

Supplementary Materials

Tunable Mn Oxidation State and Redox Potential of Birnessite Coexisting with Aqueous Mn(II) in Mildly Acidic Environments

Juan Liu 1,2,*, Yixiao Zhang 1, Qian Gu 3, Anxu Sheng 1 and Baogang Zhang 3,*

- ¹ The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China, yx_zh@pku.edu.cn (Y.Z.); shenganxu4@pku.edu.cn (A.S.)
- ² Beijing Key Laboratory of Mineral Environmental Function, Peking University, Beijing 100871, China
- ³ School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China; guqian@bjjunmei.com
- * Correspondence: juan.liu@pku.edu.cn (J.L.); baogangzhang@cugb.edu.cn (B.Z.)

Figure S1. Time-dependent concentrations of aqueous Mn²⁺ uptake and sodium pyrophosphatecomplexed Mn(III) in the reactions of 200 mg/L birnessite and 0–0.4 mM Mn²⁺ at pH 4.5 (**a**,**b**) and at pH 6.5 (**c**,**d**). Error bars indicate standard deviation from three independent experiments.

Figure S2. The concentrations of hydroquinone (HQ) and benzoquinone (BQ) after 24-h oxidation of HQ (the initial HQ concentration = 2.73 mM) by 300 mg/L birnessite samples with different AOS values at pH 4.5 (**a**), pH 5.5 (**b**), and pH 6.5 (**c**), respectively. Error bars indicate standard deviation from three independent experiments.

Figure S3. The calculated E_h values of birnessite with different AOS values, based on the equilibrium concentrations of HQ, at pH 4.5 (**a**) and pH 6.5 (**b**), respectively. All data show a linear relationship between E_h and Mn AOS of birnessite. Error bars indicate standard deviation from three independent experiments.

Figure S4. Surface area-normalized pseudo-first-order initial rate constants (*ksA*) for HQ oxidation by birnessite versus the calculated Mn AOS. Error bars indicate standard deviation from three independent experiments.

Figure S5. The representative SEM images of birnessite particles (200 mg/L) after reaction with 0.1 mM (**a**), 0.2 mM (**b**), 0.3 mM (**c**), and 0.4 mM (**d**) Mn^{2+} at pH 5.5.