Tellurium Minerals: Structural and Chemical Diversity and Complexity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Systems
2.2. Chemical, Structural and Crystallochemical Complexities
3. Results
3.1. Classification of Tellurium Minerals
3.2. Distribution of Te Minerals in Accordance with the Number of Species-Defining Elements
3.3. Chemical, Structural and Crystallochemical Complexities of Tellurium Minerals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hazen, R.M.; Grew, E.S.; Downs, R.T.; Golden, J.; Hystad, G. Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Can. Mineral. 2015, 53, 295–324. [Google Scholar] [CrossRef]
- Zhabin, A.G. Is there evolution of mineral species on Earth? Dokl. Akad. Nauk SSSR 1979, 247, 199–202. [Google Scholar]
- Zhabin, A.G. Problems of the mineral phylogeny. In New Ideas in Genetic Mineralogy; Nauka: Leningrad, Russia, 1983; pp. 7–12. (In Russian) [Google Scholar]
- Yushkin, N.P. Evolutionary ideas in modern mineralogy. Zap. Vsesoyuznogo Mineral. Obs. 1982, 111, 432–442. (In Russian) [Google Scholar]
- Yushkin, N.P. (Ed.) Minerals, Mineral Formation, Structure, Diversity and Evolution of the Mineral World, the Role of Minerals in the Origin of Life, Biomineral Interactions; Intitute of Geology of Komi Science Centre RAS: Syktyvkar, Russia, 2008; pp. 455–459. (In Russian) [Google Scholar]
- Krivovichev, S.V. Complexity, diversity and evolution of the mineral world: From Vernadsky to the present day. In Vernadsky and XXI Century: Geosphere, Biosphere, Noosphere and Symmetry; St. Ivan Rilski: Sofia, Bulgaria, 2013; pp. 26–32. (In Russian) [Google Scholar]
- Hazen, R.M.; Ewing, R.C.; Sverjensky, D.A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311. [Google Scholar] [CrossRef]
- Hazen, R.M.; Golden, J.; Downs, R.T.; Hystad, G.; Grew, E.S.; Azzolini, D.; Sverjensky, D.A. Mercury (Hg) mineral evolution: A mineralogical record of supercontinental assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 2012, 97, 1013–1042. [Google Scholar] [CrossRef]
- Hazen, R.M.; Hummer, D.R.; Hystad, G.; Downs, R.T.; Golden, J.J. Carbon mineral ecology: Predicting the undiscovered minerals of carbon. Am. Mineral. 2016, 101, 889–906. [Google Scholar] [CrossRef]
- Grew, E.S.; Hazen, R.M. Beryllium mineral evolution. Am. Mineral. 2014, 99, 999–1021. [Google Scholar] [CrossRef]
- Grew, E.S.; Hystad, G.; Hazen, R.M.; Krivovichev, S.V.; Gorelova, L.A. How many boron minerals occur in Earth’s upper crust? Am. Mineral. 2017, 102, 1573–1587. [Google Scholar] [CrossRef]
- Grew, E.S.; Krivovichev, S.V.; Hazen, R.M.; Hystad, G. Evolution of structural complexity in boron minerals. Can. Mineral. 2016, 54, 125–143. [Google Scholar] [CrossRef]
- Hazen, R.M.; Hystad, G.; Golden, J.J.; Hummer, D.R.; Liu, C.; Downs, R.T.; Morrison, S.M.; Grew, E.S. Cobalt mineral ecology. Am. Mineral. 2017, 102, 108–116. [Google Scholar] [CrossRef]
- Liu, C.; Hystad, G.; Golden, J.J.; Hummer, D.R.; Downs, R.T.; Morrison, S.M.; Ralph, J.P.; Hazen, R.M. Chromium mineral ecology. Am. Mineral. 2017, 102, 612–619. [Google Scholar] [CrossRef]
- Liu, C.; Eleish, A.; Hystad, G.; Golden, J.J.; Downs, R.T.; Morrison, S.M.; Hummer, D.R.; Ralph, J.P.; Fox, P.; Hazen, R.M. Analysis and visualization of vanadium mineral diversity and distribution. Am. Mineral. 2018, 103, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Grew, E.S.; Hystad, G.; Toapanta, M.P.; Eleish, A.; Ostroverkhova, A.; Golden, J.; Hazen, R.M. Lithium mineral evolution and ecology: Comparison with boron and beryllium. Eur. J. Mineral. 2019, 31, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Hazen, R.M.; Downs, R.T.; Eleish, A.; Fox, P.; Gagné, O.C.; Golden, J.J.; Grew, E.S.; Hummer, D.R.; Hystad, G.; Krivovichev, S.V.; et al. Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization. Engineering 2019, 5, 397–405. [Google Scholar] [CrossRef]
- Petrov, T.G. On the measure of complexity of geochemical systems from the viewpoint of information theory. Dokl. Akad. Nauk SSSR 1970, 191, 924–926. (In Russian) [Google Scholar]
- Bulkin, G.A. Complexity of geochemical systems and their equilibrium. Dokl. Akad. Nauk SSSR 1972, 204, 956–959. (In Russian) [Google Scholar]
- Yushkin, N.P. Theory and Methods of Mineralogy; Nauka: Leningrad, Russia, 1977. (In Russian) [Google Scholar]
- Krivovichev, S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. 2012, 68, 393–398. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013, 77, 275–326. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world. In Highlights in Mineralogical Crystallography; Danisi, R., Armbruster, T., Eds.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2015; pp. 31–73. [Google Scholar]
- Krivovichev, S.V. Ladders of information: What contributes to the structural complexity in inorganic crystals. Z. Krist.-Cryst. Mater. 2018, 233, 155–161. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr. 2016, 72, 274–276. [Google Scholar]
- Krivovichev, V.G.; Charykova, M.V. Classification of Mineral Systems; St. Petersburg University Press: Saint Petersburg, Russia, 2013; 196p. (In Russian) [Google Scholar]
- Krivovichev, V.G.; Charykova, M.V. Number of Minerals of Various Chemical elements: Statistics 2012 (a New Approach to an Old Problem). Zap. Ross. Mineral. Obs. 2013, 142, 36–42, (In Russian; English translation: Geol. Ore Depos. 2014, 56, 553–559). [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V. Mineral Systems, Their Types, and Distribution in Nature. I.; Khibiny, Lovozero, and the Mont Saint-Hilaire. Zap. Ross. Mineral. Obs. 2015, 144, 1–12, (In Russian; English translation: Geol. Ore Depos. 2016, 58, 551–558). [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V. Mineral and Physicochemical Systems of Evaporites: Geochemical and Thermodynamic Aspects. Zap. Ross. Mineral. Obs. 2016, 145, 30–43, (In Russian; English translation: Geol. Ore Depos. 2017, 59, 575–583). [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V. Mineral Systems, Their Types, and Distribution in Nature: 2. Products of Contemporary Fumarole Activity at Tolbachik Volcano (Russia) and Vulcano (Italy). Zap. Ross. Mineral. Obs. 2017, 146, 15–28, (In Russian; English translation: Geol. Ore Depos. 2017, 59, 677–686). [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V. Mineral Systems, Their Types, and Distribution in Nature: 3. Otto Mountain (USA) and Dragon (Bolivia) Deposits. Zap. Ross. Mineral. Obs. 2018, 147, 14–27, (In Russian; English translation: Geol. Ore Depos. 2019, 61, 589–597). [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V.; Krivovichev, S.V. The concept of mineral systems and its application to the study of mineral diversity and evolution. Eur. J. Mineral. 2018, 30, 219–230. [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V.; Krivovichev, S.V. Mineral systems based on the number of species-defining chemical elements in minerals: Their diversity, complexity, distribution and mineral evolution of Earth’s crust—A review. Zap. Ross. Mineral. Obs. 2020, 149, 1–22. (In Russian) [Google Scholar]
- Krivovichev, S.V.; Krivovichev, V.G.; Hazen, R.M. Structural and chemical complexity of minerals: Correlations and time evolution. Eur. J. Mineral. 2018, 30, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Krivovichev, V.G.; Krivovichev, S.V.; Charykova, M.V. Selenium Minerals: Structural and Chemical Diversity and Complexity. Minerals 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Charykova, M.V.; Krivovichev, V.G. Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores—A review. Mineral. Petrol. 2017, 111, 121–134. [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V.; Vishnevsky, A.V. The thermodynamics of selenium minerals in near-surface environments. Minerals 2017, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Chivers, T.; Laitinen, R. Tellurium: A maverick among the chalcogens. Chem. Soc. Rev. 2015, 44, 1725–1739. [Google Scholar] [CrossRef] [PubMed]
- Pasero, M. The New IMA List of Minerals. 2020. Available online: http://ima-cnmnc.nrm.se/imalist.htm (accessed on 15 March 2020).
- Ivanov, V.V.; Yushko-Zakharova, O.E. Tellurium, Geologicheskii Spravochnik po Siderofil’nym i Khalkofil’nym Elementam; (Geological Reference Book of Chalcophile and Siderophile Elements); Nedra: Moscow, Russia, 1989; pp. 353–424. (In Russian) [Google Scholar]
- Bindi, L.; Biagioni, C. A crystallographic excursion in the extraordinary world of minerals: The case of Cu- and Ag-rich sulfosalts. Acta Crystallogr. 2018, 74, 527–538. [Google Scholar] [CrossRef]
- Helmy, H.M.; Ballhaus, C.; Berndt, J.; Bockrath, C. Wohlgemuth-Ueberwasser, C. Formation of Pt, Pd and Ni tellurides: Experiments in sulfide–telluride systems. Contrib. Mineral. Petrol. 2007, 153, 577–591. [Google Scholar] [CrossRef]
- Missen, O.P.; Rama, R.; Mills, S.J.; Etschmanna, B.; Reith, F.; Shuster, J.; Smithe, D.J.; Bruggera, J. Love is in the Earth: A review of tellurium (bio)geochemistry in surface environments. Earth-Sci. Rev. 2020, 204, 103150. [Google Scholar] [CrossRef]
- Christy, A.G.; Mills, S.J.; Kampf, A.R.; Housley, R.M.; Thorne, B.; Marty, J. The relationship between mineral composition, crystal structure and paragenetic sequence: The case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA. Mineral. Mag. 2016, 80, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.J.; Christy, A.G. Revised values of the bond-valence parameters for TeIV-O, TeVI-O and TeIV-Cl. Acta Crystallogr. Sect. B 2013, 69, 145–149. [Google Scholar] [CrossRef]
- Christy, A.G. Anomalous mineralogical diversity in the Periodic Table, and its causes. Mineral. Mag. 2015, 79, 33–49. [Google Scholar] [CrossRef]
- Housley, R.M.; Kampf, A.R.; Mills, S.J.; Marty, J.; Thorne, B. The remarkable occurrence of rare secondary minerals at Otto Mountain near Baker, California—Including seven new species. Rocks. Miner. 2011, 86, 132–142. [Google Scholar] [CrossRef]
- Christy, A.G.; Mills, S.J.; Kampf, A.R. A review of the structural architecture of tellurium oxycompounds. Mineral. Mag. 2016, 80, 415–545. [Google Scholar] [CrossRef] [Green Version]
- Hazen, R.M.; Hystad, G.; Downs, R.T.; Golden, J.J.; Pires, A.J.; Grew, E.S. Earth’s “missing” minerals. Am. Mineral. 2015, 100, 2344–2347. [Google Scholar] [CrossRef]
- Christy, A.G.; Mills, S.J. Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: Application to TeIVO6 octahedra. Acta Crystallogr. Sect. B 2013, 69, 446–456. [Google Scholar]
- Krivovichev, V.G.; Charykova, M.V. Termodinamika Mineral’nykh Ravnovesii v Sistemakh s Toksichnymi Komponentami. I. Selen; (Thermodynamics of Mineral Equilibria in Systems with Toxic Components. I. Selenium); St. Petersburg University Press: Saint Petersburg, Russia, 2006; 132p. (In Russian) [Google Scholar]
- Huheey, J.E. Inorganic Chemistry: Principles of Structure and Reactivity; Harper & Row: New York, NY, USA, 1983; 936p. [Google Scholar]
- Korolkov, D.V.; Skorobogatov, G.A. Theoretical Chemistry; St. Petersburg University Press: Saint Petersburg, Russia, 2004; 655р. (In Russian) [Google Scholar]
- Mandarino, J.A.; Nickel, E.H.; Cesbron, F. Rules of procedure of the Commission on New Minerals and Mineral Names, International Mineralogical Association. Can. Mineral. 1984, 22, 367–368. [Google Scholar] [CrossRef]
- Nickel, E.H. The definition of a mineral. Can. Miner. 1995, 33, 689–690. [Google Scholar]
- Nickel, E.H.; Grice, J.D. The IMA Commission on New Minerals and Mineral Names: Procedures and Guidelines on Mineral Nomenclature. Can. Miner. 1998, 36, 91–926. [Google Scholar]
- Nickel, E.H.; Mandarino, J.A. Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature. Am. Miner. 1987, 72, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, F.C. The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can. Mineral. 2002, 40, 699–710. [Google Scholar] [CrossRef]
- Hatert, F.; Burke, E.A.J. The IMA-CNMNC dominant-constituent rule revised and extended. Can. Mineral. 2008, 46, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Bulakh, A.G.; Zolotarev, A.A.; Krivovichev, V.G. Structures, Isomorphism, Formulae, Classification of Minerals; St. Petersburg University Press: Saint Petersburg, Russia, 2014; 133p. (In Russian) [Google Scholar]
- Pankova, Y.A.; Gorelova, L.A.; Krivovichev, S.V.; Pekov, I.V. The crystal structure of ginorite, Ca2[B14O20(OH)6](H2O)5, and the analysis of dimensional reduction and structural complexity in the CaO-B2O3-H2O system. Eur. J. Mineral. 2018, 30, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Mills, S.J.; Hatert, F.; Nickel, E.H.; Ferraris, G. The standardisation of mineral group hierarchies: Application to recent nomenclature proposals. Eur. J. Mineral. 2009, 21, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Strunz, H.; Nickel, E.H. Strunz Mineralogical Tables, 9th ed.; Schweizerbart’sche Verlagsbuchhandlung: Berlin/Stuttgart, Germany, 2001; 870p. [Google Scholar]
- Bindi, L.; Cipriani, C. Mazzettiite, Ag3HgPbSbTe5, a new mineral species from Findley Gulch, Saguache County, Colorado, USA. Can. Mineral. 2004, 42, 1739–1743. [Google Scholar] [CrossRef] [Green Version]
- Stanley, C.J.; Criddle, A.J.; Chisholm, J.E. Benleonardite, a new mineral from the Bambolla mine, Moctezuma, Sonora, Mexico. Mineral. Mag. 1986, 50, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.A. Cuzticite and eztlite, two new tellurium minerals from Moctezuma, Mexico. Mineral. Mag. 1982, 46, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Lipovetskii, A.G.; Borodaev, Y.S.; Zav’yalov, E.N. Aleksite, PbBi2Te2S2, a new mineral. Zap. Vsesoyuznogo Mineral. Obs. 1978, 107, 315–321. (In Russian) [Google Scholar]
- Spiridonov, E.M.; Chvileva, T.N. Bezsmertnovite Au4Cu(Te,Pb); a new mineral from the zone of oxidation of deposits of the Far East. Dokl. Akad. Nauk SSSR 1979, 249, 185–189. (In Russian) [Google Scholar]
- Spiridonov, E.M.; Bezsmertnaya, M.S.; Chileva, T.N.; Bezsmertny, V.V. Bilibinskite, Au3Cu2PbTe2, a new mineral of gold-telluride deposits. Zap. Vsesoyuznogo Mineral. Obs. 1978, 107, 310–315. (In Russian) [Google Scholar] [CrossRef]
- Tait, K.T.; Dicecco, V.; Ball, N.A.; Hawthorne, F.C.; Kampf, A.R. Backite, Pb2Al(TeO6)Cl, a new tellurate mineral from the Grand Central mine, Tombstone Hills, Cochise County, Arizona: Description and crystal structure. Can. Mineral. 2015, 52, 935–942. [Google Scholar] [CrossRef]
- Popova, V.I.; Popov, V.A.; Rudashevskiy, N.S.; Glavatskikh, S.F.; Polyakov, V.O.; Bushmakin, A.F. Nabokoite Cu7TeO4(SO4)5·KCl and atlasovite Cu6Fe3+Bi3+O4(SO4)5·KCl. New minerals of volcanic exhalations. Zap. Vsesoyuznogo Mineral. Obs. 1987, 116, 358–367. [Google Scholar]
- Kovalenker, V.A.; Begizov, V.D.; Evstigneeva, T.L.; Troneva, N.V.; Ryabikin, V.A. Maslovite, PtBiTe: A new mineral from the October copper-nickel deposit. Geol. Rudn. Mestorozhdenii 1979, 21, 94–104. (In Russian) [Google Scholar]
- Subbotin, V.V.; Vymazalová, A.; Laufek, F.; Savchenko, Y.E.; Stanley, C.J.; Gabov, D.A.; Plášil, J. Mitrofanovite, Pt3Te4, a new mineral from the East Chuarvy deposit, Fedorovo-Pana intrusion, Kola Peninsula, Russia. Mineral. Mag. 2019, 83, 523–530. [Google Scholar] [CrossRef]
- Kingston, G.A. The occurrence of platinoid bismuthotellurides in the Merensky Reef at Rustenburg platinum mine in the western Bushveld. Mineral. Mag. 1966, 35, 815–834. [Google Scholar] [CrossRef]
- Hawley, J.E.; Berry, L.G. Michenerite and froodite, palladium bismuthide minerals [Ontario]. Can. Mineral. 1958, 6, 200–209. [Google Scholar]
- Kalbskopf, R. Synthese und kristallstruktur von Cu12–xTe4S13, dem tellur-endglied der fahlerze. Tscherm. Miner. Petrogr. Mitt. 1974, 21, 1–10. (In German) [Google Scholar] [CrossRef]
- Makovicky, E.; Karup-Moller, S. Exploratory studies of substitutions in the tetrahedrite/tennantite—Goldfieldite solid solution. Can. Mineral. 2017, 55, 233–244. [Google Scholar] [CrossRef]
- Wall, F.J. Statistical Data Analysis Handbook; McGraw-Hill Inc.: New York, NY, USA, 1986; 546p. [Google Scholar]
N | All Minerals | O-Free | O-Bearing | |||
---|---|---|---|---|---|---|
mi | pi | mi | pi | mi | pi | |
1 | 1 | 0.6 | 1 | 1.2 | - | - |
2 | 33 | 18.7 | 31 | 35.6 | 2 | 2.3 |
3 | 61 | 34.7 | 42 | 48.3 | 19 | 21.3 |
4 | 35 | 29.9 | 8 | 9.2 | 27 | 30.3 |
5 | 30 | 17.0 | 5 | 5.7 | 25 | 28.1 |
6 | 16 | 9.1 | - | - | 16 | 18.0 |
Total | 176 | 100.0 | 87 | 100.0 | 89 | 100.0 |
Groups | Elements | All | O-Free | O-Bearing | * Ki |
---|---|---|---|---|---|
1 | Ag | 20 | 20 | - | - |
Pd | 16 | 16 | - | - | |
Au | 13 | 13 | - | - | |
Se | 8 | 8 | - | - | |
Ir, Pt | 3 | 3, each | - | - | |
Sn | 2 | 2 | - | - | |
Co, Ge, Tl | 1 | 1 | - | - | |
2 | Sb | 8 | 7 | 1 | 7.00 |
Ni | 7 | 6 | 1 | 6.00 | |
Hg | 5 | 4 | 1 | 4.00 | |
Bi | 31 | 24 | 7 | 3.43 | |
S | 29 | 18 | 11 | 1.64 | |
As | 6 | 3 | 3 | 1.00 | |
Pb | 43 | 14 | 29 | 0.48 | |
Cu | 48 | 13 | 33 | 0.39 | |
Cl | 13 | 2 | 11 | 0.18 | |
Fe | 20 | 2 | 18 | 0.11 | |
3 | O | 89 | - | 89 | - |
H | 48 | - | 48 | - | |
Zn | 11 | - | 11 | - | |
Ca | 8 | - | 8 | - | |
Mg | 7 | - | 7 | - | |
Mn | 6 | - | 6 | - | |
U | 4 | - | 4 | - | |
C | 4 | - | 4 | - | |
Al | 2 | - | 2 | - | |
K | 2 | - | 2 | - | |
P, Cr, Mo, Si, Ti, V, W | 1 | - | 1, each | - |
N | m | chemIG | mi | strIG | chem+strIG | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[bits/atom] | [bits/f.u.] | [bits/atom] | [bits/cell] | [bits/atom] | [bits/f.u.cell] | |||||||||
1 | 1 | 0 | 0 | 1 | 0 | 0 | ||||||||
2 | 36 | 0.96 | 0.02 | 7.0 | 1.67 | 29 | 2.07 | 0.24 | 72.1 | 25.9 | 3.3 | 0.3 | 82.0 | 27.9 |
3 | 58 | 1.38 | 0.02 | 12.8 | 1.17 | 37 | 2.44 | 0.16 | 81.2 | 13.3 | 3.8 | 0.1 | 94.9 | 13.9 |
4 | 35 | 1.63 | 0.03 | 26.2 | 2.68 | 18 | 3.10 | 0.21 | 168.3 | 34.1 | 4.7 | 0.2 | 190.4 | 35.4 |
5 | 29 | 1.79 | 0.03 | 50.1 | 6.62 | 21 | 3.57 | 0.18 | 199.4 | 36.4 | 5.3 | 0.2 | 245.2 | 41.6 |
6 | 16 | 1.90 | 0.04 | 101.8 | 18.77 | 11 | 3.58 | 0.22 | 283.3 | 41.2 | 5.5 | 0.2 | 371.5 | 39.4 |
Complexities | O-free | O-bearing | Student’s t-test | |||||
---|---|---|---|---|---|---|---|---|
mi | mi | t | p | |||||
chemIG [bits/atom] | 87 | 1.28 | 0.05 | 89 | 1.62 | 0.03 | −6.92 | <0.0001 |
strIG [bits/atom] | 56 | 2.19 | 0.16 | 63 | 3.20 | 0.12 | −5.10 | <0.0001 |
chemIG.total [bits/f.u.] | 87 | 11.4 | 1.1 | 89 | 45.9 | 5.2 | −6.38 | <0.0001 |
strIG.total [bits/cell] | 56 | 69.3 | 15.6 | 63 | 183.9 | 18.5 | −4.65 | <0.0001 |
chem+strIG [bits/atom] | 56 | 3.69 | 0.20 | 63 | 4.82 | 0.14 | −4.71 | <0.0001 |
chem+strIG.total [bits/f.u.,cell] | 56 | 81.2 | 16.6 | 63 | 223.8 | 21.1 | −5.19 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivovichev, V.G.; Krivovichev, S.V.; Charykova, M.V. Tellurium Minerals: Structural and Chemical Diversity and Complexity. Minerals 2020, 10, 623. https://doi.org/10.3390/min10070623
Krivovichev VG, Krivovichev SV, Charykova MV. Tellurium Minerals: Structural and Chemical Diversity and Complexity. Minerals. 2020; 10(7):623. https://doi.org/10.3390/min10070623
Chicago/Turabian StyleKrivovichev, Vladimir G., Sergey V. Krivovichev, and Marina V. Charykova. 2020. "Tellurium Minerals: Structural and Chemical Diversity and Complexity" Minerals 10, no. 7: 623. https://doi.org/10.3390/min10070623
APA StyleKrivovichev, V. G., Krivovichev, S. V., & Charykova, M. V. (2020). Tellurium Minerals: Structural and Chemical Diversity and Complexity. Minerals, 10(7), 623. https://doi.org/10.3390/min10070623