang, X.-C.; Du, Y.; Huang, Y.; Lu, S.-F.; He, B. Detrital record of late-stage silicic volcanism in the Emeishan large igneous province. Gondwana Res. 2020, 79, 197–208. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.H. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Li, B.; Zhuang, X.; Li, J.; Querol, X.; Font, O.; Moreno, N.; Palmerola, N.M. Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. Int. J. Coal Geol. 2016, 154, 1–15. [Google Scholar] [CrossRef]
- Göb, S.; Loges, A.; Nolde, N.; Bau, M.; Jacob, D.E.; Markl, G. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water–rock interaction. Appl. Geochem. 2013, 33, 127–152. [Google Scholar] [CrossRef]
- Eskenazy, G.M. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int. J. Coal Geol. 1987, 7, 301–314. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Xu, L.; Lin, Y.; Shen, W.; Qi, L.; Xie, L.; Ouyang, Z. Platinum-group elements of the Meishan Permian–Triassic boundary section: Evidence for flood basaltic volcanism. Chem. Geol. 2007, 246, 55–64. [Google Scholar] [CrossRef]
- Dai, S.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Zhao, Z. Rare Earth Element Geochemistry; Science Press: Beijing, China, 1989; pp. 1–541. (In Chinese) [Google Scholar]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Ji, H. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China. Geochimica 2002, 31, 119–128, (In Chinese with English Abstract). [Google Scholar]
- Voigt, M.; Mavromatis, V.; Oelkers, E.H. The experimental determination of REE partition coefficients in the water-calcite system. Chem. Geol. 2017, 462, 30–43. [Google Scholar] [CrossRef]
- Dai, S.; Chou, C.-L.; Yue, M.; Luo, K.; Ren, D. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, X.-T. Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 2012, 21, 193–201. [Google Scholar] [CrossRef]
Samples | Mad, % | Aad, % | St,d, % | Vad, % | Romax, % |
---|---|---|---|---|---|
Vitrain layers | 1.12 | 21.07 | 0.11 | 38.50 | 1.14 |
Other parts | 1.20 | 27.87 | 0.11 | 26.11 | 1.16 |
Samples | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IMM | 28.70 | 61.70 | 7.61 | 32.00 | 10.10 | 1.77 | 15.36 | 3.53 | 29.80 | 174.00 | 6.17 | 18.20 | 2.74 | 17.90 | 2.87 |
IMM-free Songhe Coal | 7.67 | 17.20 | 1.98 | 7.73 | 1.70 | 0.30 | 1.77 | 0.28 | 2.02 | 13.00 | 0.43 | 1.21 | 0.18 | 1.17 | 0.17 |
Liupanshui coal | 16.92 | 31.29 | 3.68 | 13.98 | 2.82 | 0.55 | 2.64 | 0.43 | 2.63 | 16.10 | 0.54 | 1.58 | 0.23 | 1.44 | 0.22 |
Emeishan basalt | 42.30 | 81.40 | 10.90 | 43.50 | 8.87 | 2.72 | 7.79 | 1.17 | 6.61 | 36.90 | 1.30 | 3.57 | 0.52 | 3.08 | 0.51 |
Samples | ∑REY | LREY | MREY | HREY | LaN/LuN | δCe | δEu | YN/HoN | |||||||
IMM | 412.44 | 140.11 | 224.45 | 47.88 | 0.11 | 0.95 | 0.64 | 1.03 | |||||||
IMM-free Songhe Coal | 56.81 | 36.28 | 17.37 | 3.16 | 0.48 | 1.00 | 0.80 | 1.10 | |||||||
Liupanshui coal | 95.06 | 68.69 | 22.35 | 4.01 | 0.82 | 0.90 | 0.95 | 0.98 | |||||||
Emeishan basalt | 321.76 | 244.40 | 66.24 | 10.58 | 0.94 | 0.94 | 1.55 | 0.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Yang, R.; Zhang, Q. Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation. Minerals 2020, 10, 543. https://doi.org/10.3390/min10060543
Cheng W, Yang R, Zhang Q. Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation. Minerals. 2020; 10(6):543. https://doi.org/10.3390/min10060543
Chicago/Turabian StyleCheng, Wei, Ruidong Yang, and Qin Zhang. 2020. "Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation" Minerals 10, no. 6: 543. https://doi.org/10.3390/min10060543
APA StyleCheng, W., Yang, R., & Zhang, Q. (2020). Origin of a Petrographic Coal Structure and Its Implication for Coalbed Methane Evaluation. Minerals, 10(6), 543. https://doi.org/10.3390/min10060543