Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China
Abstract
:1. Introduction
2. Geological Setting and Samples
2.1. The North Dabie Complex Zone
2.2. Stromatic Migmatites and Leucosome Samples
2.2.1. Garnet-Bearing Leucosomes
2.2.2. Amphibole-Rich, Amphibole-Poor and K-Feldspar-Rich Leucosomes
2.2.3. Sample Description
3. Analytical Methods
3.1. Whole-Rock Major and Trace Element Analysis
3.2. Zircon U-Pb Dating
3.3. Whole-Rock Rb–Sr, Sm–Nd and Pb Isotope Analyses
3.4. Mineral Composition Analysis
4. Results
4.1. Whole-Rock Major and Trace Elements
4.2. Zircon CL Images and U-Pb Dating
4.3. Whole-Rock Rb–Sr, Sm–Nd and Pb Isotopes
5. Discussion
5.1. Mechanism of Anatexis for the Different Generations of Leucosomes
5.1.1. Fluid-Absent Decompression Melting
5.1.2. Fluid-Fluxed Melting
5.2. Ages of the Different Generations of Leucosomes
5.3. Genesis and Elemental-Isotopic Behaviour of Leucosomes.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hollister, L.S. The role of melt in the uplift and exhumation of orogenic belts. Chem. Geol. 1993, 108, 31–48. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Rey, P. The consequences of crustal melting in continental subduction. Lithosphere 2009, 1, 323–327. [Google Scholar] [CrossRef]
- Brown, M. The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens. Earth-Sci. Rev. 1994, 36, 83–130. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Shatsky, V.S. Exhumation of high-pressure rocks of the Kokchetav massif: Facts and models. Lithos 2004, 78, 307–318. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Deng, L.; Gu, X. Multistage exhumation and partial melting of high-T ultrahigh-pressure metamorphic rocks in continental subduction-collision zones. Sci. China Earth Sci. 2015, 58, 1084–1099. [Google Scholar] [CrossRef]
- Rey, P.; Vanderhaeghe, O.; Teyssier, C. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics 2001, 342, 435–449. [Google Scholar] [CrossRef]
- Vanderhaeghe, O.; Teyssier, C. Partial melting and flow of orogens. Tectonophysics 2001, 342, 451–472. [Google Scholar] [CrossRef]
- Huw Davies, J.; von Blanckenburg, F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 1995, 129, 85–102. [Google Scholar] [CrossRef]
- Dewey, J.F. Extensional collapse of orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- England, P.C.; Thompson, A.B. Pressure—Temperature—Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. J. Petrol. 1984, 25, 894–928. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.-L.; Liu, X.-M.; Liu, Y.-S.; Xu, W.-L.; Ling, W.-L.; Ayers, J.; Wang, X.-C.; Wang, Q.-H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Huppert, H.E.; Sparks, R.S.J. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust. J. Petrol. 1988, 29, 599–624. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.; Van Calsteren, P.; Deng, W. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. J. Petrol. 1996, 37, 45–71. [Google Scholar] [CrossRef]
- Arzi, A.A. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 1978, 44, 173–184. [Google Scholar] [CrossRef]
- Holyoke, C.W., III; Rushmer, T. An experimental study of grain scale melt segregation mechanisms in two common crustal rock types. J. Metamorph. Geol. 2002, 20, 493–512. [Google Scholar] [CrossRef]
- Rosengerg, C.L.; Handy, M.R. Experimental deformation of partially melted granite revisited: Implications for the continental crust. J. Metamorph. Geol. 2005, 23, 19–28. [Google Scholar] [CrossRef]
- Vanderhaeghe, O. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 2009, 477, 119–134. [Google Scholar] [CrossRef]
- Hermann, J.; Rubatto, D.; Korsakov, A.; Shatsky, V.S. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol. 2001, 141, 66–82. [Google Scholar] [CrossRef]
- Jamieson, R.A.; Unsworth, M.J.; Harris, N.B.W.; Rosenberg, C.L.; Schulmann, K. Crustal Melting and the Flow of Mountains. Elements 2011, 7, 253–260. [Google Scholar] [CrossRef]
- Labrousse, L.; Prouteau, G.; Ganzhorn, A.-C. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology 2011, 39, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Wallis, S.; Tsuboi, M.; Suzuki, K.; Fanning, M.; Jiang, L.; Tanaka, T. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology 2005, 33, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Barraud, J.; Gardien, V.; Allemand, P.; Grandjean, P. Analogue models of melt-flow networks in folding migmatites. J. Struct. Geol. 2004, 26, 307–324. [Google Scholar] [CrossRef]
- Hinchey, A.M.; Carr, S.D.; McNeill, P.D.; Rayner, N. Paleocene–Eocene high-grade metamorphism, anatexis, and deformation in the Thor–Odin dome, Monashee complex, southeastern British Columbia. Can. J. Earth Sci. 2006, 43, 1341–1365. [Google Scholar] [CrossRef]
- Auzanneau, E.; Vielzeuf, D.; Schmidt, M.W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib. Mineral. Petrol. 2006, 152, 125–148. [Google Scholar] [CrossRef]
- Büsch, W.; Schenider, G.; Mehnert, K. Initial melting at grain boundaries. Part II: Melting in rocks of granodioritic, quartzdioritic and tonalitic composition. Neues Jahrb. Mineral. Mon. 1974, 8, 345–370. [Google Scholar]
- Perchuk, A.L.; Burchard, M.; Maresch, W.V.; Schertl, H.-P. Fluid-mediated modification of garnet interiors under ultrahigh-pressure conditions. Terra Nova 2005, 17, 545–553. [Google Scholar] [CrossRef]
- Del Moro, A.; Fornelli, A.; Piccarreta, G. Disequilibrium melting in granulite-facies metasedimentary rocks of the Northern Serre (Calabria-Southern Italy). Mineral. Petrol. 2000, 70, 89–104. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Li, S.-G.; Gu, X.-F.; Xu, S.-T.; Chen, G.-B. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. J. Metamorph. Geol. 2007, 25, 975–989. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Li, S.-G.; Xu, S.-T. Zircon SHRIMP U–Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos 2007, 96, 170–185. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Deng, L.-P.; Gu, X.-F.; Groppo, C.; Rolfo, F. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Res. 2015, 27, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Hacker, B.R.; Ratschbacher, L.; Webb, L.; Ireland, T.; Walker, D.; Shuwen, D. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth Planet. Sci. Lett. 1998, 161, 215–230. [Google Scholar] [CrossRef]
- Wang, J.; Sun, M.; Deng, S. Geochronological constraints on the timing of migmatization in the Dabie Shan, East-central China. Eur. J. Mineral. 2002, 14, 513–524. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Schärer, U.; Shu, L.; Sun, Y.; Arnaud, N. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos 2003, 70, 213–241. [Google Scholar] [CrossRef]
- Wu, Y.-B.; Zheng, Y.-F.; Zhang, S.-B.; Zhao, Z.-F.; Wu, F.-Y.; Liu, X.-M. Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. J. Metamorph. Geol. 2007, 25, 991–1009. [Google Scholar] [CrossRef]
- Wang, S.-J.; Li, S.-G.; Chen, L.-J.; He, Y.-S.; An, S.-C.; Shen, J. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: Implication for post-UHPM crustal melting during exhumation. Contrib. Mineral. Petrol. 2013, 165, 1009–1029. [Google Scholar] [CrossRef]
- Chen, R.-X.; Ding, B.; Zheng, Y.-F.; Hu, Z. Multiple episodes of anatexis in a collisional orogen: Zircon evidence from migmatite in the Dabie orogen. Lithos 2015, 212–215, 247–265. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Zhang, Y.-S.; Hu, R.; Wang, J.; Siebel, W.; Chen, F. Amphibole-bearing migmatite in North Dabie, eastern China: Water-fluxed melting of the orogenic crust. J. Asian Earth Sci. 2016, 125, 100–116. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, J. Anatexis witnessed post-collisional evolution of the Dabie orogen, China. J. Asian Earth Sci. 2017, 145, 278–296. [Google Scholar] [CrossRef]
- He, Y.; Li, S.; Hoefs, J.; Huang, F.; Liu, S.-A.; Hou, Z. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim. Et Cosmochim. Acta 2011, 75, 3815–3838. [Google Scholar] [CrossRef]
- Deng, L.-P.; Liu, Y.-C.; Gu, X.-F.; Groppo, C.; Rolfo, F. Partial melting of ultrahigh-pressure metamorphic rocks at convergent continental margins: Evidences, melt compositions and physical effects. Geosci. Front. 2018, 9, 1229–1242. [Google Scholar] [CrossRef]
- Deng, L.-P.; Liu, Y.-C.; Yang, Y.; Groppo, C.; Rolfo, F.; Gu, X.-F. Anatexis of high-T eclogites in the Dabie orogen triggered by exhumation and post-orogenic collapse. Eur. J. Mineral. 2019, 31, 889–903. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Liu, Y.-C.; Groppo, C.; Rolfo, F. Muscovite Dehydration Melting in Silica-Undersaturated Systems: A Case Study from Corundum-Bearing Anatectic Rocks in the Dabie Orogen. Minerals 2020, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiao, Y.; Liou, D.; Chen, Y.; Ge, N.; Zhang, Z.; Sun, S.-S.; Cong, B.; Zhang, R.; Hart, S.R.; et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 1993, 109, 89–111. [Google Scholar] [CrossRef]
- Xu, S.; Okay, A.I.; Ji, S.; Sengör, A.M.C.; Su, W.; Liu, Y.-C.; Jiang, L. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science 1992, 256, 80–82. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Li, S. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt. Chin. Sci. Bull. 2008, 53, 3105–3119. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-C.; Liu, L.-X.; Li, Y.; Gu, X.-F.; Song, B. Zircon U-Pb geochronology and petrogenesis of metabasites from the western Beihuaiyang zone in the Hong’an orogen, central China: Implications for detachment within subducting continental crust at shallow depths. J. Asian Earth Sci. 2017, 145, 74–90. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Chen, G.; Compagnoni, R.; Rolfo, F.; He, M.; Liu, H. New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Sci. Bull. 2003, 48, 988–994. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Chen, G.; Ji, S.; Ni, P.; Xiao, W. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineral. Mag. 2005, 69, 509–520. [Google Scholar] [CrossRef]
- Groppo, C.; Rolfo, F.; Liu, Y.-C.; Deng, L.-P.; Wang, A.-D. P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): How far can the thermodynamic modeling lead us? Lithos 2015, 226, 183–200. [Google Scholar] [CrossRef]
- Li, X.-P.; Zheng, Y.-F.; Wu, Y.-B.; Chen, F.; Gong, B.; Li, Y.-L. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol. 2004, 148, 443–470. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Li, S.; Xu, S.; Jahn, B.-m.; Zheng, Y.-F.; Zhang, Z.; Jiang, L.; Chen, G.; Wu, W. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. J. Asian Earth Sci. 2005, 25, 431–443. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Gu, X.; Rolfo, F.; Chen, Z. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite from the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression texture. J. Asian Earth Sci. 2011, 42, 607–617. [Google Scholar] [CrossRef]
- Okay, A.I.; Xu, S.T.; Sengor, A.M.C. Coesite from the Dabie Shan eclogites, central China. Eur. J. Mineral. 1989, 1, 595–598. [Google Scholar] [CrossRef]
- Rolfo, F.; Compagnoni, R.; Wu, W.; Xu, S. A coherent lithostratigraphic unit in the coesite–eclogite complex of Dabie Shan, China: Geologic and petrologic evidence. Lithos 2004, 73, 71–94. [Google Scholar] [CrossRef]
- Wang, X.; Liou, J.G.; Mao, H. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology 1989, 17, 1085–1088. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Su, W.; Wang, R.; Jiang, L.; Wu, W. Discovery of the eclogite and its petrography in the Northern Dabie Mountain. Chin. Sci. Bull. 2000, 45, 273–278. [Google Scholar] [CrossRef]
- Li, S.; Jagoutz, E.; Chen, Y.; Li, Q. Sm–Nd and Rb–Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim. Cosmochim. Acta 2000, 64, 1077–1093. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Gu, X.-F.; Li, S.-G.; Hou, Z.-H.; Song, B. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U–Pb age, trace element and mineral inclusion. Lithos 2011, 122, 107–121. [Google Scholar] [CrossRef]
- Malaspina, N.; Hermann, J.; Scambelluri, M.; Compagnoni, R. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos 2006, 90, 19–42. [Google Scholar] [CrossRef]
- Li, S.G.; He, Y.S.; Wang, S.J. Process and mechanism of mountain-root removal of the Dabie Orogen Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chin. Sci. Bull. 2013, 58, 4411–4417. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, E.W. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid. Lithos 2010, 116, 273–286. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Compston, W.; Williams, I.S.; Meyer, C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. Solid Earth 1984, 89, B525–B534. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Tookit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2009, 51, 537–571. [Google Scholar] [CrossRef]
- Chen, F.; Hegner, E.; Todt, W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc. Int. J. Earth Sci. 2000, 88, 791–802. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.-H.; Wang, X.-L.; Li, Q.-L.; Siebel, W. Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. Int. J. Earth Sci. 2007, 96, 1179–1194. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the Rare Earth Elements: Meteorite Study. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.-s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Liu, X.; Yan, J.; Yang, G. Geochronology and geochemistry of the Sikongshan intrusion in the Dabie Orogen, Central China: Implication for Mesozoic geodynamic background. Geol. J. 2020, 55, 3010–3035. [Google Scholar] [CrossRef]
- Lustrino, M.; Dallai, L. On the origin of EM–I end-member. Neues Jahrb. Mineral. Abh. 2003, 179, 85–100. [Google Scholar] [CrossRef]
- Moyen, J.F.; Stevens, G. Experimental Constraints on TTG Petrogenesis: Implications for Archean Geodynamics. Archean Geodynamics and Environments; American Geophysical Union (AGU): Washington, DC, USA, 2006. [Google Scholar]
- Clemens, J.; Watkins, J. The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib. Mineral. Petrol. 2001, 140, 600–606. [Google Scholar] [CrossRef]
- Rutter, M.J.; Wyllie, P.J. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust. Nature 1988, 331, 159–160. [Google Scholar] [CrossRef]
- Fornelli, A.; Piccarreta, G.; Del Moro, A.; Acquafredda, P. Multi-stage Melting in the Lower Crust of the Serre (Southern Italy). J. Petrol. 2002, 43, 2191–2217. [Google Scholar] [CrossRef]
- Dahlquist, J.A.; Galindo, C.; Pankhurst, R.J.; Rapela, C.W.; Alasino, P.H.; Saavedra, J.; Fanning, C.M. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos 2007, 95, 177–207. [Google Scholar] [CrossRef] [Green Version]
- Leake, B.E. Zoned garnets from the galway granite and its aplites. Earth Planet. Sci. Lett. 1967, 3, 311–316. [Google Scholar] [CrossRef]
- Villaros, A.; Stevens, G.; Buick, I.S. Tracking S-type granite from source to emplacement: Clues from garnet in the Cape Granite Suite. Lithos 2009, 112, 217–235. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Dale, J.; Holland, T.; Powell, R. Hornblende–garnet–plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contrib. Mineral. Petrol. 2000, 140, 353–362. [Google Scholar] [CrossRef]
- Patino Douce, A.E.; Beard, J.S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. J. Petrol. 1995, 36, 707–738. [Google Scholar] [CrossRef]
- Patino Douce, A.E.; Beard, J.S. Effects of P, f(O2) and Mg/Fe Ratio on Dehydration Melting of Model Metagreywackes. J. Petrol. 1996, 37, 999–1024. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, R.F.; Veveakis, E.; Regenauerlieb, K. Compaction-driven melt segregation in migmatites. Geology 2015, 43, 471–474. [Google Scholar] [CrossRef]
- Sawyer, E.W. Altas of Migmatites; NRC Research Press: Ottowa, ON, Canada, 2008; Volume 9. [Google Scholar]
- Slagstad, T.; Jamieson, R.A.; Culshaw, N.G. Formation, Crystallization, and Migration of Melt in the Mid-orogenic Crust: Muskoka Domain Migmatites, Grenville Province, Ontario. J. Petrol. 2005, 46, 893–919. [Google Scholar] [CrossRef]
- Berger, A.; Burri, T.; Alt-Epping, P.; Engi, M. Tectonically controlled fluid flow and water-assisted melting in the middle crust: An example from the Central Alps. Lithos 2008, 102, 598–615. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Jung, S.; Puxeddu, M.; Utzeri, D. Amphibole-bearing migmatites from the Variscan Belt of NE Sardinia, Italy: Partial melting of mid-Ordovician igneous sources. Lithos 2008, 105, 208–224. [Google Scholar] [CrossRef]
- Aubaud, C.; Hauri, E.H.; Hirschmann, M.M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 2004, 31, L20611. [Google Scholar] [CrossRef]
- Hirschmann, M.M.; Tenner, T.; Aubaud, C.; Withers, A.C. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys. Earth Planet. Inter. 2009, 176, 54–68. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- Johnston, A.D.; Wyllie, P.J. Constraints on the origin of Archean trondhjemites based on phase relationships of Nûk gneiss with H2O at 15 kbar. Contrib. Mineral. Petrol. 1988, 100, 35–46. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to Very Deep Continental Crust and Active Continental Margins. J. Petrol. 1996, 37, 661–691. [Google Scholar] [CrossRef]
- Brown, M. Metamorphic patterns in orogenic systems and the geological record. Geol. Soc. 2009, 318, 37–74. [Google Scholar] [CrossRef] [Green Version]
- Burri, T.; Berger, A.; Engi, M. Tertiary migmatites in the central Alps: Regional distribution, field relations, conditions of formation, and tectonic implications. Schweiz. Mineral. Petrogr. Mitt. 2005, 85, 215–232. [Google Scholar]
- Mogk, D.W. Ductile shearing and migmatization at mid-crustal levels in an Archaean high-grade gneiss belt, northern Gallatin Range, Montana, USA. J. Metamorph. Geol. 1992, 10, 427–438. [Google Scholar] [CrossRef]
- Bea, F.; Pereira, M.D.; Stroh, A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 1994, 117, 291–312. [Google Scholar] [CrossRef]
- Neiva, A.M.R. Distribution of trace elements in feldspars of granitic aplites and pegmatites from Alijó-Sanfins, northern Portugal. Mineral. Mag. 1995, 59, 35–45. [Google Scholar] [CrossRef]
- Harrison, M.T.; Grove, M.; Mckeegan, K.D.; Coath, C.D.; Lovera, O.M.; Fort, P.L. Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. J. Petrol. 1999, 40, 3–19. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Hermann, J.; Spandler, C.; Hack, A.; Korsakov, A.V. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 2006, 92, 399–417. [Google Scholar] [CrossRef]
- Ames, L.; Gaozhi, Z.; Baocheng, X. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 1996, 15, 472–489. [Google Scholar] [CrossRef]
- Wlillams, I.S.; Buick, I.S.; Cartwright, I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J. Metamorph. Geol. 1996, 14, 29–47. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim. Cosmochim. Acta 2003, 67, 2173–2187. [Google Scholar] [CrossRef]
- Burda, J.; Gawęda, A. Shear-influenced partial melting in the Western Tatra metamorphic complex: Geochemistry and geochronology. Lithos 2009, 110, 373–385. [Google Scholar] [CrossRef]
- Reno, B.L.; Piccoli, P.M.; Brown, M.; Trouw, R.A.J. In situ monazite (U–Th)–Pb ages from the Southern Brasília Belt, Brazil: Constraints on the high-temperature retrograde evolution of HP granulites. J. Metamorph. Geol. 2012, 30, 81–112. [Google Scholar] [CrossRef]
- Brown, M.; Solar, G.S. Shear-zone systems and melts: Feedback relations and self-organization in orogenic belts. J. Struct. Geol. 1998, 20, 211–227. [Google Scholar] [CrossRef]
- Brown, M.; Solar, G.S. Granite ascent and emplacement during contractional deformation in convergent orogens. J. Struct. Geol. 1998, 20, 1365–1393. [Google Scholar] [CrossRef]
- Marchildon, N.; Brown, M. Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: Implications for melt transfer at grain- to orogen-scale. Tectonophysics 2003, 364, 215–235. [Google Scholar] [CrossRef]
- Solar, G.S.; Brown, M. Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? J. Petrol. 2001, 42, 789–823. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.-C.; YANG, Y.; Deng, L. New U-Pb Geochronological Constraints on Formation and Evolution of the Susong Complex Zone in the Dabie Orogen. Acta Geol. Sin. (Engl. Ed.) 2017, 91, 1915–1918. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.-C.; Yang, Y.; Rolfo, F.; Groppo, C. Petrogenesis and tectonic significance of Neoproterozoic meta-basites and meta-granitoids within the central Dabie UHP zone, China: Geochronological and geochemical constraints. Gondwana Res. 2020, 78, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, Y.; Li, S.-G. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust. Geochim. Cosmochim. Acta 2014, 143, 115–131. [Google Scholar] [CrossRef]
- Ague, J.J. Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology 1991, 19, 855–858. [Google Scholar] [CrossRef]
- Becker, H.; Jochum, K.P.; Carlson, R.W. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chem. Geol. 1999, 160, 291–308. [Google Scholar] [CrossRef]
- Ferry, J.M. Mineral reactions and element migration during metamorphism of calcareous sediments from the Vassalboro Formation, south-central Maine. Am. Mineral. 1983, 68, 334–354. [Google Scholar]
- Tang, H.F.; Liu, C.Q.; Xie, G.G. Mass transfer and element mobility of rocks during regional metamorphism: A case study of metamorphosed pelites from the Shuangqiaoshan Group in Lushan. Geol. Rev. 2000, 46, 245–254. [Google Scholar]
- Ayres, M.; Harris, N. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chem. Geol. 1997, 139, 249–269. [Google Scholar] [CrossRef]
- Zeng, L.; Saleeby, J.B.; Asimow, P.D. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 2005, 33, 53–56. [Google Scholar] [CrossRef]
- Beard, J.S.; Lofgren, G.E. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. J. Petrol. 1991, 32, 365–401. [Google Scholar] [CrossRef]
- Watkins, J.M.; Clemens, J.D.; Treloar, P.J. Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 GPa. Contrib. Mineral. Petrol. 2007, 154, 91–110. [Google Scholar] [CrossRef]
- Sawyer, E.W. Criteria for the recognition of partial melting. Phys. Chem. Earthpart A Solid Earth Geod. 1999, 24, 269–279. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, Y.-C.; Li, Y.; Groppo, C.; Rolfo, F. Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China. Minerals 2020, 10, 618. https://doi.org/10.3390/min10070618
Yang Y, Liu Y-C, Li Y, Groppo C, Rolfo F. Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China. Minerals. 2020; 10(7):618. https://doi.org/10.3390/min10070618
Chicago/Turabian StyleYang, Yang, Yi-Can Liu, Yang Li, Chiara Groppo, and Franco Rolfo. 2020. "Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China" Minerals 10, no. 7: 618. https://doi.org/10.3390/min10070618
APA StyleYang, Y., Liu, Y. -C., Li, Y., Groppo, C., & Rolfo, F. (2020). Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China. Minerals, 10(7), 618. https://doi.org/10.3390/min10070618