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Abstract: Fractures, which are related to tectonic activity and lithology, have a significant impact on
the storage and production of oil and gas in shales. To analyze the impact of lithological factors on
fracture development in shales, we selected the shale formation from the Da’anzhai member of the
lower Jurassic shales in a weak tectonic deformation zone in the Sichuan Basin. We defined a lithology
combination index (LCI), that is, an attribute quantity value of some length artificially defined by
exploring the lithology combination. LCI contains information on shale content at a certain depth,
the number of layers in a fixed length (lithology window), and the shale content in the lithology
window. Fracture porosity is the percentage of pore volume to the apparent volume of the rock.
In the experiment, fracture porosity was obtained using 50 samples from six wells, by observing
rock slices under a microscope. The relationship between LCI and fracture porosity was analyzed
based on machine learning, regression analysis, and weighting methods. The results show that LCI is
able to represent the impact of multiple lithological factors (i.e., shale content at a certain depth, the
number of layers in the lithology window, and the shale content in the lithology window). The LCI
within a thickness of 2 m for the lithology window demonstrates a good linear relationship with
fracture porosity. We therefore suggest LCI be used for fracture predictions of shale formations from
weak tectonic deformation zones. Our proposed LCI and fracture prediction methods also provide
implications for sandstone, mudstone, or carbonate formations under similar processes.

Keywords: lithology combination index; shale; fracture porosity; machine learning; support
vector machine

1. Introduction

Past tectonic activity and lithology (governed by depositional lithology and diagenesis) are the
main controlling factors for the development of opening-mode fractures in shales [1–3]. Under similar
loading conditions (tectonic stress field and pore pressure regime), the mechanical property changes
resulting from diagenesis (chemical/mechanical alteration) influence when and where fractures develop,
and key attributes such as size and spatial arrangement [4]. Different mineral contents of different rock
types lead to differences in plasticity and brittleness, which can affect fracture development. The rock
internal stresses vary with mechanical layer thickness for a given rock composition. The dimensions
of continuous lithology thus exert an influence upon fracture development [5]. Although fractures
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are small strain features that develop readily in areas of mild to no tectonic activity, areas with strong
tectonic activity and folds and faults may have more numerous or more complex fracture patterns [6–8].
For some shales, contrasts in mineral content in a stratum result in differences in the extent of fracture
development [2]. In some shales, different percentages of minerals in a given stratum contribute to
different correlations between their components and fracture porosity [9]. In an example from China,
mechanical properties of different rock types yield a significant increase in the fracture development
near a lithological change interface [10]. For similar tectonic stress fields, the joint action of different
lithological factors, such as lithology content, lithological changes, and lithology continuity, causes the
development of fractures.

Our study introduces the concept of lithology combinations to represent various lithological factors
that could affect fractures and demonstrates the impact that these lithological parameters impose on
fracture development. Previous studies only showed the lithological changes and combinations on the
qualitative level [11–13]. However, lithology combinations and rock arrangements can affect fracture
development and follow some laws. However, the influence of multi-factors on lithological combination
is complicated, and each factor has a different effect on fracture development, thus, it is challenging to
quantify the influence of each factor separately. Previous studies have carried out qualitative research
to evaluate lithology combinations which are favorable for fracture formation. However, no research
has explored the effects of lithology combination on a quantitative level. Moreover, in oil and gas
exploration, related methods have not been applied. The aim of this study is to address this problem.
We thereby propose the concept of the lithology combination index (LCI), to solve the problems
associated with multi-factor modeling and simulation.

Machine learning can be used to quantify the specification of weightiness and compound functions
of the multiple factors. Machine learning employs experience to improve the performance of the system
itself, decrease the uncertainty, and identify hidden information via calculations, to produce artificial
intelligence simulation data [14]. Thus, machine learning can summarize and control the entire data
volume based on certain artificial restrictions. Therefore, we can reasonably use the idea of machine
learning for data processing and prediction [15–17]. Numerous studies have employed machine
learning to tackle the petrophysical and fracture-related problems. Ouenes et al. (1995) introduced a
new method, using examples of real reservoirs to characterize and simulate fractured reservoirs by
integrating geomechanics, geology, and reservoir engineering [18]. They applied neural networks to
identify relationships among the reservoir structure, reservoir thickness, and well dynamics, which can
be used as indicators of influencing fracture development. Once such a relationship is established,
the neural network can be used to predict the original fracture production or map the fracture strength
of the reservoir. Ouenes (2000) examined the related factors that influence fractures in reservoirs,
using fuzzy logic and neural networks [19]. Based on these techniques, he input fracture-related data,
such as the rock mechanical performance index, pressure index, and paleo-stress index in his model,
to demonstrate the impact that each factor has on a fracture. By establishing this model, he can figure out
which factor is the most important factor affecting fracture development in an area. Barman et al. (2000)
employed artificial intelligence to predict the formation of fractures in reservoirs [20]. The most crucial
step in their study was to create a model using a reverse neural network, to quantize and analyze the
potentially complex relationship between various geological factors and fracture strength. This model
was used to predict fractures and identify oil and gas reservoirs. Ozkaya (2008) used a decision tree to
establish a model in intersecting and near-wellbore fracture corridors [21]. Based on different variable
input and well data, as well as the decision tree, fracture development could be predicted in oil fields
with insufficient image logging data for horizontal wells. Previous studies have widely used machine
learning to solve problems in geology and petrology. In this study, we adopt mathematical ideas to
solve geological problems and provided reasonable geological interpretations. Different from previous
studies, this study defined the concept lithology combination index and employed it in the related data
processing. From a geology and petrology perspective, how to scientifically understand and manage
these lithology factors is the crucial message of our study.
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2. Geologic Setting

The Da’anzhai member of the lower Jurassic Ziliujing Formation in the Yuanba area within
the Sichuan Basin is approximately 80 m thick. A sufficiently thick shale has developed, including
mud shale, shelly limestone, and sandstone [22]. The shelly limestone is a kind of unique lithology
in the Da’anzhai member, which is different from other formations. Partial shelly limestone in the
Da’anzhai member, which has a high argillaceous content and high oil and gas production, can be
considered as a source rock [23,24]. The Da’anzhai member is vertically characterized by a complete
transgression-retrogression sedimentary cycle. Horizontally, four sedimentary subfacies occur in a ring
zonal distribution, i.e., deep lake, semi-deep lake, shallow lake, and lakeshore subfacies, which have
developed at the sedimentation and depositional centers surrounding the lacustrine facies. The shale in
the Da’anzhai member is mainly developed in shallow lake subfacies and semi-deep lake subfacies [25].
Sandstones in the Da’anzhai member are generally not regarded as source rocks. The structural
deformation zone associated with the Da’anzhai member is classified as a weak deformation zone,
whose fractures are mainly inorganic fractures [26]. Therefore, lithology combination is the main control
over the microfracture development in the study area. Fracture development plays an indispensable
role in the enrichment and high yield of shale gas. Fractures in shale serve as a bridge that connects
pores with fractures and provide storage space, such that shale with developed fractures is universally
considered as a good reservoir [27,28]. The objective of this study is to establish a quantitative
characterization model of LCI and fracture development, to achieve the quantitative prediction of
fractures within the shale of this area using machine learning. Additionally, we examine the definition
of the LCI and quantitative characterization from a lithology combination perspective by analyzing the
shale from the Da’anzhai member within the weak deformation zone of the Yuanba area.

3. Lithology Combination Index (LCI)

Lithology combination is defined as the composition and arrangement of each lithology in a
length (lithology window). The LCI is an attribute value of the lithology window artificially defined
by exploring the lithology combination, because the relationship between this quantitative value and
fracture development can be expressed in a very concise formula. Thus, the LCI can quantitatively
represent fracture development. The exploration of the lithology combination requires a fine vertical
division of shale and knowledge of the changes in the vertical combination mode. As shown in Figure 1,
three windows of the same length each contain 50% shelly limestone and 50% shale. However, different
lithology arrangements, such as single type, multi-layer type, and cross-bed type, lead to different
lithology combinations. Therefore, different lithology arrangements contribute to different lithology
combinations for the same lithology content. The change of lithology can be represented by the number
of layers. In the lithology window, one layer means lithology is unchanged, two layers mean lithology
changes once, and so on. Even if the number of layers is similar, different lithologies result in different
lithology combinations. Therefore, lithology is also a parameter that affects lithology combinations.
At the micro-scale, mineral composition at a certain formation depth reflects the lithology. Therefore,
the proper size of the lithology window is equally crucial. The three parameters that ultimately affect
the LCI are the number of layers in lithology window, the lithological composition at a certain depth,
and the lithological composition in the lithology window.
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4.2. Acquisition of Lithology Parameters 

The Da’anzhai member in the Yuanba area mainly includes sandstone, shale, and limestone. The 
shale gas is mainly concentrated in shale and shelly limestone with a high total organic carbon content 
[32]. Therefore, when analyzing the influence of the three types of rocks, mud shale and shelly 
limestone were taken into account, but sandstone was excluded. Relevant data was obtained from 
the well log interpretation results. With an absence of sand, the sum of the shale and lime is fixed. In 

Figure 1. The same rock content leads to different lithology combinations: (a) single type, (b) multi-layer
type, and (c) cross-bed type.

4. Data Preparation

4.1. Fracture Characterization of a Rock Slice

Fracture porosity is the percentage of pore volume to the apparent volume of the rock, and it is
an important parameter used to measure fracture development, which was also required to quantify
fracture development in this study. Numerous methods exist to measure the fracture porosity,
including scanning electron microscopy, high pressure mercury injection, and cryogenic nitrogen
adsorption [29–31]. Due to the magnitude of samples required to determine the fracture porosity in this
area, we measured fracture porosity by observing rock slices under a microscope. The advantage of this
method is that the characteristics of fracture development and the lithology composition at the location
of fracture can be directly observed while measuring the porosity of fractures, which is convenient for
investigating the influencing factors of lithology. In this study, 50 samples were collected, consisting of
rock slices from six wells (such as the Yuanlu 4 well) at different depths. The rock slice was observed
under a microscope to generate a mosaic of the rock slice. The fracture area in the large mosaic image
was then circled and the ratio of it to the entire large image area was calculated, to determine the
fracture porosity values shown in Figure 2.
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4.2. Acquisition of Lithology Parameters

The Da’anzhai member in the Yuanba area mainly includes sandstone, shale, and limestone.
The shale gas is mainly concentrated in shale and shelly limestone with a high total organic carbon
content [32]. Therefore, when analyzing the influence of the three types of rocks, mud shale and shelly
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limestone were taken into account, but sandstone was excluded. Relevant data was obtained from
the well log interpretation results. With an absence of sand, the sum of the shale and lime is fixed.
In other words, the shale and lime exhibit a negative linear relationship that can also be observed with
respect to their influence on fractures. Therefore, one component with more reliable and accurate data
can be selected as the main research objective to reduce workload and improve reliability. Due to the
small statistical range of rock slices and uneven fracture development in limestone, rock slices from
different areas would result in the uneven development of shell limestone, and produce different data,
even with limestone from the same depth in the same well. Thus, these rock slices are inappropriate
for representing the fracture characteristics of this limestone layer. As a result, shale with an even
distribution of rock slices was selected for analysis. The shale and lime contents can be determined
based on the logging interpretation results.

Comprehensive models of multi-mineral interpretations can be used to calculate the content of
various components in rocks. The principle of comprehensive models for multi-mineral interpretation
is to regard complex lithological formations as heterogeneous components, e.g., various skeleton
minerals, clay minerals, and pore fluids. Brittle minerals, clay minerals, and porosity are different in
shelly limestone and shale. Moreover, these all lead to the corresponding differences in well logging
curves of different lithology. By using these differences in the logging curve, the corresponding
lithology can be explained by the comprehensive models of multi-mineral interpretations. The logging
value of the formation is the comprehensive response of numerous minerals and fluids [33,34].

The percentage of each component can be calculated with the aid of several factors, including the
present logging data for the Da’anzhai member, the calculated content of each component based on the
density and acoustic logs, and the theoretical value for the density log of the genuine shale, genuine
limestone, and genuine sandstone of the Da’anzhai member. Mineral composition may be different in
the same kind of lithology. For example, shale with 40% mud and shale with 50% mud have different
properties. To distinguish the same lithology with different compositions, the concepts of ‘shale, lime,
and sandstone’ are introduced to represent these lithologies. The genuine shale means pure shale
without any other impurities; the same for sandstone and shelly limestone. However, in this study,
we only consider lithology, without considering rock porosity. Therefore, in the absence of the porosity
parameters and the requirements of the theory, Equations (1)–(3) can be adopted to explain the content
of the three lithologies, as follows:

AC = AC1·V1 + AC2·V2 + AC3·V3, (1)

DEN = DEN1·V1 + DEN2·V2 + DEN3·V3, (2)

V1 + V2 + V3 = 1, (3)

where DEN denotes the value of the actual density logging curve, and DEN1, DEN2, and DEN3 are the
theoretical density log values for genuine shale, sandstone, and limestone, respectively. The value of
AC is the actual acoustic logging curve, where AC1, AC2, and AC3 are the theoretical acoustic logging
curves of genuine shale, sandstone, and limestone in the Da’anzhai member, respectively. V1, V2,
and V3 are the volume percentages of shale, sand, and lime, respectively. The following values were
used in Equations (1)–(3): 2.63, 2.67, and 2.71 g/cm3 for DEN1, DEN2, and DEN3, respectively, and 73,
55, and 47.5 us/ft for AC1, AC2, and AC3, respectively.

4.3. Relationship between Formation Lithology and Fractures

The lithology at a certain depth is a parameter that affects LCI. Figure 3 shows a good Gaussian
distribution between fracture porosity and shale content from the shales in six wells. As we can see,
fracture porosity reaches a peak when the shale content is around 45% and decreases when the shale
content is above or below this value.
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Figure 4 demonstrates the relationship between lime content and fracture porosity. The fracture
porosity reaches a peak when the lime content is approximately 55%. When the shale and lime contents
in a rock constitute around 45% and 55%, respectively, the fracture porosity reaches a maximum value.
This validates the negative linear correlation between the lime and shale contents. In other words,
shale content can completely represent lithology combinations.
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4.4. Relationship between the Number of Layers and Fracture

The number of layers in the window is one of the influencing factors for the LCI. Taking shale as the
research objective, several layers were divided according to the lithological changes, while the number
of layers was divided according to the different shale contents. Therefore, selecting an appropriate
lithology window is crucial. If the lithology window is too small, it will be infinitely close to a point.
In this case, the lithology combination concept cannot be used. If the window is too large, the sensitivity
of the window will be too low, and the influence that the top or bottom layer have on the intermediate
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point will be too small. The objective of window establishment is to generate statistics on lithological
changes within the window. Accordingly, the classification of sedimentary facies and formation
sequences in the Da’anzhai member by previous studies can be used as a reference basis, where the
order of magnitude of the short-term cycle and sedimentary subfacies of the Da’anzhai member range
from 1 to 10 m [35,36]. Therefore, for small changes in the order of magnitude, the preliminary division
is four window levels: 1, 2, 4, and 6 m. Figure 5 highlights 2 m as a suitable lithology window.
The lithology window should neither be too large nor too small, 2 m is the most optimized size of
lithology window; when the lithology window is above or below 2 m, the quality decreases. As a
Gaussian distribution represents the relationship between the lithology at a certain formation depth
and fracture porosity, we must take into account the contribution of different lithological compositions
to fracture development. At the peak of fracture development, changes in the lithological composition
are more sensitive to the impact of fractures, while changes in the lithological composition far from this
peak have little impact on fractures. That is to say, when shale content is around 45%, small changes of
shale content could have a great impact on fracture development. For example, when lithology is at
the top of Figure 3 (i.e., when the x-coordinate is at 45%), perhaps a 10% lithology change can cause a
0.5% fracture change. On two sides of Figure 3 (i.e., when the x-coordinate is below 30% or above 80%),
a 30% lithology change can cause a 0.5% fracture change. Therefore, to ensure that each interval can
represent the same impact to fracture development, six different intervals, used for the integration
of the Gaussian distribution, were preliminarily divided, based on shale contents of 0–28%, 28–45%,
45–50%, 50–55%, 55–72%, and 72–100%, which were confirmed with the following four windows: 1, 2,
4, and 6 m, respectively (Figure 5). Finally, we can observe that a 2 m lithology window is the most
optimal, such that we adopted it as the size of the lithology window.
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4.5. Relationship between Window Lithology and Fractures

The lithological composition in the lithology window is an influencing factor on the LCI. If the
number of layers is the same and the lithological composition of each layer is different, then the
influences on fracture development are theoretically different. As the sample interval for the lithological
data obtained from the logging data is 0.125 m, 16 data points can be obtained from a 2 m window.
The shale and lime contents of the 16 data points obtained in the window were added to obtain the
total lithological composition in the window, without considering the lithological variation factors.
Data standardization is necessary to obtain the same order of magnitude as previous data. Figure 6
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shows that the shale and lime contents in the window exhibits a good linear relationship with fracture
porosity. Specifically, shale has a positive linear relationship with fracture porosity, while lime has a
negative linear relationship with fracture porosity. This agrees with previous observations that the
sum of the shale and lime contents remains the same.
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Based on the above observations, the content of brittle minerals in shale increases within a certain
range, which is conducive to the formation of fractures, while clay minerals cause an opposite effect.
The presence of a certain amount of brittle minerals is useful during the fracture formation process, but it
should not be an excessive amount. Excessive brittle minerals beyond a certain value are not conducive
to the formation of fractures, which is also true for excessive limestone [37,38]. This phenomenon can
be explained using logging data as follows. When the proportion of shale and lime is approximately
45:55, fractures are well developed. Fractures become less developed if the proportion is below or
above this value, which is in agreement with the Gaussian distribution relationship discussed above
(Figures 3 and 4). However, the lithological differences between macro and micro factors are such that
the lithological composition represents the Gaussian distribution at a micro rule order of magnitude
(i.e., the lithology at a certain depth). An increased number of rocks that contain this optimal ratio of
shale and lime results in more developed fractures are on the order of magnitude of macro rules (i.e.,
the lithological composition in the window). However, the change in the layer depth, as well as the
shale and lime ratio of the microlayer rocks, will lead to a reduction in the number of rocks with the
most developed fractures, thus affecting the development of fractures in the entire window and causing
adverse effects. A 2 m lithology window can be viewed as consisting of 10 0.2 m length segments or
20 0.1 m length segments. Therefore, a 2 m lithology window can also be viewed as composed of an
infinite number of infinitesimals. So, more of this kind of infinitesimal (the ratio of 45:55) will have a
positive effect on fracture development. This explains why the same lithological composition exhibits
different rules for the macroscopic and microscopic orders of magnitude. Due to the influence of rock
mechanical properties, the area that is adjacent to the lithological change interface is also useful in
the fracture development process. An increase in the number of layers indicates an increase in the
frequency of lithological change at the interface, or stronger changes in the window. Loucks (2012)
divided pores into inorganic pores and organic pores [39]. Inorganic pores include intergranular pores
and intragranular pores. An organic pore is a pore developed in organic matter, which is the main
pore type of marine facies shale. However, the organic matter content in Da’anzhai member Yuanba
area is low, and organic pores are not connected. The pore-fracture system of continental facies shale
is completely different from that of marine facies rich-organic shale. Therefore, the storage space
provided by organic pore and fracture for shale gas accumulation in the Da’anzhai member is limited.
Therefore, we do not discuss the influence of organic matter content in this study. Tectonic stress field
is another factor which we do not consider. Several parameters, such as the lithology at a certain depth,
the number of layers in the lithology window, and the lithology composition of the window lithology,
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affect the lithology combination, which have rules that comprise the basis for the next comprehensive
exploration. Therefore, we can reasonably use these three factors as the main exploration factors.

5. Machine Learning

5.1. Data Processing

To explore the combined effects of the three parameters, the machine learning method can be used
to simulate the influence weights of the three parameters, followed by determining which rules these
factors follow to influence fracture development (i.e., the relationship between the LCI and fracture
development). In this formula, relevant logging data are input to calculate the corresponding LCI,
to characterize fracture development at a certain depth where the porosity of the fracture is unknown.
The stratum lithology at a certain depth has a Gaussian distribution relationship with the fracture
porosity, while the number of layers in the lithology window and lithology composition of the window
have a linear relationship with fracture porosity. To perform comparative studies, the relationships
describing the influence of lithology at a certain depth were also transformed into a linear relationship,
such that the simultaneous influence can only be examined via unifying dependent variables.

The Gaussian distribution relation was transformed as follows. Using the relationship between
the shale content in the Yuanlu 4 well and its fracture porosity as an example, the Gaussian distribution

relation, i.e., y = 1.7e−(x−45)2

242 , obtained via simulation was used to define the new independent variable,

i.e., x′ = −(x−45)2

242 , where the original equation was changed to y = 1.7ex′ . Natural logarithms were
selected for both sides of the processed formula, i.e., ln y = ln 1.7 + x and y′ = ln y, where the original
formula was changed to y′ = ln 1.7 + x′, such that x′ and y′ have a linear relationship. Therefore,
the original formula, focusing on the relationship between x and y, was transformed to explore the
relationship between x′ and y′.

5.2. Model Selection

In this study, the sample size was too small and did not reach the level of big data. Therefore,
to maintain the reliability of the machine learning, we must select the appropriate machine learning
method and manually adjust the data to obtain a conclusion with high reliability. According to previous
observations, the limestone with a highly heterogeneous composition was abandoned, and only shale
was used. For the machine learning method, the precision of most methods cannot support the order
of magnitude of simulation performed in this study. Thus, this study focuses on five regression
methods that accept a small sample fitting: multi-linear regression provision, decision-making tree,
support vector machine (SVM), K-nearest neighbor prediction, and the random forest algorithm.
The corresponding Python programs were created to simulate the weight of each factor on the effect
of the result. The final results demonstrate that the SVM method was the most reliable (Table 1).
See Supplementary Materials for related programs.

SVM is a generalized linear classifier that conducts binary data classification via supervised
learning, which can be used for regression analysis [40]. The decision boundary for the SVM is the
maximum margin hyperplane for solving learning samples. The SVM can be used for classification
based on the kernel method, which is one of the most common kernel learning methods [41,42]. In this
study, due to the small data size, there were variations in the reliability of the different algorithms
with different principles. In the SVM algorithm, for the feature space in which the input data exist
(i.e., fractures porosity data), the actual measured range of fracture porosity serves as the hyperplane
of the decision boundary, while the learning target (i.e., the value of numerous cracks) was divided
into positive and negative classes to acquire the model and its mathematical formula, by artificially
inputting internal rules into the model. Therefore, we can consider that the SVM is most suitable
for the simulation of corresponding parameters in this study. The mathematical principle of SVM is
applicable to the fracture porosity analysis in this study.
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Table 1. The weight of each factor obtained by five machine learning methods and the reliability of
each method.

Model Shale Content at a
Certain Depth

The Number
of Layers

Shale Content
in the Window Reliability

Multi-linear regression 0.19 1.12 1.53 0.48
Decision-making tree 0.02 0.01 0.96 0.46

Support vector machine 0.21 0.48 1.27 0.71
K-nearest neighbor prediction / / / 0.39

Random forest algorithm 1.94 0.33 0.46 0.39

/: no data.

The SVM method accounts for several data points with different relevant parameters, but the
same corresponding LCI values, such that the predicted LCI should have acceptable minor differences.
Accordingly, the gaps in machine learning can be geologically interpreted as the range of this miniscule
difference. In different formations, lithology, and well locations, predicted fracture development may
be different, even if the LCI is incidentally identical. In other words, an identical LCI can correspond to
the fracture porosity value within a small range. In addition, prior to machine learning, the influencing
factors were processed and the kernel function was artificially unified, which improves the reliability
of the model and results, resulting in the increased suitability of the SVM method for the objectives of
this study. Previous studies have used the SVM to solve a large number of petrological and oil-related
problems [43–46], such as the classification of terrestrial shale gas based on the Langmuir equation,
the removal of abnormal data from geochemical data, and predictions of missing geophysical data.
For fracture evaluation and prediction, the SVM method can be used to establish the model [47].
Therefore, we can further improve upon the conclusions drawn by the SVM.

5.3. Parameter Adjustment and Optimization

The process of machine learning is highly complex. If it is not artificially restricted, machine
learning might perform calculations in the wrong direction. If certain rules are set such that human
intervention limits the direction of machine learning, development can occur in the proper direction
and further improve the reliability. This human intervention process is referred to as parameter
adjusting [42].

Kernel function adjusting, C parameter, and gamma parameter are the most commonly used SVM
methods. Adjusting the kernel function can limit the general trend of the curve, while adjusting the C
parameter can introduce the error with respect to model tolerance. A larger value indicates that there
should be no error in the classification, while a smaller value indicates that the model can tolerate more
error. Adjusting the gamma parameters can change the complexity of the model, where a larger value
indicates a more complex model and a smaller value denotes a simpler model. In this study, various
Gaussian distributions were changed into linear relationships. Thus, the choice of a linear relationship
for the kernel can increase the reliability. Adjustments to the C and gamma parameters were tested
to confirm that the model is the most reliable when C = 1 and gamma = 10, which denotes that the
tolerance of the model for error and the complexity of the relationship are proper and not extreme.
After numerous simulations, the new weight ratio and reliability results were obtained (Table 2).

The reliability of the model increases by approximately 12% after the adjustment, such that the
weight of each factor results in several small changes. The results from five simulations were roughly
the same, with no invalid data. Therefore, after taking the average value, a reliability of 0.83 indicates
that the accuracy of the model is high.

For the training set, 70% of the fracture porosity data was used, while the remaining 30% was
used as a test dataset. After adjustment, the SVM method was employed to simulate the retained data
in the original data. Five simulations were conducted, whose results are shown in Figure 7.
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Table 2. Simulation results and reliability of the support vector machine (SVM) model after
parameter adjustment.

Number Shale Content at
a Certain Depth

The Number
of Layers

Shale Content
in the Window Reliability

The first time 0.13 0.78 1.64 0.76
The second time 0.09 0.81 1.73 0.93
The third time 0.06 1.07 1.55 0.84

The fourth time 0.12 0.70 1.52 0.76
The fifth time 0.14 0.97 1.62 0.86
Average value 0.11 0.87 1.61 0.83
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The reliability of the results of the five machine learning simulations was between 0.73 and
0.91, with an average of 0.81, indicating that this model has high reliability with an acceptable error.
Accordingly, we suggest that this method is mathematically reliable; its exploration process is supported
by mathematical theory.

6. Characterization Prediction

6.1. LCI Formula

Subsequent to the study of the comprehensive influence that multiple factors have on fracture
development and obtaining the influence weight for each factor, the weight can be used to explore the
influence that multiple factors have on fracture development, such that one equation represents the
comprehensive influence result. Each factor was weighted according to its weight, where Figure 8 tests
its reliability.

According to the acquired weights, we can express the following relationship:

I = e1.04×(−0.11x1+0.76x2+1.65x3)−8.26, (4)

x1 =
−(z1 − 45)2

242
, x2 = ln z2, x3 = ln z3, (5)

where I denotes the LCI, whose value directly represents fracture development; x1–x3 refers to the three
processed composite functions; and z1, z2, and z3 denote the shale content at a certain depth, the number
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of layers, and the shale content in the window, respectively. In Equation (5), the constant 45 indicates
that, when the fracture porosity is at a maximum, the shale content reaches 45%, which is the most
conducive situation to the development of fractures. The constant 242 was acquired based to the width
and narrowness of the model, with respect to the properties of the Gaussian function. The constants
1.04 and −8.26 are the weighted parameters used to fit the straight line with the logarithmic function of
the fracture porosity, based on the natural logarithm.

The LCI and fracture porosity present a good linear relationship. The fracture range of the
Da’anzhai member extends from 0 to 5%. Thus, the LCI ranges from 0 to 4, according to the
corresponding relationship. When simulating a fracture, the fracture porosity can be calculated as
follows:

ϕ = 1.24× e1.04×(0.11×
(z1−45)2

242 +0.76 ln z2+1.65 ln z3)−8.26
− 0.04 (6)

where z1, z2, and z3 denote the shale content at a certain depth, the number of layers, and the shale
content in the window, respectively. The constants 1.24 and −0.04 are the parameters simulated by
direct correspondence between the LCI and fracture porosity. Other parameters are identical to those
described above.
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6.2. Fracture Predictions

Fracture predictions were made for four wells in Yuanba area, using the methods described in
Appendix A (Figures A1–A4). The prediction results show that the LCI values of the four wells range
from 0 to 2.07 after calculation, the simulated fracture porosity ranges from 0 to 2.53%, and the average
fracture porosity is 0.63%. The improved results for the gas test and their fracture porosity were higher
than the results based on other combinations. There is an elevated development of fractures, due to
the lithology combinations of thick-bedded sandstone, sand-shale stone, and thick-bedded shale.

7. Discussions

This method can be used for other areas, and even the formation of other lithologies, such as
carbonate rocks or tight sandstone formations. The process, however, must be altered such that the
simulated parameters are applicable to the exploration area. Initially, the factors affecting fracture
development should be identified and quantified. Lithologies, lithology combinations, tectonic stress
fields, total organic carbon, and other factors can all be used as factors that affect fracture development.
Nevertheless, these factors must be simplified, as well as the elimination of secondary factors to reserve
major factors. Prior to machine learning, we must analyze the influence that single factors have on
cracks to obtain different relationships. The corresponding relationship transformation is then made to
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unify the relationships. If necessary, the choice of the lithology window should also be simulated again,
according to the fitting reliability, to obtain the proper window. For machine learning, we must select an
appropriate machine learning method that can be verified after adjusting the parameters. The method
should also be supported by common mathematical and geological theories. Any abnormal data
should be removed during verification. The average value should be taken as the final result after
several rounds of verification. The constants in the LCI formula were acquired based on the various
function parameters via a single-factor analysis. The corresponding factors that affect the weight of
each factor, as well as several unknown numbers, were obtained according to the definitive influencing
factors. Finally, the relationship after adjustment was modified into the original relationship, in which
the fracture porosity is the dependent variable. This relationship should then be tested and compared
with measured data. This study employs the comparison data associated with gas tests, where data
such as measured fracture data can also be used to fit other wells that have not been analyzed by the
model. The fracture porosity of the new area can be fitted by inputting the variable values of the newly
fitted area. Horizontal and vertical fracture development of the entire formation and the entire study
area can be computed using this method. Therefore, the fracture development of the whole area can be
visually presented by data, which provides a new angle of evaluation for oil and gas exploration.

8. Conclusions

(1) From a lithology combination perspective and the machine learning concept, we established a
quantitative characterization model for the LCI and fracture development. The LCI quantifies
the complex comprehensive influence that multiple factors have on fracture development, using
several formulae to fit the composite function relationship with the fractures and some factors,
which yields a quantitative characterization of the fractures. We established the quantitative
characterization model of LCI and fracture development by defining this index, such that we can
quantitatively predict fracture development.

(2) After determining the LCI formula for a specific area, inputting the values of the various factors
that affect the fractures in this area can simulate fracture development in the entire stratum. This
method has been used to predict fractures in the Da’anzhai member of the Yuanba area, whose
results show that the method is reliable. This method is also applicable in other regions, but the
regional parameters must be adapted according to the actual conditions of the region.

Supplementary Materials: Zhengchen Zhang developed the program in the “Adjust” and “choose” section that is
available on https://github.com/zhzhch88/Zhengchen-Zhang/tree/LCI free of charge. The instructions are shown
in the web link.
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