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Abstract: The search for a reliable U.S. domestic source of rare earth elements (REE) is necessary
to support the demand of advanced energy applications (e.g., catalysts, electronics, magnets).
Sedimentary deposits may be sources for selectively recovering REE and critical metals—specifically
the interbedded seat rock, or underclay, that underlies or forms the floor of a coal seam. This material
is often a major component of coal waste fines and refuse and thus readily available. This study
examines several Appalachian Basin underclays associated with actively mined coal seams as potential
feedstocks for the REE. Multimodal microanalytical electron microscopy (SEM, FIB-SEM, EMPA)
synchrotron-based µXRF, and image processing techniques are coupled with detailed elemental and
mineral data to classify the 2D and 3D petrophysical properties of the materials. The REE contents
of Appalachian Basin underclays were measured from 235–399 ppm and predominantly observed
as discrete REE-bearing minerals such as monazite and xenotime on the order of 10–100 µm in
size. These REE-bearing minerals typically accounted for less than 1% of the scanned areas and
volumes under SEM and FIB-SEM analysis, with the exception of regions enriched in crandallite.
Synchrotron-based µXRF elemental maps further identified several REE deposition environments
in different underclays, including micro-scale (10–100 µm) light REEs co-localizing with Ca and
P, micro-scale heavy REEs with Fe, and large-scale light REEs (>200 µm) co-localizing with Sr, Ba,
Ca and P.

Keywords: rare earth elements; rare earth minerals; coal underclay

1. Introduction

With the increased use of the rare earth elements (REE) in modern technologies across numerous
sectors including energy, automobile, and defense, the criticality of securing reliable sources has moved
to the forefront of many nations’ economic outlooks [1,2]. The rare earth metals market was valued
at $9 billion in 2019 and is expected to surpass $20 billion by 2024 [3]. A large driver for that market
is the end-users of the REEs, namely electronics, magnets, lasers, etc., that are worth an estimated
$7 trillion in a global economy worth $75 trillion [4]. The 14 naturally occurring lanthanide elements
plus yttrium (Y) and scandium (Sc) that comprise the REE are relatively abundant in the Earth’s crust
but generally not found in concentrations economical to mine. Presently, conventional mining efforts
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have been focused primarily on the ‘hard mineral’ occurrences of the REE, in the form of minerals
such as bastnaesite, monazite, xenotime, and carbonatites (e.g., [1,5]). These mineral deposits often
must be first subjected to significant processing of the ore to include crushing and grinding, calcining,
roasting, flotation separation, and other beneficiation techniques [6]. Following beneficiation, the REE
are extracted using strong inorganic acids such as sulfuric acid, H2SO4. Such a process is often heavily
capital- and energy-intensive and poses additional handling considerations for waste management
and environmental protections.

The weathering of REE-rich host rocks can lead to the accumulation of REE in adjacent
aluminosilicate-rich clay deposits. During weathering, REE ions can potentially be re-mobilized
and redeposited onto active surfaces of clay-rich soil or sediments. These clay-rich deposits can contain
elevated concentrations of ion-adsorbed REE as well as REE bearing colloids (e.g., Fe, Mn-oxides) and
crystalline minerals (e.g., REE-phosphates). In the geologic past, the weathering of REE-rich igneous
rocks led to the formation of aluminosilicate-rich clays in soils and laterites. These clay-rich deposits
can contain up to 80–90% of their REEs in various adsorbed states (exchangeable, colloid, mineral).
China has the largest REE reserves of an estimated 44 million tons, and produced approximately 63% of
the world total mine production of REE in 2019 [7]. As recently as 2008, alternative deposits located in
southern China were found to contain a significant portion of ion-adsorbed REEs [8]. These weathered
crust deposits are readily amenable to ion exchange reactions using salts such as ammonium sulfate,
(NH4)2SO4, and exchanging REE ions from the surfaces of clay minerals [8]. While lower grades
(0.05 to 0.2 wt%) than conventional hard mineral deposits (>7 wt% REE as oxides), ion-adsorbed clay
deposits host a significant enrichment of heavier mass REE [5,9].

Easily recoverable ion-adsorbed REE were also noted for certain coal underclays and roof rock
material in the U.S. [10]. Rozelle et al. (2016) demonstrated that, in some cases, >90% of the REE could
be recovered from coal underclays and roof rock using (NH4)2SO4 as an ion exchange lixiviant [10].
Additional studies on REE occurrences in underclays, however, have identified significantly lower
amounts (e.g., <10%) of ion-adsorbed REE [11,12]. The amount of ion-adsorbed REE present is likely
to vary from sample to sample. However, the historical extent and large volume of reject waste
from U.S. coal production presents a large source of easily accessible material with the potential to
provide additional streams of domestic source of REEs and other critical elements. According to the
Appalachian Region Independent Power Producers Association, the Pennsylvania Department of
Environmental Protection states that there are 840 such coal refuse piles overlying nearly 10,000 acres
of abandoned mine lands and scattered throughout PA’s anthracite and bituminous coalfields [13].
The amount of coal refuse in Pennsylvania is estimated to be 2 billion cubic yards [13]. The amount
of REE present in these refuse piles and associated waste rock has been measured between 200 and
500 ppm (this work). Comparatively, world averages for coal and coal ash contain approximately
68 and 404 ppm of REE, respectively, with US averages at 62 and 517 ppm, respectively [4].

In this study, the composition of several underclays from the Appalachian Basin are analyzed
from a microscopic workflow to visually document and characterize the modes of occurrence of REEs.
Distributed occurrences of REE-bearing minerals (~100–200 µm), such as monazite and xenotime
embedded in the clay matrix, are interpreted as representing the detrital loading of REE materials from
the time of deposition. In addition, occurrences of REE-bearing minerals (presumedly rhabdophane
and churchite) in altered material of pore-filling spaces is also documented. This textural relationship is
interpreted to signify the formation of in situ authigenic minerals during diagenesis or later alterations
or weathering and provides evidence for the mobility of the REEs, including potentially onto the
abundant surfaces of the clay matrix. Such interpretations and observations are vital to designing an
extraction process targeting REE phases and maximizing extraction efficiencies.

1.1. Appalachian Basin

The Appalachian Basin formed ~480 million years ago (Ma) at a time when the North American
continent straddled the equator on a passive plate margin and the inland sea harbored warm, tropical
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waters. Initial basin formation at the onset of the Taconic Orogeny during the Middle Ordovician
Period (458–470 Ma) was triggered when the Iapetus oceanic plate collided with and subducted under
the North American plate [14]. Clastic deposition during this period was derived from a sediment
supply from the eastern highlands [15]. Paleosols deposited during this time would serve as the
underlying strata (i.e., underclays) to large peat mires deposited during the Pennsylvanian Period
(360–300 Ma) that would later form the major coal beds of the Appalachian Basin in the present day.

1.2. Study Units

Study units were selected from four widely dispersed areas within the Appalachian basin focusing
on target coals with known elevated REE values based on personal communication, previous work,
and legacy coal chemistry data stored at the West Virginia Geological and Economic Survey (WVGES).
Final selection of West Virginia samples was limited to cores available at the WVGES core facility.
Scope was further limited to zones from areas suspected to have high REE concentrations and focused
on paleo-laterite deposits, seat earths, and underclays where, based on modern production practices,
the REE are known to accumulate. Samples from Pennsylvania obtained from the Pittsburgh and
Brookville coal seams, were selected to include a regional survey of underclays in the Appalachian
Basin (Table 1).

Table 1. Sample designations, associated coal seams, and location.

Sample Designation Associated Coal Seam Location

UC-01 Lower Freeport Ritchie Co., WV
UC-02 Middle Kittanning Ritchie Co., WV
UC-03 Pittsburgh Ritchie Co., WV
UC-04 5 Block Coal Kanawha Co., WV
UC-05 5 Block Coal Kanawha Co., WV
UC-06 Lower Freeport Barbour Co., WV
UC-07 Pittsburgh Clearfield/Centre Co., PA
UC-08 Brookville Clearfield/Centre Co., PA

Six coals horizons were selected to be sampled: the Pittsburgh, Lower Freeport, Middle Kittanning,
Brooksville, No 5 Block coal and the lower split of the No. 5 Block. A total of 8 samples were collected
from West Virginia and Pennsylvania. Six samples were collected from 3 cores stored at the West
Virginia Geological and Economic Survey. Three samples were from south-western Ritchie County
in western West Virginia targeting the Allegheny Formation Lower Freeport, Middle Kittanning,
and Monongahela Formation Pittsburgh coal paleosols. Coal has never been mined in this portion of
the state due in part to depth, accessibility issues and market considerations.

Two samples were from north central Kanawha County in southern West Virginia in the Allegheny
Formation No. 5 Block and No. 5 Block Lower split underclays, while the sixth sample was located
in Barbour County in north central West Virginia in seat earth below the Allegheny Lower Freeport
horizon (Figure 1). Both areas are highly developed coal fields. The final two samples were collected
in Pennsylvania from the Pittsburgh and Brookville coal seams.
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Figure 1. Map of the Appalachian coal basin and the location of samples designated in Table 1.

2. Methods

2.1. Bulk Geochemical Composition

Samples from the 5 Block coal (UC-04, UC-05), Pittsburgh (in Pennsylvania, UC-07), and Brookville
(UC-08) underclays were crushed and ground to pass through a 100-mesh sieve and subjected to a
lithium metaborate fusion method. Major and minor elements, including the REEs, were analyzed
via inductively coupled plasma—optical emission spectroscopy (ICP-OES) and inductively coupled
plasma—mass spectroscopy (ICP-MS). Bulk REE values for the Lower Freeport (UC-01, UC-06),
Middle Kittanning (UC-02) and Pittsburgh (in West Virginia, UC-03) underclays were reported in
Montross et al., in review [16]. Accurate determination of Pr and Tb were impinged by the presence
of Xe in the Ar plasma gas, causing polyatomic interferences on the masses of Pr and Tb. These two
elements were omitted from the total REE content reported, with a subsequent added uncertainty of
±7% for the Pennsylvania Pittsburgh (UC-07) and Brookville (UC-08) samples and an added uncertainty
of ±0.4% for UC-01 through UC-06.

Carbon and sulfur contents were analyzed on ground and powdered samples using a LECO
CS744 Carbon and Sulfur Analyzer. Inorganic carbon was removed after treatment with acid vapors;
~0.5 g of powder were weighed into glass scintillation vials and placed into a desiccator with 12 M
hydrochloric acid (HCl). The powders reacted with the vapor at room temperature for 72 h.
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2.2. XRD

Bulk and oriented clay mineralogy of the 5 Block coal (UC-04, UC-05), Pittsburgh (in Pennsylvania,
UC-07), and Brookville (UC-08) underclays were determined through X-ray diffraction (XRD) of
both randomly oriented and oriented mounts. Each sample was ground and powdered using a
McCrone micronizing mill to pass through a 400 mesh (38 µm) sieve. Oriented mounts for clay
mineral identification were prepared through density separations of <2 µm size fraction following the
procedures outlined in Poppe et al., 2001 [17]. Semi-quantitative bulk mineralogies of the samples
were obtained on a Rigaku III Ultima diffractometer equipped with a Cu anode. The samples were
scanned at 40 kV, 44 mA utilizing Cu radiation over a range of 4.0 to 70 degrees (2-theta) in step sizes
of 0.02 degrees and scan times of 2.4 s/step. After confirming the diffraction patterns of all 8 received
samples were identical to that of the supplied reference spectra, an additional sample was prepared
with 10% by weight of corundum (α-Al2O3) for quantitative XRD analysis. Phase IDs, peak alignments,
and mineral identifications were made using the RockJock computer program.

2.3. Microscopy and Microanalysis

All underclay samples were mounted in epoxy circles of ~1 inch in diameter and polished
down to 1 µm using a diamond suspension. The mounted polished samples were then coated with
~10 nm of palladium using an evaporative coater. The samples were imaged using an FEI Inspect-F
field emission scanning electron microscope (FE-SEM), equipped with an Oxford Instruments X-ray
Microanalysis system with an Energy Dispersive X-ray spectrometer (EDS). The samples were scanned
in a serpentine pattern across the entirety of the mounted sample. FE-SEM operating conditions were
an accelerating voltage of 20 kV at a spot size of 5 µm. Wavelength dispersive spectroscopy (WDS)
was performed using a JEOL 8530F Plus Hyper Probe electron probe microanalysis system (EPMA).
Certified rare earth elements standards for phosphates (REEP25-15+FC, Astimex Standards Ltd.) and
oxides (Standard block #489, Geller Microanalytical Laboratory) were utilized for Standard-based
quantitative spectroscopy.

Mounted and polished samples were also sent to the CAMCOR imaging facilities at the University
of Oregon for analysis by focused ion beam scanning electron microscopy (FIB-SEM) to reconstruct
volumetric apportionments of different mineral and pore spaces. FIB-SEM analysis was performed
using a FEI Helios 600i dual beam microscope over a ~20 µm × 20 µm area and slice thickness of
~15 nm (pixel size: 9.97 nm, voxel size: 1.49 µm3). A total of 15 sub-volumes were reconstructed across
the 8 Central Appalachian Basin underclays.

Advanced image processing of images collected from FE-SEM and FIB-SEM analysis was conducted
using the PerGeos 1.7.0 software from ThermoFisher. Mineral phases were segmented and assigned
according to grayscale threshold values and correlated with EDS spot analyses and elemental maps
collected on the FE-SEM. Both 2D montage images obtained on the FE-SEM and 3D image stacks from
the FIB-SEM were segmented and processed. The 2D montage images were collected and collated
using Oxford Instruments AZtec software. Images at 1000×magnification were stitched together over
areal extents of ~30 µm2.

Selected underclay samples were prepared into doubly-polished thin-sections (30-µm thick,
by Spectrum Petrographics, Inc.) for micro X-ray fluorescence (µ-XRF) elemental mapping at the
Stanford Synchrotron Radiation Lightsource (SSRL). The thin sections were first mapped at beam line
(BL) BL 10-2 with 50 µm diameter beam at an excitation energy of 18,200 eV and 50 ms dwell time
for large-scale REE deposition environments. Selected regions of interests found in BL10-2 were then
mapped at BL 2-3 with 5 µm diameter beam at excitation energy of 18,200 eV and 100 ms dwell time
for micro-scale REE deposition environments. Both BL stations were equipped with Si(1,1,1) crystal
and single-element Si Vortex detector, and operated in an air-atmosphere. The µ-XRF maps were
processed using PyMCA fitting [18] and re-imaged utilizing Sam’s Microanalysis Toolkit (SMAK) [19]
for elemental maps (e.g., Al, Si, P, S, K, Ca, Ti, Mn, Fe K lines and the Ba, La, Ce, Nd, Sm, Gd, and Lu
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L lines at excitation energy of 9500 eV, and Sr, Y and Zr K lines at excitation energy of 18,200 eV).
Additional details on the analysis methodology can be found in Stuckman et al. (2018) [20].

3. Results

3.1. Carbon and Sulfur Geochemistry

The total carbon, organic carbon, inorganic carbon (by subtraction), and total sulfur contents are
reported in Table 2.

Table 2. Carbon and Sulfur Geochemistry of the Appalachian Basin underclays.

Sample Designation Associated Coal Seam
Total C Organic C Inorganic C Total S

wt% wt% wt% wt%

UC-01 Lower Freeport 0.68 0.54 0.14 1.67
UC-02 Middle Kittanning 2.28 1.87 0.41 0.13
UC-03 Pittsburgh 0.39 0.33 0.06 0.01
UC-04 5 Block Coal 5.56 5.41 0.16 0.05
UC-05 5 Block Coal 0.74 0.65 0.09 0.23
UC-06 Lower Freeport 1.31 0.12 1.19 0.20
UC-07 Pittsburgh 1.25 1.01 0.24 0.71
UC-08 Brookville 0.61 0.43 0.18 0.03

3.2. Bulk REE Geochemistry

The cumulative sum of the 14 naturally occurring lanthanide elements plus yttrium, denoted as
REE, ranged from 235 ppm to 399 ppm in the investigated Appalachian Basin underclays (Table 3).
Following conventions defined in Seredin and Dai (2012) [21], the light REE (LREE: La, Ce, Pr, Nd,
Sm), middle REE (MREE: Eu, Gd, Tb, Dy, Y), and heavy REE (HREE: Ho, Er, Tm, Yb, Lu) are
also reported. These values of REE are slightly elevated relative to typical concentrations of REEs
(~169 ppm) found in the continental crust [22]. Full values for individual elements are reported in the
Supplementary Information (Table S1). These underclay REE values may be compared to averages
of REE concentrations in world coals of 68.5 ppm, and to the average REE concentration of US coals
of 62.1 ppm [21]. Studies on the mineral associations of REE in coal have generally noted the major
association of the REE with the inorganic (i.e., ash) portion of the coal measure [23].

Table 3. Summary of REE content in Appalachian Basin underclays.

Sample Designation Associated Coal Seam
REE ** LREE ** MREE ** HREE

ppm ppm ppm ppm

UC-01 * Lower Freeport 304 226 66 12
UC-02 * Middle Kittanning 352 270 71 11
UC-03 * Pittsburgh 262 182 70 10
UC-04 5 Block Coal 235 179 47 9
UC-05 5 Block Coal 296 238 48 9

UC-06 * Lower Freeport 277 221 48 8
UC-07 Pittsburgh 261 193 58 10
UC-08 Brookville 399 308 79 13

* Values for UC-01, UC-02, UC-03, and UC-06 from [14]. ** Omitting Pr and Tb, see Methods.

3.3. Semi-Quantitative XRD Results

An XRD analysis of powdered, randomly oriented Appalachian Basin underclays revealed the
dominant crystalline components to be quartz, calcite, ilmenite, illite, smectite, and kaolinite (Table 4).
Clay minerals comprised greater than 55% of the sample material.
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Table 4. Semi-quantitative XRD results: Major (Ma) (>50%)-Intermediate (In) (25–50%) Minor
(Mn) (5–25%)-Trace (Tr) (<5%). Qtz = quartz, Kspar = potassium (K) feldspar, Plag = plagioclase
(Ca/Na) feldspar.

Sample
ID

Associated Coal
Seam

CLAYS NON-CLAYS

Halloysite Kaolinite Smectite Illite Qtz Kspar Plag Calcite Ilmenite

UC-01 * Lower Freeport Mn In Mn Mn Tr Tr Mn Mn
UC-02 * Middle Kittanning Mn Mn Mn Mn Mn Tr Tr In Tr
UC-03 * Pittsburgh In Mn Mn Tr Tr Mn Mn
UC-04 5 Block Coal Mn Mn Mn Mn Mn Tr Tr Mn Tr
UC-05 5 Block Coal Mn Mn In Mn Tr Tr Tr Tr Tr

UC-06 * Lower Freeport Mn Mn Mn Mn Tr Tr In Tr
UC-07 Pittsburgh Mn Mn Mn Ma Tr Tr
UC-08 Brookville Mn Mn Mn Ma Tr Tr

* XRD data from [14].

3.4. REE Mineral Phases in Appalachian Basin Underclays

In the 5 Block coal (UC-04, UC-05), Pittsburgh (in Pennsylvania, UC-07), and Brookville
(UC-08) underclays monazite ((Ce,La,Nd)PO4), xenotime (YPO4), and crandallite
(REE-CaAl3(PO4)(PO3OH)(OH)6) were identified through FE-SEM/-EDS analyses as the primary
discrete mineral occurrences of the REEs. These general phases agree with observations from the
Lower Freeport (UC-01, UC-06), Middle Kittanning (UC-02) and Pittsburgh (in West Virginia, UC-03)
underclays as reported in Montross et al. (in review) [16] and suggest a common mode of occurrence
for the REEs in this limited regional extent of underclay samples in the Appalachian Basin. No REE
were identified in zircon grains. In some occurrences, the monazite and xenotime grains are observed
as 10–100 µm grains embedded in a matrix of clay, with the clay morphologies wrapping around the
REE phosphate mineral (Figure 2). Crandallite, an altered aluminum phosphate mineral, was also
noted (Figure 2C).
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Figure 2. REE-bearing minerals observed and identified in the Central Appalachian Basin underclays
including monazite (A), xenotime (B), and crandallite (C).

In other cases, REEs were observed to be associated with mineral grains encapsulated in the
pore spaces of the underclay material. These occurrences are inferred to have formed in-situ during
diagenetic or other alteration processes such as fluid infiltration. Subsequently the mineral forms
are presumed to be the hydrated forms of monazite and xenotime (rhabdophane (Ce,La)PO4*H2O),
churchite (YPO4*2H2O), respectively). Delineation between the hydrated and non-hydrated forms
of the REE-phases is difficult through SEM-EDS analyses alone and is further deduced using EPMA
(Section 3.7).

Additional evidence for alteration in these underclay samples included observations of
fracture-filling clays (Figure 3). These fracture-filling clays are distinctly different from the surrounding
clay matrix, having well-defined laminations oriented orthogonally to the plane of view and often
included crystallites of high-density minerals such as pyrite.
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Figure 3. Fracture-filling clay with pyrite crystallites (bounded approximately by the orange markers)
in Central Appalachian Basin underclay.

3.5. 2D Areal Extent of Mineral Phases in Appalachian Basin Underclays

Areal estimations for the pore space and mineral phases in the Appalachian Basin underclays are
reported in Table 5. Phase segmentations based on grayscale values using the PerGeos image processing
software were classified into three groups: (1) pore spaces and organic matter; (2) matrix minerals
to include clays, quartz, and feldspars; (3) high-density minerals to include Fe-oxides, pyrite, zircon,
and any REE-bearing phases. As FE-SEM operating conditions were optimized towards imaging high
atomic number phases, delineation between pore spaces and carbonaceous organic matter (i.e., coal)
in grayscale values was difficult to achieve, subsequently these two phases were combined into a
single classification during segmentation. Similarly, for the large-scale 2D mapping of the underclay
samples, the REE-bearing minerals were grouped with other high-density minerals to simplify the
distribution estimates due to the extended acquisition time required for EDS measurements over large
areas. Areal extents of high-density minerals, to include REE-bearing minerals, was typically low for
these Appalachian Basin underclays, usually less than 5% of the scanned area, except for the Lower
Freeport (UC-06) sample where large occurrences of Fe-oxide and Ca-oxide account for nearly 17% of
the scanned surface area (Table 4). Where identified and confirmed with EDS analyses, the average
grain size of the REE-bearing minerals was typically <100 µm in characteristic length. An example
compilation of a 2D montage and phase segmentation is shown in Figure 4.

Table 5. Areal extents of phase classifications.

Sample
Designation

Associated Coal
Seam

Total Area Scanned Pores/OM Matrix High-Density Minerals

mm2 Areal %

UC-01 Lower Freeport 25 15 84 1
UC-02 Middle Kittanning 9.2 3 96 1
UC-03 Pittsburgh 6.7 19 81 0.2
UC-04 5 Block Coal 3.8 10 89 1
UC-05 5 Block Coal 2.4 3 97 0.2
UC-06 Lower Freeport 44 2 81 17
UC-07 Pittsburgh 98 17 79 4
UC-08 Brookville 8.9 11 86 3
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Figure 4. 2D montage over a 2 mm × 2 mm area in UC-03. False color image of segmented
phases from processing in PerGeos: light blue—pore spaces and organic matter; dark blue—matrix
material (e.g., clay and quartz); red—high-density minerals (e.g., pyrite, zircon); green—REE-bearing
minerals. Insets show BSE (top) and false color (bottom) images of a magnified region containing a
monazite crystal.

3.6. 3D Volumetric Reconstructions

As with the segmentation of the 2D areal scans of the Appalachian Basin underclays, segmentation
of the 3D reconstructed volumes utilized the same three classifications (Table 6). Porosity/organic
matter content was typically below 3% in the sub-volumes analyzed but ranged from 0.2 to 5.7%.
Matrix phases (e.g., clay) comprised the majority of the sub-volumes scanned, accounting for >90%
of the total volume. In cases where REE-bearing minerals were identified through EDS analyses,
REE phases accounted for less than 1% of the scanned volume. The exception was the Middle
Kittanning underclay (UC-02) where 20% of the scanned volume was attributed to the REE-bearing
mineral crandallite. The volumes in the Middle Kittanning underclay (~20 µm by 20 µm areas)
contained abundance of crandallite. This discrepancy is attributed to non-representative sampling and
will be addressed briefly in the next section. An example reconstruction and segmentation of a 3D
volume is shown in Figure 5.

Table 6. Data generated from 3D volumetric reconstruction phase segmentation from individual 2D
backscattered image slices. The averaged volumetric % come from multiple sub-volumes.

Sample
Designation

Associated Coal
Seam

Total Volume Pores/OM Matrix High-Density Minerals

µm3 Volume %

UC-01 Lower Freeport 13,429 1 98 0.6
UC-02 Middle Kittanning 13,537 20 60 20
UC-03 Pittsburgh 4622 6 92.0 2
UC-04 5 Block Coal N/R
UC-05 5 Block Coal 8510 0.2 99 0.7
UC-06 Lower Freeport 2189 0.7 97 2
UC-07 Pittsburgh 12,158 3 96 2
UC-08 Brookville 4305 0.3 99 0.2
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Figure 5. 2D and 3D backscattered montaged image compared to the segmented reconstruction of the
Pittsburgh underclay (UC-07). Pores (light blue), matrix (dark blue), and high density and REE-bearing
phases (red).

3.7. Electron Microprobe Results

Electron microprobe analysis (EPMA/WDS) was carried out on targeted regions identified as
containing REE phases in the 2D analyses described above. WDS was utilized to identify the particular
constituents of REE enrichment and the type of environment (e.g., specific mineral forms) they exist in.
This data then can be used to help elucidate the most promising geologic formations for REE recovery.
In the samples analyzed, the REE phases are generally observed as 5–50 µm size grains of apatite,
monazite, and rhabdophane throughout the matrix. In the Pittsburgh coal seam underclay (UC-07),
EPMA/WDS analyses also detected REE (Dy, Er, Tb) present in chalcopyrite (Figure 6).
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10 microns. Analysis conditions 20 keV, 45 nA, map dwell time = 250 ms.

3.8. Synchrotron Results

Synchrotron-based µXRF analysis conducted on the Lower Freeport (UC-01) and Middle Kittaning
(UC-02) underclays identified unique large-scale (>200 µm) zones of light REE (e.g., Ce, La, Nd and
Sm) co-localized with Sr and Ba (Figure 7). Further analysis with finer resolution (Figure 7C) detailed
light REE co-localized with Ca, P, and Ba, whereas heavy REE (e.g., Sm, Yb, Gd and Lu) co-localized
with Fe and occasionally S. This fractionation pattern of the REE was similar in both underclay samples
examined. Additionally, µXRF on the Lower Freeport (UC-01) underclay identified Ce as occurring
in the Ce(+4) oxidation state rather than the Ce(+3) observed previously in coal related material [20]
(Figure 8). Additional analyses are ongoing to confirm initial results.

In general, REE distributions found in µXRF analysis agreed with the microanalysis results
indicating that the REE dominantly existed as in REE-bearing minerals 10–100 µm in size and
imbedded in aluminosilicate clay matrix.
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Figure 7. (A) Photo of thin section of UC-01, Lower Freeport, highlighting Area B for µXRF mapping at
BL10-2; (B) Tri-colored µXRF maps (Ce in red, Fe in green and Sr in blue) at BL10-2 with 50 µm step
size, 50 ms dwell time at excitation energy of 18,100 eV. The scale bar is 2000 µm. Ce is co-localizing
with Sr and Ba, demonstrated by the purple color on the tri-colored map. Highlighted box is mapping
area C at BL2-3; (C) µXRF elemental maps at BL2-3 with 5 µm step size, 50 ms dwell time at excitation
energy of 9500 eV. The scale bar is 100 µm. The color scale on each map from blue to yellow to red
represents XRF signal intensity from low to high, as displayed in all other µXRF maps.
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Figure 8. Synchrotron µXRF maps of selected REEs and major elements in UC-02 at BL 2-3 3 with
5 µm step size, 50 ms dwell time at excitation energy at 9500 eV. The scale bar is 100 µm. Spots in
empty circles are Ce hotspots 78_As1 as Ce(+3) in Ca-rich aluminosilicates and 78_As2 as Ce(+4) oxide,
independent of glass phase, with µXANES collected. The color scale on each map from blue to yellow
to red represents XRF signal intensity from low to high, as displayed in all other µXRF maps. Light REE
spots (e.g., Ce, La, Nd and Sm) in empty circle are co-localizing with Ca, P and Ba, whereas heavy REE
spots (e.g., Gd, Lu and Tb) in empty square are co-localizing with Fe and S.
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4. Discussion

4.1. Modes of Occurrence for the REE

The textural relationships described in Figure 2 of REE-bearing minerals embedded in a clay
matrix suggest a clastic or detrital origin of these mineral grains deposited prior to the deposition of the
coal-forming peat layers and subsequently preserved through coalification or lithification. From these
detrital minerals, we infer a baseline signal of REEs relevant to the clastic input to the Appalachian
Basin during the time of deposition and absent alteration through diagenetic or later hydrologic
processes. In other instances, alteration products such as crandallite and fracture-filling clays (Figure 3)
indicate an environment wherein the mobilization and redistribution of REEs is required, though the
nature of the remobilization cannot be surmised through SEM imagind and textural relationships alone.

The additional evidence from µXRF analyses showing the existence of Ce in the +4 oxidation state
supports the potential remobilization for REEs. Ce can be oxidized, often through microbial activity,
to the +4 oxidation state, whereby the Ce(+4) species is relatively more particle reactive and often
displays positive Ce anomalies in the solid state [24,25]. The presence of Ce(+4) in the underclay could
signify an oxic and/or microbially active depositional environment. The co-localization of heavy REEs
with Fe could also potentially point towards REEs sorbing to the surface of clay matrices or onto the crystal
lattices of secondary minerals (e.g., phyllosilicates, Al-Fe-hydroxides) as described by Yu et al. (2017) [26].

In such an environment promoting the mobilization and redistribution of the REEs, dissolved
REEs present in the fluid phase may have also sorbed to the surfaces of the clay minerals. Clays provide
a ready surface for ion exchange and have been shown to be readily amenable to the uptake of metal
species [27,28]. Whereas the light- and middle- REEs are more prone to being incorporated into
authigenic minerals, the heavy-REEs are more likely to be stabilized as dissolved REE-complexes in
solution and thus accumulate in the fluid phase [25,29]. The mechanism driving this difference in
REE reactivities across the series is the lanthanide contraction of ionic radii with increasing atomic
number [24]. This fractionation would leave a heavy REE-laden fluid phase that is then susceptible to
ion-adsorption onto the surfaces of clay minerals. Such occurrences of ion-adsorbed REEs are observed
in the real world in the weathered crusts of southern China [8]. While FE-SEM/EDS techniques have
limited abilities to discern ion-adsorbed elements in trace concentrations, the circumstantial lines
of evidence relating to in-situ authigenically-formed REE-minerals and the clay lithology of these
Appalachian Basin underclays support the inference that at least a fraction of REEs that may be
ion-adsorbed and thus easily-accessible.

More work is necessary to confirm and precisely characterize the potential for ion-adsorbed REEs
but the significance of such an easily accessible fraction pertains to the ability to extract and process
the REEs economically. Pilot studies, in fact, have demonstrated the ability to recover ion-adsorbed
REEs from underclays associated with coal production in the U.S. using ion-exchange methods [10].
The lack of a significant fraction of ion-adsorbed REE in underclays, as shown in these Appalachian
Basin underclays, would signal a need to re-evaluate potential extractions of REE from underclay
resources. Any potential extraction schemes would likely need to target the hard mineral phases of
REE as noted and described here.

4.2. Limitations and Utility to 2D and 3D Reconstructions

One consistent and valid critique to extending microanalytical techniques across large areas and
volumes is the heterogeneity displayed in most geological samples, particularly exacerbated at the
micro-scale. The scanned areas and volumes reported here are not necessarily representative of the
underclay sample as a whole, nor are they purported to be. However, such exercises in estimating
areal and volumetric extents are useful in illustrating the density of specific phases (i.e., REE-bearing
minerals) as well as the general grain size of the identified phases. In the case of the Appalachian
Basin underclays, the identified occurrences of monazite (rhabdophane) and xenotime (churchite)
were generally observed at grain sizes of 10–100 µm and occupying less than 1% of the scanned areas



Minerals 2020, 10, 546 13 of 15

and volumes. For the Middle Kittanning (UC-02) underclay, crandallite was similarly observed to be
between 5–50 µm. Extrapolation of this information is useful from an extractive metallurgy standpoint:
knowledge of the grain size of target minerals is useful to guiding grind sizes needed; knowledge of
the matrix composition and approximate porosity is useful to evaluating hydrodynamic properties.

5. Conclusions

The Central Appalachian Basin underclays in this study had measured REE content ranging
from 235–399 ppm. The clay mineral composition of these underclays were measured via XRD as
comprising >55% of the bulk mineralogy and consisting of illite, halloysite, and kaolinite. REE phases
were dominantly observed as discrete REE-bearing minerals in the 10–100 µm size range imbedded
in the aluminosilicate clay matrix. FE-SEM analyses showed REE detected within carbonate and
aluminum phosphate alteration minerals. Light REE were shown to be associated with Sr, Ba, Ca, and P,
whereas heavy REE were associated with Fe and occasionally S from µXRF analyses. Though these
microanalytical techniques are limited in scope, the relationships observed can inform interpretations
for REE occurrences in the Central Appalachian Basin coal measures. While the majority of the REE
content is attributable to original detrital signals in REE-bearing minerals (10–100 µm), evidence for
weathering products and diagenetic alteration such as crandallite indicate a portion of REE that might
also exist in association with authigenic minerals or adsorbed to the surface of clay.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/6/546/s1,
Table S1: Bulk REE content of Appalachian Basin underclays in study.

Author Contributions: Formal analysis, J.Y., S.M., M.S., C.L, C.V.; Investigation, J.Y., S.M., M.S., C.L., C.V.; Project
administration, C.V.; Resources, J.B.; Writing, J.Y., S.M., J.B., M.S., C.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgments: This technical effort was performed in support of the National Energy Technology Laboratory’s
ongoing research for the Department of Energy Rare Earth Elements Program. We thank Mary Anne Alvin (DOE
Rare Earths Technology Manager), Thomas Tarka (REE FWP Technical Portfolio Lead), and Mark McKoy for
their support. We would also like to thank Amy Plechacek, Henri Sanville, Morgan Olsen (NETL-Albany) for
assistance with imaging. This research was supported in part by a postdoctoral appointment to JY to the National
Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and
administered by the Oak Ridge Institute for Science and Education.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. U.S. Department of Energy Critical Materials
Strategy; USDOE: Washington, DC, USA, 2010. [CrossRef]

2. Long, K.; Van Gosen, B.; Foley, N.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States:
A Summary of Domestic Deposits and a Global Perspective. In Non-Renewable Resource Issues; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 131–155. [CrossRef]

3. Pulidindi, K.; Pandey, H. Rare Earth Metals Market Size By Metal (Cerium, Dysprosium,
Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium,
Promethium, Samarium, Scandium, Terbium, Thulium, Ytterbium, Yttrium), By Applications (Magnets,
Colorants, Alloys, Optical Instruments, Catalysts), Industry Analysis Report, Regional Outlook, Growth
Potential, Price Trends, Competitive Market Share & Forecast, 2017–2024. Global Market Insights.
2017. Available online: https://www.gminsights.com/industry-analysis/rare-earth-metals-market?utm_source=

globenewswire.com&utm_medium=referral&utm_campaign=Paid_Globnewswire (accessed on 11 March 2020).

http://www.mdpi.com/2075-163X/10/6/546/s1
http://dx.doi.org/10.2172/1000846
http://dx.doi.org/10.1007/978-90-481-8679-2_7
https://www.gminsights.com/industry-analysis/rare-earth-metals-market?utm_source=globenewswire.com&utm_medium=referral&utm_campaign=Paid_Globnewswire
https://www.gminsights.com/industry-analysis/rare-earth-metals-market?utm_source=globenewswire.com&utm_medium=referral&utm_campaign=Paid_Globnewswire


Minerals 2020, 10, 546 14 of 15

4. Ganguli, R.; Cook, D.R. Rare Earths: A Review of the Landscape. MRS Energy Sustain. 2018, 5. [CrossRef]
5. Moldoveanu, G.; Papangelakis, V. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption

mechanism. Hydrometallurgy 2012, 117–118, 71–78. [CrossRef]
6. Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals.

Miner. Eng. 2013, 41, 91–114. [CrossRef]
7. U.S. Geological Survey (USGS). Rare Earths Mineral Commodity Summaries/Minerals Yearbook, Various

Issues. 2020. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/ (accessed on
11 March 2020).

8. Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic
rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [CrossRef]

9. Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths, 2nd ed.; CRC Press: Boca Raton, FL,
USA, 2015; 839p, ISBN 9781466576346.

10. Rozelle, P.; Khadikar, A.; Pulati, N.; Soundarrajan, N.; Klima, M.; Mosser, M.; Miller, C.; Pisupati, S. A Study
on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange. Metall. Mater. Trans. E
2016, 3, 6–17. [CrossRef]

11. Yang, X.; Werner, J.; Honaker, R. Leaching of rare earth elements from an Illinois basin coal source.
J. Rare Earths 2019, 37, 312–321. [CrossRef]

12. Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal.
Int. J. Coal Geol. 2018, 185, 138–160. [CrossRef]

13. Appalachian Region Independent Power Producers Association (ARIPPA). Coal Refuse Whitepaper. 2018.
Available online: https://arippa.org/wp-content/uploads/2018/12/ARIPPA-Coal-Refuse-Whitepaper-with-
Photos-10_05_15.pdf (accessed on 2 April 2019).

14. Ettensohn, F.R. The Catskill delta complex and the Acadian orogeny: A model. In The Catskill delta: Geological
Society of America Special Paper 201; GeoScienceWorld: McLean, VA, USA, 1985; Volume 201, pp. 39–50.
[CrossRef]

15. Cecil, C.B.; Stanton, R.W.; Neuzil, S.G.; Dulong, F.T.; Ruppert, L.F.; Pierce, B.S. Paleoclimate controls on late
Paleozoic sedimentation and peat formation in the Central Appalachian Basin (U.S.A.). Int. J. Coal Geol. 1985,
5, 195–230. [CrossRef]

16. Montross, S.N.; Yang., J.; Britton, J.; McKoy, M.; Verba, C.A. Leaching of ionically bound rare earth elements
from Central Appalachian coal seam underclays. Manuscript in preparation.

17. Poppe, L.J.; Paskevich, V.F.; Hathway, J.C.; Blackwood, D.S. A Laboratory Manual for X-Ray Powder Diffraction;
USGS Open-File Report 2001-41; USGS: Reston, VA, USA, 2001. [CrossRef]

18. Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive
X-ray fluorescence spectra. Spectrochim. Acta Part B Atomic Spectrosc. 2007, 62, 63–68. [CrossRef]

19. Webb, S. SMAK: Sam’s MicroAnalysis Toolkit; Stanford Synchrotron Radiation Lightsource: Stanford, CA,
USA, 2016.

20. Stuckman, M.Y.; Lopano, C.L.; Granite, E.J. Distribution and speciation of rare earth elements in coal
combustion by-products via synchrotron microscopy and spectroscopy. Int. J. Coal Geol. 2018, 195, 125–138.
[CrossRef]

21. Seredin, V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol.
2012, 94, 67–93. [CrossRef]

22. Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [CrossRef]
23. Lin, R.; Bank, T.; Roth, E.; Granite, E.; Soong, Y. Organic and inorganic associations of rare earth elements in

central Appalachian coal. Int. J. Coal Geol. 2017, 179, 295–301. [CrossRef]
24. Byrne, R.; Sholkovitz, E. Chapter 158 Marine chemistry and geochemistry of the lanthanides. In Handbook

on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier: Amsterdam,
The Netherlands, 1996; Volume 23, pp. 497–593.

25. Sholkovitz, E. Rare-earth elements in marine sediments and geochemical standards. Chem. Geol. 1990, 88,
333–347. [CrossRef]

26. Yu, C.; Drake, H.; Mathurin, F.A.; Åström, M.E. Cerium sequestration and accumulation in fractured
crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals. Geochim. Cosmochim. Acta 2017, 199,
370–389. [CrossRef]

http://dx.doi.org/10.1557/mre.2018.7
http://dx.doi.org/10.1016/j.hydromet.2012.02.007
http://dx.doi.org/10.1016/j.mineng.2012.10.017
http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/
http://dx.doi.org/10.1016/j.oregeorev.2007.03.005
http://dx.doi.org/10.1007/s40553-015-0064-7
http://dx.doi.org/10.1016/j.jre.2018.07.003
http://dx.doi.org/10.1016/j.coal.2017.09.005
https://arippa.org/wp-content/uploads/2018/12/ARIPPA-Coal-Refuse-Whitepaper-with-Photos-10_05_15.pdf
https://arippa.org/wp-content/uploads/2018/12/ARIPPA-Coal-Refuse-Whitepaper-with-Photos-10_05_15.pdf
http://dx.doi.org/10.1130/SPE201-p39
http://dx.doi.org/10.1016/0166-5162(85)90014-X
http://dx.doi.org/10.3133/ofr0141
http://dx.doi.org/10.1016/j.sab.2006.12.002
http://dx.doi.org/10.1016/j.coal.2018.06.001
http://dx.doi.org/10.1016/j.coal.2011.11.001
http://dx.doi.org/10.1016/B0-08-043751-6/03016-4
http://dx.doi.org/10.1016/j.coal.2017.07.002
http://dx.doi.org/10.1016/0009-2541(90)90097-Q
http://dx.doi.org/10.1016/j.gca.2016.11.044


Minerals 2020, 10, 546 15 of 15

27. Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite.
Chem. Geol. 2002, 182, 57–68. [CrossRef]

28. Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H. Europium retention onto
clay minerals from 25 to 150 C: Experimental measurements, spectroscopic features and sorption modelling.
Geochim. Cosmochim. Acta 2006, 70, 4563–4578. [CrossRef]

29. Johannesson, K.; Lyons, W.; Yelken, M.; Gaudette, H.; Stetzenbach, K. Geochemistry of the rare-earth elements
in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and rare-earth element
enrichments. Chem. Geo. 1996, 133, 125–144. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0009-2541(01)00283-2
http://dx.doi.org/10.1016/j.gca.2006.06.1568
http://dx.doi.org/10.1016/S0009-2541(96)00072-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Appalachian Basin 
	Study Units 

	Methods 
	Bulk Geochemical Composition 
	XRD 
	Microscopy and Microanalysis 

	Results 
	Carbon and Sulfur Geochemistry 
	Bulk REE Geochemistry 
	Semi-Quantitative XRD Results 
	REE Mineral Phases in Appalachian Basin Underclays 
	2D Areal Extent of Mineral Phases in Appalachian Basin Underclays 
	3D Volumetric Reconstructions 
	Electron Microprobe Results 
	Synchrotron Results 

	Discussion 
	Modes of Occurrence for the REE 
	Limitations and Utility to 2D and 3D Reconstructions 

	Conclusions 
	References

