Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments
Abstract
:1. Introduction
2. Geological Setting
3. Experimental Methodology
3.1. X-ray Diffraction and Deconvolution
3.2. Transmission Electron Microscopy
3.3. Secondary Ion Mass Spectrometry
3.3.1. Sample Preparation
3.3.2. Boron Content and Isotope Analysis
3.4. Computational Methodology
Models
4. Results
4.1. Clay Mineralogy
4.2. Boron Content and Isotopes
4.3. Computational Modeling
5. Discussion
5.1. Clay Mineralogy and Diagenetic Evolution of Deep Sediments in the Gulf of Cádiz
5.2. B Isotopes and Origin of Fluids in the Gulf of Cádiz
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milkov, A.V. Worldwide Distribution of Submarine Mud Volcanoes and Associated Gas Hydrates. Mar. Geol. 2000, 167, 29–42. [Google Scholar] [CrossRef]
- Kopf, A.J. Significance of Mud Volcanism. Rev. Geophys. 2002, 40, 1005. [Google Scholar] [CrossRef] [Green Version]
- Etiope, G.; Feyzullayev, A.; Baciu, C.L. Terrestrial Methane Seeps and Mud Volcanoes: A Global Perspective of Gas Origin. Mar. Pet. Geol. 2009, 26, 333–344. [Google Scholar] [CrossRef]
- Mazzini, A.; Etiope, G. Mud Volcanism: An Updated Review. Earth Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Bonini, M. Mud Volcanoes: Indicators of Stress Orientation and Tectonic Controls. Earth Sci. Rev. 2012, 115, 121–152. [Google Scholar] [CrossRef]
- Dimitrov, L.I. Mud Volcanoes-the Most Important Pathway for Degassing Deeply Buried Sediments. Earth Sci. Rev. 2002, 59, 49–76. [Google Scholar] [CrossRef]
- Bonini, M.; Tassi, F.; Feyzullayev, A.-A.; Aliyev, C.S.; Capecchiacci, F.; Minissale, A. Deep Gases Discharged from Mud Volcanoes of Azerbaijan: New Geochemical Evidence. Mar. Pet. Geol. 2013, 43, 450–463. [Google Scholar] [CrossRef]
- Mazzini, A. Mud Volcanism: Processes and Implications. Mar. Pet. Geol. 2009, 26, 1677–1680. [Google Scholar] [CrossRef]
- Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea). Minerals 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Loher, M.; Pape, T.; Marcon, Y.; Römer, M.; Wintersteller, P.; Praeg, D.; Torres, M.; Sahling, H.; Bohrmann, G. Mud Extrusion and Ring-Fault Gas Seepage—Upward Branching Fluid Discharge at a Deep-Sea Mud Volcano. Sci. Rep. 2018, 8, 6275. [Google Scholar] [CrossRef]
- Etiope, G.; Milkov, A.V. A New Estimate of Global Methane Flux from Onshore and Shallow Submarine Mud Volcanoes to the Atmosphere. Environ. Geol. 2004, 46, 997–1002. [Google Scholar] [CrossRef]
- Etiope, G. Natural Gas. Seepage: The Earth’s Hydrocarbon Degassing; Springer-Verlag: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- López-Rodríguez, C.; De Lange, G.J.; Comas, M.; Martínez-Ruiz, F.; Nieto, F.; Sapart, C.J.; Mogollón, J.M. Recent, Deep-Sourced Methane/Mud Discharge at the Most Active Mud Volcano in the Western Mediterranean. Mar. Geol. 2019, 408. [Google Scholar] [CrossRef]
- Hower, J.; Eslinger, E.V.; Hower, M.E.; Perry, E.A. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemical Evidence. Bull. Geol. Soc. Am. 1976, 87, 725–737. [Google Scholar] [CrossRef]
- Abid, I.A.; Hesse, R.; Harper, J.D. Variations in Mixed-Layer Illite/Smectite Diagenesis in the Rift and Post-Rift Sediments of the Jeanne d’Arc Basin, Grand Banks Offshore Newfoundland, Canada. Can. J. Earth Sci. 2004, 41, 401–429. [Google Scholar] [CrossRef]
- Arostegui, J.; Sangüesa, F.J.; Nieto, F.; Uriarte, J.A. Thermal Models and Clay Diagenesis in the Tertiary-Cretaceous Sediments of the Alava Block (Basque-Cantabrian Basin, Spain). Clay Miner. 2006, 41, 791–809. [Google Scholar] [CrossRef] [Green Version]
- Velde, B.; Vasseur, G. Estimation of the Diagenetic Smectite to Illite Transformation in Time-Temperature Space. Am. Miner. 1992, 77, 967–976. [Google Scholar]
- Altaner, S.P.; Ylagan, R.F. Comparison of Structural Models of Mixed-Layer Illite/Smectite and Reaction Mechanisms of Smectite Illitization. Clays Clay Miner. 1997, 45, 517–533. [Google Scholar] [CrossRef]
- Merriman, R.J.; Peacor, D.R. Very Low-Grade Metapelites: Mineralogy, Microfabrics and Measuring Reaction Progress. In Low-Grade Metamorphism; Martin, F., Doug, R., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 1999; pp. 10–60. [Google Scholar] [CrossRef]
- Goldschmidt, V.M.; Peters, C. The Geochemistry of Boron. In The Geochemistry of Boron; Walker, C.T., Ed.; Dowden, Hutchinson and Ross: Stroudsburg, PA, USA, 1932. [Google Scholar]
- Harder, H. Boron Content of Sediments as a Tool in Facies Analysis. Sediment. Geol. 1970, 4, 153–175. [Google Scholar] [CrossRef]
- Spivack, A.J.; Palmer, M.R.; Edmond, J.M. The Sedimentary Cycle of the Boron Isotopes. Geochim. Cosmochim. Acta 1987, 51, 1939–1949. [Google Scholar] [CrossRef]
- Govett, G.J.S. Introduction to Exploration Geochemistry: AA Levinson. J. Geol. 1976, 84, 503–504. [Google Scholar] [CrossRef]
- Williams, L.B.; Hervig, R.L.; Holloway, J.R.; Hutcheon, I. Boron Isotope Geochemistry during Diagenesis. Part I. Experimental Determination of Fractionation during Illitization of Smectite. Geochim. Cosmochim. Acta 2001, 65, 1769–1782. [Google Scholar] [CrossRef]
- Williams, L.B.; Hervig, R.L. Exploring Intra-Crystalline B-Isotope Variations in Mixed-Layer Illite-Smectite. Am. Mineral. 2002, 87, 1564–1570. [Google Scholar] [CrossRef]
- Palmer, M.R.; Spivack, A.J.; Edmond, J.M. Temperature and PH Controls over Isotopic Fractionation during Adsorption of Boron on Marine Clay. Geochim. Cosmochim. Acta 1987, 51, 2319–2323. [Google Scholar] [CrossRef]
- Palmer, M.R.; Swihart, G.H. Boron Isotope Geochemistry: An Overview. Rev. Mineral. 1996, 33, 708–744. [Google Scholar]
- Hervig, R.L.; Moore, G.M.; Williams, L.B.; Peacock, S.M.; Holloway, J.R.; Roggensack, K. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. Am. Mineral. 2002, 87, 769–774. [Google Scholar] [CrossRef]
- Pennisi, M.; Bianchini, G.; Kloppmann, W.; Muti, A. Chemical and Isotopic (B, Sr) Composition of Alluvial Sediments as Archive of a Past Hydrothermal Outflow. Chem. Geol. 2009, 266, 123–134. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Agyei, E.K.; McMullen, C.C. Boron Isotopic Fractionation during Clay Adsorption from Sea-Water. Earth Planet. Sci. Lett. 1969, 6, 1–5. [Google Scholar] [CrossRef]
- Keren, R.; Mezuman, U. Boron Adsorption by Clay Minerals Using a Phenomenological Equation. Clays Clay Miner. 1981, 29, 198–204. [Google Scholar] [CrossRef]
- Środoń, J. Evolution of Boron and Nitrogen Content During Illitization of Bentonites. Clays Clay Miner. 2010, 58, 743–756. [Google Scholar] [CrossRef]
- Williams, L.B.; Clauer, N.; Hervig, R.L. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rockstle. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Mineralogical Association of Canada Short Course: Québec, QC, Canada, 2012; pp. 55–73. [Google Scholar]
- Williams, L.B.; Środoń, J.; Huff, W.D.; Clauer, N.; Hervig, R.L. Light Element Distributions (N, B, Li) in Baltic Basin Bentonites Record Organic Sources. Geochim. Cosmochim. Acta 2013, 120, 582–599. [Google Scholar] [CrossRef]
- Bobos, I.; Williams, L.B. Boron, Lithium and Nitrogen Isotope Geochemistry of NH4-Illite Clays in the Fossil Hydrothermal System of Harghita Bãi, East Carpathians, Romania. Chem. Geol. 2017, 473, 22–39. [Google Scholar] [CrossRef]
- Köster, M.H.; Williams, L.B.; Kudejova, P.; Gilg, H.A. The Boron Isotope Geochemistry of Smectites from Sodium, Magnesium and Calcium Bentonite Deposits. Chem. Geol. 2019, 510, 166–187. [Google Scholar] [CrossRef]
- Eberl, D.D. Three Zones for Illite Formation during Burial Diagenesis and Metamorphism. Clays Clay Miner. 1993, 41, 26–37. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Donadio, D.; Hernández-Laguna, A.; Sainz-Díaz, C.I. DFT Research on the Dehydroxylation Reaction of Pyrophyllite 2. Characterization of Reactants, Intermediates, and Transition States along the Reaction Path. J. Phys. Chem. A 2008, 112, 6373–6383. [Google Scholar] [CrossRef] [PubMed]
- Sainz-Diaz, C.I.; Escamilla-Roa, E.; Hernández-Laguna, A. Quantum Mechanical Calculations of Trans-Vacant and Cis-Vacant Polymorphism in Dioctahedral 2:1 Phyllosilicates. Am. Mineral. 2005, 90, 1827–1834. [Google Scholar] [CrossRef]
- Palin, E.J.; Dove, M.T.; Hernández-Laguna, A.; Sainz-Díaz, C.I. A Computational Investigation of the Al/Fe/Mg Order-Disorder Behavior in the Dioctahedral Sheet of Phyllosilicates. Am. Mineral. 2004, 89, 164–175. [Google Scholar] [CrossRef]
- Ay, A.N.; Zumreoglu-Karan, B.; Kalinichev, A.G.; Rives, V.; Trujillano, R.; Temel, A. Layered Double Hydroxide–Borate Composites Supported on Magnetic Nanoparticles: Preparation, Characterization and Molecular Dynamics Simulations. J. Porous Mater. 2020, 27, 735–743. [Google Scholar] [CrossRef]
- Hensen, C.; Nuzzo, M.; Hornibrook, E.; Pinheiro, L.M.; Bock, B.; Magalhães, V.H.; Brückmann, W. Sources of Mud Volcano Fluids in the Gulf of Cadiz—Indications for Hydrothermal Imprint. Geochim. Cosmochim. Acta 2007, 71, 1232–1248. [Google Scholar] [CrossRef]
- Nuzzo, M.; Hornibrook, E.R.C.; Gill, F.; Hensen, C.; Pancost, R.D.; Haeckel, M.; Reitz, A.; Scholz, F.; Magalhães, V.H.; Brückmann, W.; et al. Origin of Light Volatile Hydrocarbon Gases in Mud Volcano Fluids, Gulf of Cadiz—Evidence for Multiple Sources and Transport Mechanisms in Active Sedimentary Wedges. Chem. Geol. 2009, 266, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Scholz, F.; Hensen, C.; Reitz, A.; Romer, R.L.; Liebetrau, V.; Meixner, A.; Weise, S.M.; Haeckel, M. Isotopic Evidence (87Sr/86Sr, Δ7Li) for Alteration of the Oceanic Crust at Deep-Rooted Mud Volcanoes in the Gulf of Cadiz, NE Atlantic Ocean. Geochim. Cosmochim. Acta 2009, 73, 5444–5459. [Google Scholar] [CrossRef] [Green Version]
- Scholz, F.; Hensen, C.; De Lange, G.J.; Haeckel, M.; Liebetrau, V.; Meixner, A.; Reitz, A.; Romer, R.L. Lithium Isotope Geochemistry of Marine Pore Waters – Insights from Cold Seep Fluids. Geochim. Cosmochim. Acta 2010, 74, 3459–3475. [Google Scholar] [CrossRef] [Green Version]
- Haffert, L.; Haeckel, M.; Liebetrau, V.; Berndt, C.; Hensen, C.; Nuzzo, M.; Reitz, A.; Scholz, F.; Schönfeld, J.; Perez-Garcia, C.; et al. Fluid Evolution and Authigenic Mineral Paragenesis Related to Salt Diapirism—The Mercator Mud Volcano in the Gulf of Cadiz. Geochim. Cosmochim. Acta 2013, 106, 261–286. [Google Scholar] [CrossRef]
- Schmidt, C.; Burwicz, E.; Hensen, C.; Wallmann, K.; Martínez-Loriente, S.; Gràcia, E. Genesis of Mud Volcano Fluids in the Gulf of Cadiz Using a Novel Basin-Scale Model Approach. Geochim. Cosmochim. Acta 2018, 243, 186–204. [Google Scholar] [CrossRef]
- Williams, L.B.; Crawford, E.W.; Hervig, R.L. Tracing Hydrocarbons in Gas Shale Using Lithium and Boron Isotopes: Denver Basin USA, Wattenberg Gas Field. Chem. Geol. 2015, 417, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Teichert, Z.; Bose, M.; Williams, L.B. Lithium Isotope Compositions of U.S. Coals and Source Rocks: Potential Tracer of Hydrocarbons. Chem. Geol. 2020, 549, 119694. [Google Scholar] [CrossRef]
- Maldonado, A.; Somoza, L.; Pallarés, L. The Betic Orogen and the Iberian-African Boundary in the Gulf of Cadiz: Geological Evolution (Central North Atlantic). Mar. Geol. 1999, 155, 9–43. [Google Scholar] [CrossRef]
- Medialdea, T.; Vegas, R.; Somoza, L.; Vázquez, J.T.; Maldonado, A.; Díaz-Del-Río, V.; Maestro, A.; Córdoba, D.; Fernández-Puga, M.C. Structure and Evolution of the “Olistostrome” Complex of the Gibraltar Arc in the Gulf of Cádiz (Eastern Central Atlantic): Evidence from Two Long Seismic Cross-Sections. Mar. Geol. 2004, 209, 173–198. [Google Scholar] [CrossRef]
- Casas, D.; Ercilla, G.; Baraza, J. Acoustic Evidences of Gas in the Continental Slope Sediments of the Gulf of Cadiz (E Atlantic). Geo Mar. Lett. 2003, 23, 300–310. [Google Scholar] [CrossRef]
- Somoza, L.; Díaz del Río, V.; León, R.; Ivanov, M.; Fernández-Puga, M.C.; Gardner, J.M.; Hernández-Molina, F.J.; Pinheiro, L.M.; Rodero, J.; Lobato, A.; et al. Seabed Morphology and Hydrocarbon Seepage in the Gulf of Cádiz Mud Volcano Area: Acoustic Imagery, Multibeam and Ultra-High Resolution Seismic Data. Mar. Geol. 2003, 195, 153–176. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Puga, M.C.; Vázquez, J.T.; Somoza, L.; Díaz del Rio, V.; Medialdea, T.; Mata, M.P.; León, R. Gas-Related Morphologies and Diapirism in the Gulf of Cádiz. Geo Mar. Lett. 2007, 27, 213–221. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Medialdea, T.; Vázquez, J.T.; González, F.J.; López-González, N.; Casas, D.; del Pilar Mata, M.; del Fernández-Puga, M.C.; Giménez-Moreno, C.J.; et al. New Discoveries of Mud Volcanoes on the Moroccan Atlantic Continental Margin (Gulf of Cádiz): Morpho-Structural Characterization. Geo Mar. Lett. 2012, 32, 473–488. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Medialdea, T.; González, F.J.; Díaz-del-Río, V.; Fernández-Puga, M.C.; Maestro, A.; Mata, M.P. Sea-Floor Features Related to Hydrocarbon Seeps in Deepwater Carbonate-Mud Mounds of the Gulf of Cádiz: From Mud Flows to Carbonate Precipitates. Geo Mar. Lett. 2007, 27, 237–247. [Google Scholar] [CrossRef]
- Palomino, D.; López-González, N.; Vázquez, J.-T.; Fernández-Salas, L.-M.; Rueda, J.-L.; Sánchez-Leal, R.; Díaz-del-Río, V. Multidisciplinary Study of Mud Volcanoes and Diapirs and Their Relationship to Seepages and Bottom Currents in the Gulf of Cádiz Continental Slope (Northeastern Sector). Mar. Geol. 2016, 378, 196–212. [Google Scholar] [CrossRef]
- Toyos, M.H.; Medialdea, T.; León, R.; Somoza, L.; González, F.J.; Meléndez, N. Evidence of Episodic Long-Lived Eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo Mud Volcanoes, Gulf of Cádiz. Geo Mar. Lett. 2016, 36, 197–214. [Google Scholar] [CrossRef]
- Carvalho, L.; Monteiro, R.; Figueira, P.; Mieiro, C.; Almeida, J.; Pereira, E.; Magalhães, V.; Pinheiro, L.; Vale, C. Vertical Distribution of Major, Minor and Trace Elements in Sediments from Mud Volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba Fronts in Upper Layers. Deep Sea Res. Part. I Oceanogr. Res. Pap. 2018, 131, 133–143. [Google Scholar] [CrossRef]
- Díaz-del-Río, V.; Somoza, L.; Martínez-Frias, J.; Mata, M.P.; Delgado, A.; Hernandez-Molina, F.J.; Lunar, R.; Martín-Rubí, J.A.; Maestro, A.; Fernández-Puga, M.C.; et al. Vast Fields of Hydrocarbon-Derived Carbonate Chimneys Related to the Accretionary Wedge/Olistostrome of the Gulf of Cádiz. Mar. Geol. 2003, 195. [Google Scholar] [CrossRef]
- Martín-Puertas, C.; Mata, M.P.; Fernández-Puga, M.C.; Díaz del Río, V.; Vázquez, J.T.; Somoza, L. A Comparative Mineralogical Study of Gas-Related Sediments of the Gulf of Cádiz. Geo Mar. Lett. 2007, 27. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis—Advanced Course. In Soil Chemical Analysis: Advanced Course, 2nd ed.; M.L.Jackson: Madison, WI, USA, 1969. [Google Scholar]
- Huff, W.D. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Clays Clay Miner. 1990, 38, 448. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C.J. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Arostegui, J.; Arroyo, X.; Nieto, F.; Bauluz, B. Evolution of Clays in Cretaceous Marly Series (Alava Block, Basque Cantabrian Basin, Spain): Diagenesis and Detrital Input Control. Minerals 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Hervig, R.L. Boron Mineralogy, Petrology and Geochemistry. In Reviews in Mineralogy; American Mineralogist, Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1996; Volume 33, pp. 789–800. [Google Scholar]
- Chaussidon, M.; Robert, F.; Mangin, D.; Hanon, P.; Rose, E.F. Analytical Procedures for the Measurement of Boron Isotope Compositions by Ion Microprobe in Meteorites and Mantle Rocks. Geostand. Geoanal. Res. 1997, 21, 7–17. [Google Scholar] [CrossRef]
- You, C.F.; Spivack, A.J.; Gieskes, J.M.; Martin, J.B.; Davisson, M.L. Boron Contents and Isotopic Compositions in Pore Waters: A New Approach to Determine Temperature Induced Artifacts—Geochemical Implications. Mar. Geol. 1996, 129, 351–361. [Google Scholar] [CrossRef]
- Hingston, F. Reactions between Boron and Clays. Soil Res. 1964, 2, 83–95. [Google Scholar] [CrossRef]
- Zhang, L.; Chan, L.-H.; Gieskes, J.M. Lithium Isotope Geochemistry of Pore Waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim. Cosmochim. Acta 1998, 62, 2437–2450. [Google Scholar] [CrossRef]
- Catanzaro, E. Boric Acid: Isotopic and Assay Standard Reference Materials; National Bureau of Standards Institute for Materials Research: Washington, DC, USA, 1970. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; et al. Gaussian 03: Revision B.05. Available online: https://gaussian.com/g03citation/ (accessed on 1 January 2003).
- Soler, J.M.; Artacho, E.; Gale, J.D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Troullier, N.; Martins, J. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B Condens. Matter 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Hernández-Laguna, A.; Escamilla-Roa, E.; Timón, V.; Dove, M.T.; Sainz-Díaz, C.I. DFT Study of the Cation Arrangements in the Octahedral and Tetrahedral Sheets of Dioctahedral 2:1 Phyllosilicates. Phys. Chem. Miner. 2006, 33, 655–666. [Google Scholar] [CrossRef]
- Martos-Villa, R.; Guggenheim, S.; Mata, M.P.; Sainz-Díaz, C.I.; Nieto, F. Interaction of Methane Hydrate Complexes with Smectites: Experimental Results Compared to Molecular Models. Am. Mineral. 2014, 99. [Google Scholar] [CrossRef]
- Martos-Villa, R.; Francisco-Márquez, M.; Mata, M.P.; Sainz-Díaz, C.I. Crystal Structure, Stability and Spectroscopic Properties of Methane and CO2 Hydrates. J. Mol. Graph. Model. 2013, 44. [Google Scholar] [CrossRef]
- Martos-Villa, R.; Mata, M.P.; Sainz-Díaz, C.I. Characterization of CO2 and Mixed Methane/CO2 Hydrates Intercalated in Smectites by Means of Atomistic Calculations. J. Mol. Graph. Model. 2014, 49. [Google Scholar] [CrossRef]
- Ortega-Castro, J.; Hernández-Haro, N.; Hernández-Laguna, A.; Sainz-Díaz, C.I. DFT Calculation of Crystallographic Properties of Dioctahedral 2:1 Phyllosilicates. Clay Miner. 2008, 43, 351–361. [Google Scholar] [CrossRef]
- Tossell, J.A. Theoretical Studies on Aluminate and Sodium Aluminate Species in Models for Aqueous Solution: A1(OH)3, Al(OH)4-, and NaAl(OH)4. Am. Mineral. 1999, 84, 1641–1649. [Google Scholar] [CrossRef]
- Tossell, J.A. Boric Acid, “Carbonic” Acid, and N-Containing Oxyacids in Aqueous Solution: Ab Initio Studies of Structure, PKa, NMR Shifts, and Isotopic Fractionations. Geochim. Cosmochim. Acta 2005, 69, 5647–5658. [Google Scholar] [CrossRef]
- Lee, J.H.; Guggenheim, S. Single Crystal X-Ray Refinement of Pyrophyllite-1Tc. Am. Mineral. 1981, 66, 350–357. [Google Scholar]
- Sainz-Diaz, C.I.; Palin, E.J.; Hernández-Laguna, A.; Dove, M.T. Octahedral Cation Ordering of Illite and Smectite. Theoretical Exchange Potential Determination and Monte Carlo Simulations. Phys. Chem. Miner. 2003, 30, 382–392. [Google Scholar] [CrossRef]
- Ferrage, E.; Vidal, O.; Mosser-Ruck, R.; Cathelineau, M.; Cuadros, J. A Reinvestigation of Smectite Illitization in Experimental Hydrothermal Conditions: Results from X-Ray Diffraction and Transmission Electron Microscopy. Am. Mineral. 2011, 96, 207–223. [Google Scholar] [CrossRef]
- Velde, B. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence; Velde, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar] [CrossRef]
- Arroyo Rey, X. Evolución de Las Esmectitas e Interestratificados I/S En La Serie Carbonatada Del Cretácico Superior Del Bloque Alavés. Implicaciones Sobre El Mecanismo de Illitización Durante La Diagénesis. Ph.D. Thesis, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain, 2010. [Google Scholar]
- Applegarth, L.M.S.G.A.; Pye, C.C.; Cox, J.S.; Tremaine, P.R. Raman Spectroscopic and Ab Initio Investigation of Aqueous Boric Acid, Borate, and Polyborate Speciation from 25 to 80 °C. Ind. Eng. Chem. Res. 2017, 56, 13983–13996. [Google Scholar] [CrossRef]
- James Evans, R.; Rustad, J.R.; Casey, W.H. Calculating Geochemical Reaction Pathways—Exploration of the Inner-Sphere Water Exchange Mechanism in Al(H2O)63+(Aq) + NH2O with Ab Initio Calculations and Molecular Dynamics. J. Phys. Chem. A 2008, 112, 4125–4140. [Google Scholar] [CrossRef]
- Bylaska, E.J.; Valiev, M.; Rustad, J.R.; Weare, J.H. Structure and Dynamics of the Hydration Shells of the Al3+ Ion. J. Chem. Phys. 2007, 126, 104505. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Accuracy of XRPD QPA Using the Combined Rietveld-RIR Method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Rustad, J.R.; Bylaska, E.J.; Jackson, V.E.; Dixon, D.A. Calculation of Boron-Isotope Fractionation between B(OH)3(Aq) and B(OH)4-(Aq). Geochim. Cosmochim. Acta 2010, 74, 2843–2850. [Google Scholar] [CrossRef]
- Burst, J.F. Diagenesis of Gulf Coast Clayey Sediments and Its Possible Relation to Petroleum Migration. AAPG Bull. 1969, 58, 553–554. [Google Scholar]
- Pollastro, R.M. Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age. Clays Clay Miner. 1993, 41, 119–133. [Google Scholar] [CrossRef]
- Hillier, S. Illite/Smectite Diagenesis in Devonian Lacustrine Mudrocks from Northern Scotland and Its Relationship to Organic Maturity Indicators. Clay Miner. 1989, 24, 181–196. [Google Scholar] [CrossRef]
- Hillier, S.; Mátyás, J.; Matter, A.; Vasseur, G. Illite/Smectite Diagenesis and Its Variable Correlation with Vitrinite Reflectance in the Pannonian Basin. Clays Clay Miner. 1995, 43, 174–183. [Google Scholar] [CrossRef]
- Bauluz, B.; Peacor, D.R.; Gonzalez Lopez, J.M. Transmission Electron Microscopy Study of Illitization in Pelites from the Iberian Range, Spain: Layer-by-Layer Replacement? Clays Clay Miner. 2000, 48, 374–384. [Google Scholar] [CrossRef]
- Huggett, J.M.; Cuadros, J. Low-Temperature Illitization of Smectite in the Late Eocene and Early Oligocene of the Isle of Wight (Hampshire Basin), U.K. Am. Mineral. 2005, 90, 1192–1202. [Google Scholar] [CrossRef]
- Clauer, N.; Williams, L.B.; Fallick, A.E. Genesis of Nanometric Illite Crystals Elucidated by Light-Element (Hydrogen, Lithium, Boron and Oxygen) Isotope Tracing, and K–Ar and Rb–Sr Dating. Chem. Geol. 2014, 383, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Perry, E.A. Diagenesis and the Validity of the Boron Paleosalinity Technique. Am. J. Sci. 1972, 272, 150–160. [Google Scholar] [CrossRef]
- Kopf, A.; Deyhle, A. Back to the Roots: Boron Geochemistry of Mud Volcanoes and Its Implications for Mobilization Depth and Global B Cycling. Chem. Geol. 2002, 192, 195–210. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Belogub, E.V.; Khvorov, P.V.; Kikvadze, O.E. Boron in an Onshore Mud Volcanic Environment: Case Study from the Kerch Peninsula, the Caucasus Continental Collision Zone. Chem. Geol. 2019, 525, 58–81. [Google Scholar] [CrossRef]
- Środoń, J.; Paszkowski, M. Role of Clays in the Diagenetic History of Nitrogen and Boron in the Carboniferous of Donbas (Ukraine). Clay Miner. 2011, 46, 561–582. [Google Scholar] [CrossRef]
- Lindgreen, H.; Drits, V.A.; Sakharov, B.A.; Salyn, A.L.; Wrang, P.; Dainyak, L.G. Illite-Smectite Structural Changes during Metamorphism in Black Cambrian Alum Shales from the Baltic Area. Am. Mineral. 2000, 85, 1223–1238. [Google Scholar] [CrossRef]
- Boudou, J.P.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Organic Nitrogen Chemistry during Low-Grade Metamorphism. Geochim. Cosmochim. Acta 2008, 72, 1199–1221. [Google Scholar] [CrossRef] [Green Version]
- Ovsyannikov, D.O.; Sadekov, A.Y.; Kozlova, E.V. Rock Fragments from Mud Volcanic Deposits of the Gulf of Cadiz: An Insight into the Eocene-Pliocene Sedimentary Succession of the Basin. Mar. Geol. 2003, 195, 211–221. [Google Scholar] [CrossRef]
- Chamley, H.; Dunoyer De Segonzac, G.; Melieres, F. Clay Mineralogy of Upper Miocene Sediments of the Mediterranean Basin. In Deep Sea Drilling Project Reports and Publication; U.S. Government Publishing Office: Washington, DC, USA, 1978; Volume XLI, pp. 389–395. [Google Scholar] [CrossRef]
- Chamley, H. Geodynamic Control on Messinian Clay Sedimentation in the Central Mediterranean Sea. Geo Mar. Lett. 1989, 9, 179–184. [Google Scholar] [CrossRef]
- De Visser, J.P. Clay Mineral Stratigraphy of Miocene to Recent Marine Sediments in the Central Mediterranean. Geol. Ultraiect. 1992, 75, 1–243. [Google Scholar]
- Azzaro, E.; Bellanca, A.; Neri, R. Clay Mineral Studies of the Tripoli Formation (Lower Messinian), Sicily. Clay Miner. 1988, 23, 309–321. [Google Scholar] [CrossRef]
- Daoudi, L.; Rocha, F.; Ouajhain, B.; Dinis, J.L.; Chafiki, D.; Callapez, P. Palaeoenvironmental Significance of Clay Minerals in Upper Cenomanian–Turonian Sediments of the Western High Atlas Basin (Morocco). Clay Miner. 2008, 43, 615–630. [Google Scholar] [CrossRef]
- Van Den Berg, B.C.J.; Sierro, F.J.; Hilgen, F.J.; Flecker, R.; Larrasoaña, J.C.; Krijgsman, W.; Flores, J.A.; Mata, M.P.; Bellido Martín, E.; Civis, J.; et al. Astronomical Tuning for the Upper Messinian Spanish Atlantic Margin: Disentangling Basin Evolution, Climate Cyclicity and MOW. Glob. Planet. Chang. 2015. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Asensio, J.N.; Larrasoaña, J.C.; Samankassou, E.; Sierro, F.J.; Garcia-Castellanos, D.; Jiménez-Moreno, G.; Salazar, Á.; Maria Salvany, J.; Ledesma, S.; Mata, M.P.; et al. Magnetobiochronology of Lower Pliocene Marine Sediments from the Lower Guadalquivir Basin: Insights into the Tectonic Evolution of the Strait of Gibraltar Area. GSA Bull. 2018. [Google Scholar] [CrossRef] [Green Version]
- Barnolas, A.; Larrasoaña, J.C.; Pujalte, V.; Schmitz, B.; Sierro, F.J.; Mata, M.P.; van den Berg, B.C.J.; Pérez-Asensio, J.N.; Salazar, Á.; Salvany, J.M.; et al. Alpine Foreland Basins. In The Geologiy of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 7–59. [Google Scholar] [CrossRef]
- Williams, L.; Hervig, R. Boron Isotope Composition of Coals: A Potential Tracer of Organic Contaminated Fluids. Appl. Geochem. 2004, 19, 1625–1636. [Google Scholar] [CrossRef]
- Williams, L.B.; Hervig, R.L.; Hutcheon, I. Boron Isotope Geochemistry during Diagenesis. Part II. Applications to Organic-Rich Sediments. Geochim. Cosmochim. Acta 2001, 65, 1783–1794. [Google Scholar] [CrossRef]
- Henry, P.; Le Pichon, X.; Lallemant, S.; Lance, S.; Martin, J.B.; Foucher, J.-P.; Fiala-Médioni, A.; Rostek, F.; Guilhaumou, N.; Pranal, V.; et al. Fluid Flow in and around a Mud Volcano Field Seaward of the Barbados Accretionary Wedge: Results from Manon Cruise. J. Geophys. Res. Solid Earth 1996, 101, 20297–20323. [Google Scholar] [CrossRef]
- Delisle, G.; Von Rad, U.; Andruleit, H.; Von Daniels, C.; Tabrez, A.; Inam, A. Active Mud Volcanoes On-And Offshore Eastern Makran, Pakistan. Int. J. Earth Sci. 2002, 91, 93–110. [Google Scholar] [CrossRef]
- Kopf, A.; Robertson, A.H.F.; Clennell, M.B.; Flecker, R. Mechanisms of Mud Extrusion on the Mediterranean Ridge Accretionary Complex. Geo Mar. Lett. 1998, 18, 97–114. [Google Scholar] [CrossRef]
- Clennell, M.B. The Mélanges of Sabah, Malaysia. Ph.D. Thesis, Royal Holloway, University of London, London, UK, 1992. [Google Scholar]
- Nuzzo, M.; Tomonaga, Y.; Schmidt, M.; Valadares, V.; Faber, E.; Piñero, E.; Reitz, A.; Haeckel, M.; Tyroller, L.; Godinho, E.; et al. Formation and Migration of Hydrocarbons in Deeply Buried Sediments of the Gulf of Cadiz Convergent Plate Boundary—Insights from the Hydrocarbon and Helium Isotope Geochemistry of Mud Volcano Fluids. Mar. Geol. 2019, 410, 56–69. [Google Scholar] [CrossRef]
- Pan, C.; Jiang, L.; Liu, J.; Zhang, S.; Zhu, G. The Effects of Calcite and Montmorillonite on Oil Cracking in Confined Pyrolysis Experiments. Org. Geochem. 2010, 41, 611–626. [Google Scholar] [CrossRef]
- Lei, H.; Shi, Y.; Guan, P.; Fang, X. Catalysis of Aluminosilicate Clay Minerals to the Formation of the Transitional Zone Gas. Sci. China Ser. D Earth Sci. 1997, 40, 130–136. [Google Scholar] [CrossRef]
Mud Volcano | Samples | Water Depth (m) | Location | |
---|---|---|---|---|
Lat. | Long. | |||
Diapir | M3 10-14 | 600 | 34°59′42.4″ N | 6°49′50.4″ W |
Mekness | M4 18-22 | 694 | 34°59′06.6″ N | 7°04′21.6″ W |
Almanzor | M8 58-62 | 1440 | 35°20′57.6″ N | 7°30′40.4″ W |
Pixie | M12 66-70 | 1639 | 35°20′13.2″ N | 7°50′38.4″ W |
MVSeis | M14 138-142 | 1611 | 35°23′42.6″ N | 7°51′28.8″ W |
Guadix | M25 34-38 | 1435 | 35°30′56.4″ N | 7°32′45.0″ W |
Cid | M26 50-54 | 1330 | 35°26′29.4″ N | 7°29′04.2″ W |
Boabdil | M27 18-22 | 1106 | 35°25′49.2″ N | 7°10′45.0″ W |
Gazul | M29 106-110 | 411 | 36°33′29.4″ N | 6°56′06.0″ W |
Albolote | C3 32-33 | 353 | 36°34′27.2″ N | 6°52′46.6″ W |
Tarsis | C4 36-37 | 550 | 36°29′17.4″ N | 7°14′39.9″ W |
Anastasya | C7 38-39, A2 48-50 | 457 | 36°31′20.9″ N | 7°09′04.8″ W |
Almazán | C9 84-85, A8 70-71 | 830 | 36°03′08.0″ N | 7°20′01.6″ W |
Aveiro | C10 27-28 | 1060 | 35°52′19.1″ N | 7°26′15.2″ W |
Faro | A14 26-30 | 795 | 36°05′31.8″ N | 7°23′44.4″ W |
Gades | A4 48-50 | 915 | 36°14′17.4″ N | 7°37′01.2″ W |
Sample | R | °2θ (001/002)/% Illite | °2θ (002/003)/% Illite | °Δ2θ/% Illite |
---|---|---|---|---|
M3 10-14 | R0 | 10.31/10% | 15.75/10% | 5.44/10% |
R0 | 9.85/45% | 16.25/50% | 6.40/45% | |
R1 | 9.17/80% | 16.83/75% | 7.66/75% | |
Illite | 8.78 | 17.61 | 8.93 | |
M4 18-22 | R0 | 10.29/10% | 15.83/15% | 5.54/15% |
R0 | 9.82/45% | 16.16/45% | 6.34/45% | |
R1 | 9.18/80% | 17.07/80% | 7.89/80% | |
Illite | 8.83 | 17.51 | 8.68 | |
M8 58-62 | R0 | 10.32/10% | 15.78/10% | 5.46/10% |
R1 | 9.64/55% | 16.61/60% | 6.97/60% | |
Illite | 8.84 | 17.72 | 8.88 | |
M12 66-70 | R0 | 10.35/10% | 15.82/10% | 5.47/10% |
R0 | 9.99/40% | 16.04/35% | 6.05/35% | |
R1 | 9.54/65% | 16.70/60% | 7.16/65% | |
R1 | 9.30/75% | 16.97/75% | 7.67/75% | |
Illite | 8.89 | 17.73 | 8.84 | |
M14 132-138 | R0 | 10.22/15% | 15.86/15% | 5.64/15% |
R1 | 9.78/50% | 16.48/55% | 6.70/55% | |
R1 | 9.36/75% | 16.90/75% | 7.54/75% | |
Illite | 8.82 | 17.56 | 8.74 | |
M25 34-38 | R1 | 9.72/55% | 16.45/55% | 6.73/55% |
R1 | 9.16/80% | 17.04/80% | 7.88/80% | |
Illite | 8.73 | 17.71 | 8.98 | |
M26 50-54 | R0 | 10.23/15% | 15.82/15% | 5.59/15% |
R1 | 9.74/55% | 16.44/55% | 6.70/55% | |
Illite | 8.79 | 17.65 | 8.86 | |
M27 18-22 | R0 | 10.17/25% | 15.96/25% | 5.79/25% |
R1 | 9.68/55% | 16.40/55% | 6.72/55% | |
R1 | 9.22/75% | 16.85/75% | 7.63/75% | |
Illite | 8.83 | 17.53 | 8.70 | |
M29 106-110 | R0 | 10.05/30% | 15.99/30% | 5.94/30% |
R1 | 9.74/55% | 16.32/55% | 6.58/55% | |
R1 | 9.19/80% | 17.11/80% | 7.92/80% | |
Illite | 8.86 | 17.82 | 8.96 | |
C3 32-33 | R0 | 10.30/10% | 15.80/10% | 5.50/10% |
R0 | 9.76/50% | 16.28/50% | 6.52/50% | |
Illite | 8.87 | 17.81 | 8.94 | |
C4 36-37 | R0 | 10.09/30% | 15.97/25% | 5.88/25% |
R1 | 9.81/45% | 16.29/50% | 6.48/50% | |
Illite | 8.84 | 17.74 | 8.9 | |
C7 36-37 | R0 | 10.06/30% | 15.98/25% | 5.92/30% |
R1 | 9.55/60% | 16.58/60% | 7.03/60% | |
Illite | 8.92 | 17.74 | 8.82 | |
C8 23-24 | R0 | 10.07/30% | 15.99/30% | 5.92/30% |
R1 | 9.68/55% | 16.52/55% | 6.84/55% | |
Illite | 8.97 | 17.69 | 8.72 | |
C9 84-85 | R0 | 10.28/15% | 15.84/15% | 5.56/15% |
R1 | 9.67/55% | 16.46/55% | 6.79/55% | |
Illite | 8.87 | 17.75 | 8.88 | |
C10 27-28 | R1 | 9.18/80% | 17.06/80% | 7.88/80% |
Illite | 8.87 | 17.81 | 8.94 | |
A2 48-50 | R0 | 10.22/20% | 15.83/20% | 5.61/20% |
R0 | 9.81/50% | 16.35/50% | 6.54/50% | |
R1 | 9.31/75% | 16.92/75% | 7.61/75% | |
Illite | 8.81 | 17.69 | 8.88 | |
A4 48-50 | R0 | 10.08/30% | 15.98/25% | 5.90/30% |
R1 | 9.66/55% | 16.47/55% | 6.81/55% | |
R1 | 9.33/75% | 17.04/80% | 7.71/75% | |
Illite | 8.90 | 17.80 | 8.90 | |
A8 110-111 | R0 | 9.77/50% | 16.19/45% | 6.42/45% |
Illite | 8.84 | 17.78 | 8.94 | |
A14 26-30 | R0 | 9.94/40% | 16.12/40% | 6.18/40% |
Illite | 8.79 | 17.36 | 8.57 |
Features | Exp a | Al-illite | B-Illite |
---|---|---|---|
a | 5.22 | 5.24 | 5.24 |
b | 9.02 | 9.10 | 9.08 |
c | 10.07 | 10.09 | 10.08 |
d(001) | 10.02 | 10.02 | 10.03 |
α | 90.0 | 101.1 | 101.1 |
β | 95.7 | 95.8 | 95.9 |
γ | 90.0 | 89.9 | 89.9 |
d(Si-O) | 1.65 | 1.67 | 1.67 |
d(B-O) | 1.48 | ||
d(AlVI-O) | 1.96 | 1.95 | 1.94 |
d(O-H) | 0.97 | 0.97 |
Average Features | |||
---|---|---|---|
Hydrated Al(OH)3 Model | Hydrated B(OH)3 Model | ||
d(Al-O) | 1.75 | d(B-O) | 1.37 |
d(O-H) | 1.01 | d(O-H) | 1.01 |
α(Al-O-H) | 120.11 | α(B-O-H) | 110.83 |
d(Hw-Ow) | 1.05 | d(Hw-Ow) | 1.05 |
d(Hw…Ow) | 1.50 | d(Hw…Ow) | 1.55 |
d(HAl…Ow) | 1.76 | d(HB…Ow) | 1.67 |
Sample | Preparation | 11/10 | IMF | δ11B | SE ‰ | PE ‰ | n | B (ppm) |
---|---|---|---|---|---|---|---|---|
M3 10-14 | mw | 39.192 | −27.8 | −3 | 1.0 | 0.9 | 3 | 142 |
xc | 39.151 | −27.8 | −4 | 0.3 | 0.8 | 3 | 132 | |
M4 18-22 | mw | 39.139 | −27.8 | −4.3 | 0.6 | 1.0 | 3 | 104 |
xc | 39.090 | −27.8 | −5.5 | 0.5 | 0.5 | 2 | 88 | |
M8 58-62 | mw | 39.568 | −27.8 | 6.3 | 2.0 | 1.4 | 3 | 96 |
xc | 39.361 | −27.8 | 1.2 | 0.5 | 0.4 | 2 | 82 | |
M12 66-70 | mw | 39.163 | −27.8 | −3.7 | 0.9 | 0.5 | 2 | 99 |
xc | 39.115 | −27.8 | −4.9 | 0.1 | 0.6 | 2 | 89 | |
M14 138-142 | mw | 39.030 | −27.8 | −7 | 0.1 | 0.6 | 2 | 105 |
xc | 38.965 | −27.8 | −8.6 | 0.5 | 0.5 | 2 | 102 | |
M25 34-38 | mw | 39.305 | −24.6 | −3.4 | 0.6 | 0.4 | 2 | 137 |
xc | 39.192 | −24.6 | −6.2 | 0.6 | 0.4 | 2 | 134 | |
M26 50-54 | mw | 39.224 | −24.6 | −5.4 | 0.6 | 0.3 | 2 | 101 |
xc | 39.204 | −24.6 | −5.9 | 0.5 | 0.4 | 2 | 94 | |
M27 18-22 | mw | 39.442 | −24.6 | 0 | 0.7 | 0.3 | 2 | 146 |
xc | 39.236 | −24.6 | −5.1 | 0.8 | 0.4 | 2 | 141 | |
M29 106-110 | mw | 39.337 | −24.6 | −2.6 | 0.5 | 0.3 | 2 | 132 |
xc | 39.171 | −24.6 | −6.7 | 0.6 | 0.3 | 2 | 122 | |
C3 32-33 | mw | 39.685 | −24.6 | 6 | 0.6 | 0.3 | 2 | 126 |
xc | 39.657 | −24.6 | 5.3 | 0.8 | 0.5 | 2 | 115 | |
C4 36-37 | mw | 39.644 | −24.6 | 5 | 0.7 | 0.5 | 2 | 113 |
xc | 39.499 | −24.6 | 1.4 | 0.6 | 0.4 | 2 | 103 | |
C7 38-39 | mw | 39.309 | −24.6 | −3.3 | 0.6 | 0.4 | 2 | 120 |
xc | 39.058 | −24.6 | −9.5 | 0.6 | 0.4 | 2 | 113 | |
C8 23-24 | mw | 39.596 | −24.6 | 3.8 | 0.9 | 0.5 | 2 | 163 |
xc | 39.297 | −24.6 | −3.6 | 0.7 | 0.4 | 2 | 145 | |
C9 84-85 | mw | 39.220 | −31.8 | 1.7 | 0.5 | 0.4 | 2 | 97 |
xc | 39.050 | −31.8 | −2.5 | 0.5 | 0.4 | 2 | 96 | |
C10 27-28 | mw | 39.001 | −31.8 | −3.7 | 0.6 | 0.4 | 2 | 137 |
xc | 38.892 | −31.8 | −6.4 | 0.7 | 0.4 | 2 | 121 | |
A2 48-50 | mw | 38.908 | −31.8 | −6 | 0.7 | 0.4 | 2 | 139 |
xc | 38.840 | −31.8 | −7.7 | 0.8 | 0.4 | 2 | 138 | |
A4 48-50 | mw | 38.913 | −31.8 | −5.9 | 0.8 | 0.4 | 2 | 129 |
xc | 38.638 | −31.8 | −12.7 | 0.8 | 0.4 | 2 | 117 | |
A8 110-111 | mw | 39.446 | −31.8 | 7.3 | 0.8 | 0.4 | 2 | 111 |
xc | 39.200 | −31.8 | 1.2 | 0.7 | 0.4 | 2 | 110 | |
A14 26-30 | mw | 39.628 | −31.8 | 11.8 | 0.7 | 0.5 | 2 | 125 |
xc | 39.240 | −31.8 | 2.2 | 0.7 | 0.4 | 2 | 122 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martos-Villa, R.; Mata, M.P.; Williams, L.B.; Nieto, F.; Arroyo Rey, X.; Sainz-Díaz, C.I. Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments. Minerals 2020, 10, 651. https://doi.org/10.3390/min10080651
Martos-Villa R, Mata MP, Williams LB, Nieto F, Arroyo Rey X, Sainz-Díaz CI. Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments. Minerals. 2020; 10(8):651. https://doi.org/10.3390/min10080651
Chicago/Turabian StyleMartos-Villa, Rubén, M. Pilar Mata, Lynda B. Williams, Fernando Nieto, Xabier Arroyo Rey, and C. Ignacio Sainz-Díaz. 2020. "Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments" Minerals 10, no. 8: 651. https://doi.org/10.3390/min10080651
APA StyleMartos-Villa, R., Mata, M. P., Williams, L. B., Nieto, F., Arroyo Rey, X., & Sainz-Díaz, C. I. (2020). Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments. Minerals, 10(8), 651. https://doi.org/10.3390/min10080651