Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia)
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Background
4. Petrography
5. Results
5.1. Mineralogy
5.2. Bulk-Rock Geochemistry
5.3. Cr-Spinel Chemistry
5.3.1. The Moriany Intrusion
5.3.2. The Ulan-Khan Intrusion
5.3.3. The Zunduk Intrusion
5.3.4. The Ongureny Intrusion
6. Discussion
6.1. Cr-Spinel Composition Variation and Zonation
6.1.1. Primary Composition
6.1.2. Alteration of Cr-Spinel
6.2. Petrogenetic Consequences
7. Conclusions
- (1)
- Two types of Cr-spinel were identified in ultramafic rocks from all intrusions. Type I Cr-spinel is enclosed in the inner part of olivine crystals and is homogeneous Al-rich chromite and Fe2+-rich chromite. Type II Cr-spinel occurs in the interstitial space as homogeneous and zoned grains with Al-rich chromite and Fe2+-rich chromite cores.
- (2)
- A specific feature of Cr-spinels in ultramafic rocks of the Primorsky Ridge is their noticeably high TiO2 content (up to 6.5 wt.%).
- (3)
- Magmatic Cr-spinels, represented by Al-rich chromite, occur mainly as inclusions in olivine and, rarely, in cores of zoned grains. They crystallized earlier than the olivine crystals.
- (4)
- The homogeneous Fe2+-rich chromite and zoned Cr-spinel grains of type II crystallized after Al-rich chromite from a more evolved and fractionated melt.
- (5)
- Serpentinization led to the formation of Fe3+-rich chromite, Cr-rich magnetite, and magnetite rims.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacGregor, I.D.; Smith, C.H. The use of chrome spinels in petrographic studies of ultramafic intrusions. Can. Mineral. 1963, 7, 403–412. [Google Scholar]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part I. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part II. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks a potential guide to magma chemistry. Mineral. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Dare, S.A.; Pearce, J.A.; McDonald, I.; Styles, M.T. Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–Fe III systematics in chrome–spinel. Chem. Geol. 2009, 261, 199–216. [Google Scholar]
- Arai, S.; Okamura, H.; Kadoshima, K.; Tanaka, C.; Suzuki, K.; Ishimaru, S. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc 2011, 20, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J. Chromite in komatiites, I. Magmatic controls on crystallization and composition. J. Petrol. 1998, 39, 1689–1720. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism—A preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Cameron, E.N. Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the Eastern Bushveld Complex. Geochim. Cosmochim. Acta 1975, 39, 1021–1033. [Google Scholar] [CrossRef]
- Scowen, P.A.H.; Roeder, P.L.; Helz, R.T. Reequilibration of chromite within Kilauea lkilava lake, Hawaii. Contrib. Mineral. Petrol. 1991, 107, 8–20. [Google Scholar] [CrossRef]
- Peltonen, P. Crystallization and re-equilibration of zoned chromite in ultramafic cumulates, Vammala Ni-belt, southwestern Finland. Can. Mineral. 1995, 33, 521–535. [Google Scholar]
- Barnes, S.J. Chromite in Komatiites II. Modification during greenschist to mid amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef] [Green Version]
- Sakuyama, M. Evidence of magma mixing: Petrological study of Shiroumaoike calc-alkaline andesite volcano, Japan. J. Volcanol. Geotherm. Res. 1978, 5, 179–208. [Google Scholar] [CrossRef]
- Fisk, M.R.; Bence, A.E. Experimental crystallization of chrome spinel in famous basalt. Earth Planet. Sci. Lett. 1980, 48, 111–123. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M. Significance of accessory chrome spinel in identifying serpentinite paragenesis. Int. Geol. Rev. 2005, 47, 58–64. [Google Scholar] [CrossRef]
- Mekhonoshin, A.S.; Ernst, R.; Söderlund, U.; Hamilton, M.A.; Kolotilina, T.B.; Izokh, A.E.; Polyakov, G.V.; Tolstykh, N.D. Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian Craton). Russ. Geol. Geophys. 2016, 57, 822–833. [Google Scholar] [CrossRef]
- Ariskin, A.A.; Kostitsyn, Y.A.; Konnikov, E.G.; Danyushevsky, L.V.; Meffre, S.; Nikolaev, G.S.; McNeill, A.; Kislov, E.V.; Orsoev, D.A. Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic. Geochem. Inter. 2013, 51, 859–875. [Google Scholar] [CrossRef]
- Ernst, R.E.; Hamilton, M.A.; Söderlund, U.; Hanes, J.A.; Gladkochub, D.P.; Okrugin, A.V.; Kolotilina, T.B.; Mekhonoshin, A.S.; Bleeker, W.; LeCheminant, A.N.; et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 2016, 9, 464–472. [Google Scholar] [CrossRef]
- Mekhonoshin, A.S.; Podlipskii, M.Y.; Doroshkov, A.A.; Kolotilina, T.B. Picrite magmatism of the Western Baikal region. In Geodynamic Evolution of the Lithosphere in the Central Asian Mobile Belt: From Ocean to Continent; IEC SB RAS: Irkutsk, Russia, 2015. (In Russian) [Google Scholar]
- Tolstykh, N.D.; Podlipskii, M.Y.; Mekhonoshin, A.S.; Kolotilina, T.B.; Polyakov, G.V. Ulan Khan and Zunduk massifs (Western Baikal Region) as part of the East Siberian metallogenic province. In Proceedings of the Science Meeting, Tomsk, Russia, 27–30 November 2018. (In Russian). [Google Scholar]
- Lavrent’ev, Y.G. High current electron probe microanalysis of minerals. X-ray Spectrom. 2010, 39, 37–40. [Google Scholar]
- Lavrent’ev, Y.G. New Trends in X-Ray Microanalysis of Minerals (Review). Inorg. Mater. 2010, 46, 1605–1612. [Google Scholar] [CrossRef]
- Rosen, O.M.; Condie, K.C.; Natapov, L.M.; Nozhkin, A.D. Archean and Early Proterozoic evolution of the Siberian Craton: A preliminary assessment. In Archean Crustal Evolution; Condie, K.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 411–459. ISBN1 0444816216. ISBN2 978-0444816214. [Google Scholar]
- Gladkochub, D.; Pisarevsky, S.; Donskaya, T.; Natapov, L.M.; Mazukabzov, A.; Stanevich, A.M.; Sklyarov, E. The Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 2006, 29, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Donskaya, T.V.; Gladkochub, D.P.; Pisarevsky, S.A.; Poller, U.; Mazukabzov, A.M.; Bayanova, T.B. Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: New insight into its architecture and history. Precam. Res. 2009, 170, 61–72. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Bibikova, E.V.; Mazukabzov, A.M.; Kozakov, I.K.; Gladkochub, D.P.; Kirnozova, T.I.; Plotkina, Y.V.; Reznitsky, L.Z. The Primorsky granitoid complex of Western Cisbaikalia: Geochronology and geodynamic typification. Russ. Geol. Geoph. 2003, 44, 1006–1016. [Google Scholar]
- Gladkochub, D.P.; Pisarevsky, S.A.; Donskaya, T.V.; Ernst, R.E.; Wingate, M.T.D.; Söderlund, U.; Mazukabzov, A.M.; Sklyarov, E.V.; Hamilton, M.A.; Hanes, J.A. Proterozoic mafic magmatismin Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Res. 2010, 183, 660–668. [Google Scholar] [CrossRef]
- Gladkochub, D.P.; Donskaya, T.V.; Ernst, R.; Mazukabzov, A.M.; Sklyarov, E.V.; Pisarevsky, S.A.; Wingate, M.; Söderlund, U. Proterozoic basic magmatism of the Siberian Craton: Main stages and their geodynamic interpretation. Geotectonics 2012, 46, 273–284. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Gervilla, F.; Padrón-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; González- Jiménez, J.M.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: A two-stage process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Barra, F.; Gervilla, F.; Hernández, E.; Reich, M.; Padrón-Navarta, J.A.; González-Jiménez, J.M. Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile. Mineral. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- Ruan, B.; Yu, Y.; Lv, X.; Feng, J.; Wei, W.; Wu, C.; Wang, H. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications. Mineral. Petrol. 2017, 111, 693–708. [Google Scholar] [CrossRef]
- Roeder, P.L.; Campbell, I.H.; Jamieson, H.E. Re-evaluation of the olivine-spinel geothermometer. Contrib. Mineral. Petrol. 1979, 68, 325–334. [Google Scholar] [CrossRef]
- Sack, R.; Ghiorso, M.S. Chromian spinels as petrogenetic indicators: Thermodynamic and petrological applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Barnes, S.J.; Tang, Z.-L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China. Econ. Geol. 1999, 94, 343–356. [Google Scholar] [CrossRef]
- Yang, X.Z.; Matsueda, H.; Ishihara, S. Mode of occurrence, chemical composition, and origin of Cr–Fe–Ti oxides of the Jinchuan Ni–Cu–PGE deposits, China. Int. Geol. Rev. 1994, 36, 311–327. [Google Scholar] [CrossRef]
- Abzalov, M.Z. Chrome-spinel is gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: Emphasis on the alteration features. Lithos 1998, 43, 109–134. [Google Scholar] [CrossRef]
- Barnes, S.J.; Kunilov, V.Y. Spinels and Mg-ilmenites from the Noril’sk 1 and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province. Econ. Geol. 2000, 95, 1701–1717. [Google Scholar] [CrossRef]
- Ryabov, V.; Gora, M.; Shevko, A.Y. Trap Magmatism and Ore Formation in the Siberian Noril’sk Region; Springer: Berlin/Heidelberg, Germany, 2014; p. 390. ISBN 978-94-007-5022-7. [Google Scholar]
- Heinonen, J.S.; Luttinen, A.V. Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineral. Petrol. 2010, 99, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Vasil’ev, Y.R.; Gora, M.P.; Kuz’min, D.V. Petrology of foiditic and meymechitic volcanism in the Maimecha-Kotui province (Polar Siberia). Russ. Geol. Geoph. 2017, 58, 659–673. [Google Scholar]
- Eales, H.V. Anomalous Karroo spinels along the chromite–titanomagnetite join. S. Afr. J. Sci. 1979, 75, 24–29. [Google Scholar]
- Eales, H.V.; Snowden, D.V. Chromiferous spinels of the Elephant’s Head dike. Econ. Geol. 1979, 14, 227–242. [Google Scholar] [CrossRef]
- Cawthorn, R.G.; de Wet, M.; Hatton, C.J.; Cassidy, K. Ti-rich chromite from Mount Ayliff intrusion, Transkei: Further evidence for high Ti tholeiitic magma. Am. Mineral. 1991, 76, 561–573. [Google Scholar]
- Melluso, L.; De Gennaro, R.; Rocco, I. Compositional variations of chromiferous spinel in Mg-rich rocks of the Deccan Traps, India. J. Earth Syst. Sci. 2010, 119, 343–363. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.F.G.; Hensel, H.D. The petrology of some picrites from Mauna Loa and Kilauea volcanoes, Hawaii. Contrib. Mineral. Petrol. 1988, 98, 326–345. [Google Scholar] [CrossRef]
- Ichiyama, Y.; Ishiwatari, A.; Hirahara, Y.; Shuto, K. Geochemical and isotopic constraints on the genesis of the Permian ferropicritic rocks from the Mino-Tamba belt, SW Japan. Lithos 2006, 89, 47–65. [Google Scholar] [CrossRef]
- Ichiyama, Y.; Ishiwatari, A.; Koizumi, K. Petrogenesis of greenstones from the Mino–Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau. Lithos 2008, 100, 127–146. [Google Scholar] [CrossRef]
- Thompson, R.N. Titanian chromite and chromian titanomagnetite from a Snake River Plain basalt, a terrestrial analogue of lunar spinels. Am. Mineral. 1973, 58, 826–830. [Google Scholar]
- Benedyuk, Y.P.; Simonov, V.A.; Mekhonoshin, A.S.; Kolotilina, T.B.; Stupakov, S.I.; Doroshkov, A.A. Genesis of ultramafic rocks of the Alkhadyr terrane (East Sayan, Siberia): Implications from the data on Cr-spinel compositions. Russ. Geol. Geoph. 2015, 56, 1308–1321. [Google Scholar] [CrossRef]
- Pushkarev, E.V.; Votyakov, S.L.; Chashchukhin, I.S.; Kislov, E.V. Olivine–chromspinel oxythermobarometry of ultramafic rocks of the Ioko–Dovyren layered massif. Dokl. Earth Sci. 2004, 395, 266–270. [Google Scholar]
- Bliss, N.W.; MacLean, W.H. The paragenesis of zoned chromite from central Manitoba. Geochim. Cosmochim. Acta 1975, 39, 973–990. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Accessory chromium spinels, their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mondal, S.K.; Rosing, M.T.; Frei, R. Compositional variations in the Mesoarchean chromitites of the Nuggihalli schist belt, Western Dharwar Craton (India): Potential parental melts and implications for tectonic setting. Contrib. Miner. Petrol. 2010, 160, 865–885. [Google Scholar] [CrossRef]
- Wylie, A.N.; Candela, P.A.; Burke, T.M. Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of “ferritchromite”. Am. Mineral. 1987, 72, 413–422. [Google Scholar]
- Glassley, W. Geochemistry and tectonics of the Crescent Volcanic Rocks, Olympic Peninsula, Washington. Geol. Soc. Am. Bull. 1974, 85, 785–794. [Google Scholar] [CrossRef]
- Pearce, T.H. Olivine fractionation equations for basaltic and ultrabasic liquids. Nature 1978, 276, 771–774. [Google Scholar] [CrossRef]
- Beswick, A.E. Primary fractionation and secondary alteration within an Archean ultramafic lava flow. Contrib. Mineral. Petrol. 1983, 82, 221–231. [Google Scholar] [CrossRef]
- Pearce, T.H. The identification and assessment of spurious trends in Pearce-type ratio variation diagrams: A discussion of some statistical arguments. Contrib. Mineral. Petrol. 1987, 97, 529–534. [Google Scholar] [CrossRef]
- Roeder, P.L.; Emslie, R. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Maurel, C.; Maurel, P. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bull. Mineral. 1982, 105, 197–202. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekhonoshin, A.S.; Kolotilina, T.B.; Doroshkov, A.A.; Pikiner, E.E. Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). Minerals 2020, 10, 608. https://doi.org/10.3390/min10070608
Mekhonoshin AS, Kolotilina TB, Doroshkov AA, Pikiner EE. Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). Minerals. 2020; 10(7):608. https://doi.org/10.3390/min10070608
Chicago/Turabian StyleMekhonoshin, Aleksey S., Tatiana B. Kolotilina, Artemy A. Doroshkov, and Evgeniya E. Pikiner. 2020. "Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia)" Minerals 10, no. 7: 608. https://doi.org/10.3390/min10070608
APA StyleMekhonoshin, A. S., Kolotilina, T. B., Doroshkov, A. A., & Pikiner, E. E. (2020). Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). Minerals, 10(7), 608. https://doi.org/10.3390/min10070608