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Abstract: The microstructure of the rostrum solidum of Jurassic belemnites is compared with that
of Sepia cuttlebones, in order to examine possible convergences in their style of growth. For this
study, transmitted and polarized light, cathodoluminescence, epifluorescence, scanning electron and
backscattered electron microscopy have been employed. Despite differences in the primary mineralogy
of the studied belemnites and sepiids, calcite and aragonite, respectively, many similarities have
been observed between the microstructure of the belemnite rostra and the prong of Sepia cuttlebone:
(1) In both, crystals start growing from successive spherulites, from which crystals emerge radially
towards the apex and the external walls, displaying internally micro-fibrous texture. (2) Both display
concentric growth layering, comprising an alternation of organic-rich and organic-poor layers, which,
in turn, is traverse by the radially-arranged micro-fibrous crystals. (3) The highest organic matter
content and porosity have been observed along the apical area of the Sepia prong, similarly to that
interpreted for belemnite rostra. The strong convergences observed suggest that the growth of
belemnites occurred similarly to that of the prong of sepiids and that the Sepia prong is the analog
of the belemnite rostrum. Additionally, non-classical crystallization processes are proposed to be
involved in the formation Sepia endoskeleton.
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1. Introduction

In addition to their usefulness for biostratigraphical studies, belemnite rostra are commonly used
for palaeoclimatic, palaeobiological and palaeobiogeographical studies based on their geochemical data
or on their morphological features [1–36]. However, no agreement exists regarding whether belemnites
were originally porous [1,2,37–42], or whether the original porosity was of minor importance [43,44],
although this issue has important implications for reconstructing, for example, their buoyancy, size and
ontogenetic strategies and palaeoenvironments. Some authors have proposed low porosity values for
belemnite rostra [3,7,29]. However, Veizer [2] and Spaeth [38] proposed up to 10% and 20% of primary
porosity, respectively, for the belemnite rostrum, Ullmann et al. [41] up to 40% of porosity at the
apical line, Hoffmann et al. [42] proposed 50–90% of porosity in belemnite rostra, and Benito et al. [31]
proposed porosity values ranging from 20 to 60% in the apical area of the rostrum. In this regard,
Benito et al. [31] also suggested that the analysis of the prong of Sepia cuttlebone could be useful for
understanding the original structure and porosity of belemnite rostrum.

The fossil Order Belemnitida is included in the Subclass Coleoidea, though most recent coleoids
have reduced their internal skeleton substantially or even entirely [36,45,46]. For example, it has been
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interpreted that the chitinous squid gladius with septa-like layers in cone situated at the posterior end
of the proostracum represents a vestigial phragmocone of ancient coleoids that has lost the siphuncle
and gas-filled chambers, and that the “rostrum situated apically from the cone is homologous to the
rostrum of ancient phragmocone-bearing coleoids” [47].

Belemnites have been interpreted as marine nekto-benthic dwellers [48] or as nektonic [49].
Sepiids are nekto-benthic dwellers and have retained a calcareous internal shell (cuttlebone) still used
as a buoyancy device. However, the original mineralogy of sepiid cuttlebone differs from that of
belemnites. The cuttlebone of Sepia is composed of aragonite [50–52]. Nevertheless, some authors
have reported small amounts of primary calcite in modern sepiid cuttlebones [53,54] and in fossil
sepioids [55]. Additionally, up to 70% of primary calcite has been reported by Yancey and Garvie [56]
in Eocene Anomalosaepia specimens. The rostrum solidum of belemnites, on the contrary, was originally
composed of low Mg-calcite [1,7,44,47,57–59]. However, some authors, based on petrographic
and/or X-ray structural data, have interpreted that some belemnite rostra, such as those of various
Jurassic Belemnoteuthidae and Turonian Goniocamax, were partially or totally composed of primary
aragonite [60–64].

Despite the differences between their primary mineralogy, previous works have compared
belemnites with cuttlebone, looking for homologies [65–72]. The prong or spine has been also named as
rostrum by Naef [65], Dauphin [70] and Bizikov [73]. Abel [66] and Krymgol’ts [67] interpreted that the
spine was not homologous to the belemnite rostrum. Naydin [68] observed clear homologies between
some parts of the cuttlebone and the belemnite. For this author, the phragmocone, the fork (or ventral
process) and the innermost layer of the dorsal shield are related to the belemnite phragmocone.
Naydin [68] also interpreted that the middle and outermost layers of the dorsal shield and the prong
(or spine) correspond to the belemnite rostrum. Barskov [69] interpreted that the middle layer of
the dorsal shield corresponds to the belemnite rostrum, whereas Dauphin [70] interpreted that the
outer layer of the dorsal shield and the spine corresponded to the belemnite rostrum. Naef [65]
suggested that the belemnite rostrum and the Sepia prong are analogous organs and Rexfort and
Mutterlose [48] proposed that “the sepioid rostrum, which is homologous to the belemnite guard,
is purely organic”. Additionally, the prong (or spine) has been associated with the middle layer of
the dorsal shield [69,74], the outer layer of the dorsal shield [70] or seen as constituting an additional
layer [73,75]. On the contrary, Fuchs [71] has interpreted that the rostrum is absent in Sepiida and that
there is not an equivalent structure to the belemnite rostrum. In other cases, the comparison between
Sepia and belemnites has been focused for understanding the belemnite palaeoecology from the study
of stable isotopes of O and C on Sepia officinalis [48,76,77]. Finally, other authors have compared
belemnite rostra with squids. Arkhipin et al. [47] indicated that the rostrum of the gladius of some
squids (onychoteuthids, omnastrephids and gonatids) is homologous to the rostrum of belemnites
Hibolithes and Pachyteuthis.

In this study, we compare the microstructure of the rostrum solidum of Jurassic belemnites
Hibolithes, Belemnopsis and Passaloteuthis with that of cuttlefishes (Sepia officinalis and S. orbignyana)
in order to examine if their style of growth is similar and check if the growth of the Sepia prong is similar
to those of belemnite rostrum and can be considered as an analogous of the belemnite rostrum solidum.

2. Methods

This study is based on the analysis of 18 specimens of well-preserved Jurassic belemnite rostra
(12 Hibolithes, 3 Belemnopsis and 3 Passaloteuthis; Figure 1) with that of 15 specimens of cuttlefishes
(nine Sepia officinalis and six S. orbignyana; Figure 2) (see supplementary material for details, Table S1).
The belemnites analyzed come from two outcrops located in the Betic Cordillera (South Spain).
Passaloteuthis was recorded at La Cerradura section (lower Toarcian, Lower Jurassic, External Subbetic;
see location on Figure 1 of Reolid et al. [78]) and Hibolithes and Belemnopsis were recorded at Pozo Cañada
Section (Oxfordian-lowermost Kimmeridgian, Upper Jurassic, External Prebetic; see location on Figure
1 of Benito et al. [31]). Specimens of cuttlefishes come from the Alboran Sea (Western Mediterranean)
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and the Cantabrian Sea, in the case of S. officinalis, and from the Alboran Sea, in the case of S. orbignyana.
Polished and uncovered thin sections (30 and 400–500 µm thickness) were prepared for each belemnite
rostrum (one longitudinal and one transversal to the growth of the belemnite rostra) and, when possible,
one for each cuttlefish rostrum and prong which, in turn, were embedded in epoxy resin to make possible
thin section preparations. The longitudinal sections were lateral and not oriented dorso-ventrally,
except in one thin section. Ultra-thin sections (<15 mm thick) were also obtained after re-polishing three
thin sections. Thin sections were studied and photographed under transmitted light (TL), polarized light
(PL), cathodoluminescence (CL), and epifluorescence (FL) microscopy at the Universidad Complutense
(Madrid): For CL study, a Technosyn cold cathodoluminescent unit MK4 at 20–24 kV with 350–400 mA
beam current was employed; the FL study was carried out using an incident-light FL Nikon Y-FL
epifluorescence system coupled to an Eclipse 6400 POL petrographic microscope. An UV (340–380 nm)
excitation filter (400 nm dichroic mirror and 420 nm barrier filter) and a blue light (450–590 nm)
excitation filter (505 nm dichroic mirror and 520 nm barrier filter). Specimens and thin sections are
deposited in the collections of the Department of Geology of the University of Jaén.
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Figure 1. Specimens of belemnites (Hibolithes) from the upper Oxfordian (Upper Jurassic) from 
Prebetic (Betic Cordillera, S. Spain). Specimens PC-39-25, PC-45-14 and PC-53-53. Scale bar 1 cm. 

In terms of petrography, all the studied belemnite rostra are well-preserved and display 
transparent appearance under TL and lack of luminescence [30,31], despite the apical area and some 
growth layers of belemnites being diagenetically altered and displaying cloudy appearance and 
bright to dull luminescence (see Figures 2–5 in Benito and Reolid, [30] and Figure 6 in Benito et al. 
[31]). In this sense, Stevens et al. [33] have observed alternation of blue and orange luminescent 
growth lines in translucent brood cases of Argonauta and in belemnite rostra, which they interpret as 
primary. However, these authors also observed luminescent areas displaying cloudy appearance 
(under TL microscopy) in belemnite rostra, which they interpret as diagenetic in origin, in accordance 
with interpretations made by other authors [30,31,44,57]. 

Figure 1. Specimens of belemnites (Hibolithes) from the upper Oxfordian (Upper Jurassic) from Prebetic
(Betic Cordillera, S. Spain). Specimens PC-39-25, PC-45-14 and PC-53-53. Scale bar 1 cm.

In terms of petrography, all the studied belemnite rostra are well-preserved and display transparent
appearance under TL and lack of luminescence [30,31], despite the apical area and some growth
layers of belemnites being diagenetically altered and displaying cloudy appearance and bright to dull
luminescence (see Figures 2–5 in Benito and Reolid, [30] and Figure 6 in Benito et al. [31]). In this sense,
Stevens et al. [33] have observed alternation of blue and orange luminescent growth lines in translucent
brood cases of Argonauta and in belemnite rostra, which they interpret as primary. However, these
authors also observed luminescent areas displaying cloudy appearance (under TL microscopy) in
belemnite rostra, which they interpret as diagenetic in origin, in accordance with interpretations made
by other authors [30,31,44,57].

Secondary electrons and backscattered scanning electron microscopy (SEM and BSEM, respectively)
was performed using a JEOL JSM-820 electron microscope at the Universidad Complutense
(Madrid, Spain) and a SCI Quanta 400 scanning electron microscope at the Centro de Instrumentación
Científico-Técnica of the Universidad de Jaén (Spain), in both thin sections and in fresh-cut belemnites
and cuttlefishes. Subsequently to examination, samples were etched after immersion in a 25% solution
(Merck) of glutardialdehyde maintained at a pH of 4.0 for 12 h, in the case of thin sections, and 24 h in
the case of fresh cut samples. Glutardialdehyde, CH2(CH2CHO)2, is known to react with proteins [79];
moreover, because glutardialdehyde is easily oxidized to glutaric acid [80], it has been also benefited
from the etching effect of the acid [35]. After treatment with glutardialdehyde, the slabs were washed
with water and ethanol and then dried and analyzed under SEM.
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in fisheries and their origin was the southern Spanish coast. 
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Figure 2. Cuttlebones of specimen of Sepia officinalis (SP-07) and S. orbignyana (SP-11) studied in this
work, observed in ventral (up) and dorsal view (down). Scale bar 1 cm. Sepia specimens were obtained
in fisheries and their origin was the southern Spanish coast.

3. Results

3.1. Belemnitida

Belemnite shells are composed of three main parts: phragmocone, primordial rostrum and
rostrum proper [71]. Longitudinally, they are also divided into proostracum, rostrum cavum and
rostrum solidum (Figure 3). For checking the wide terminology for shell elements of belemnites [36,71].
Specimens of Hibolithes (Family Belemnopseidae) are characterized by an elongated and hastate rostrum,
with the maximum transverse diameter at the posterior region, near the apex, a circular transverse
section, and a shallow ventral groove limited at the anterior half of the rostrum. Belemnopsis (Family
Belemnopseidae) presents a hastate and depressed rostrum, with maximum transverse diameter
slightly posterior of the midpoint, an asymmetrical transverse section with ventral side inflated, and a
deep broad ventral groove. The Toarcian specimens of Passaloteuthis (Family Passaloteuthididae) are
characterized by a robust rostrum (with well-developed primordial rostrum), with cylindrical outline
and a rounded to slightly compressed transverse section, without ventral grooves.
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Figure 3. Sketch of the anatomy of the belemnite (up) and Sepia (down) endoskeleton. Red line
indicates primordial rostrum.

The orthoconic phragmocone of Hibolithes and Belemnopsis opens at an angle of ca. 20◦ with
the initial chamber of the protoconch (<0.6 mm diameter) completely sealed by a closing membrane
and delimited by a slight constriction (Figures 3 and 4A). The phragmocone of Passaloteuthis opens
at an angle of ca. 28◦. The siphuncle penetrates the septa proper along their ventral margins
(Figure 4). The phragmocone is enveloped by two calcitic external layers, the primordial rostrum
(uni-layered and thin) and the rostrum proper (multi-layered and thick), as described by Fuchs [71]
and Doguzhaeva et al. [81]. The primordial rostrum of these belemnite genera was originally aragonitic
and contained abundant non-biomineralized components (probably chitin [81]). The rostrum solidum
was originally composed of low Mg-calcite [2,7,44,47,57–59].
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the protoconch and the first chambers of the phragmocone, which are infilled by sparitic calcite cement.
Scale bar 1 mm.
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The belemnite rostrum solidum, when observed under the petrographic microscope in both
transversal and longitudinal sections, is formed by radially arranged prismatic calcite crystals,
which emerge from the apical line, and display a concentric pattern (Figure 5), commonly interpreted
as growth layers or rings [30,31,44,82,83], and undulose extinction under polarized light (PL)
microscopy (Figure 5B,E). The rostrum solidum is also characterized by a regular spherulithic prismatic
microstructure [31] formed by spherulites of around 250 µm in diameter that successively develop
along the apical line and from which calcite crystals radially emerge and diverge, as is observed in the
longitudinal sections of the rostra under SEM, as well as under PL microscopy in the ultra-thin sections
(Figure 6). The inner parts of the spherulitic centers are composed by dense concentrations of small
calcite crystals (<1 µm in the nuclei of the spherulithic centers). Progressively, calcite crystals become
larger and more elongated and radially distributed as hemispheric fans (Figure 6B,C). Towards the
outer parts of the rostra, crystals become longer, thicker and prismatic in shape (Figure 6).
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The detailed examinations of the calcite prisms also allow to differentiate an internal micro-
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after etching with 25% glutardialdehyde (Figure 8) [31,44]. The concentric pattern, which may be also 
observed at different scales, is traversed by the radial pattern (Figures 5, 7 and 8B) and is enhanced 
under FL microscopy and BSEM (Figure 7C,G–H). Some concentric layers (10–50-µm thick, generally) 
display an internal radial micro-fibrous texture, weak FL and an overall light grey colour under 
BSEM. These layers are separated by very thin concentric layers (<5 µm thick), which display intense 
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Figure 5. Transversal (A–C) and longitudinal (D–F) thin sections of the same belemnite rostrum
(specimen PC-39) observed under TL (A,D), PL (B,E), and FL (C,F) microscopy. Note the concentric
growth layering, enhanced under FL, and the undulose extinction, under PL. Red arrows observed in
(E) indicate the sense of crystal growing from the apical line.
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Figure 6. Photographs showing spherulites developed along the apical line in belemnite rostra. (A) SEM
images of longitudinal fresh cut sample showing the apical line and the area where spherulites are
observed (specimen PC-39). White arrows indicate the sense of crystal growing from the apical line.
(B) Detail of A showing the spherulites. They are composed of radially arranged calcite crystals.
Crystals become progressively longer and prismatic towards the external walls of the rostrum (A).
(C) Ultra-thin section observed under PL microscopy (PC-31-04). Spherulites are observed along the
apical line (white arrows). Note that prismatic crystals traverse the concentric growth layering and
display micro-fibrous texture and undulose extinction.
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The detailed examinations of the calcite prisms also allow to differentiate an internal micro-fibrous
texture, which is observable under TL, PL, FL, SEM and BSEM (Figure 7), and is enhanced after
etching with 25% glutardialdehyde (Figure 8) [31,44]. The concentric pattern, which may be also
observed at different scales, is traversed by the radial pattern (Figures 5, 7 and 8B) and is enhanced
under FL microscopy and BSEM (Figure 7C,G,H). Some concentric layers (10–50-µm thick, generally)
display an internal radial micro-fibrous texture, weak FL and an overall light grey colour under BSEM.
These layers are separated by very thin concentric layers (<5 µm thick), which display intense FL and
an overall dark grey colour under BSEM. Benito et al. [31] also observed that single calcite crystals
of belemnite rostra are composite and are composed of two sectors, which are in optical continuity
(Figure 9A–J): an inner sector, fluorescent, with relatively low optical relief under TL microscopy,
and a dark-grey colour under BSEM, which may have an internal “patchy” appearance (Figure 9G–I),
and an outer sector, non-fluorescent, with relatively high optical relief under TL, and a light-grey colour
under BSEM. These sectors may be also observed after etching thin sections with 25% glutardialdehyde
(Figure 9K–L). The composite nature of belemnite crystals has been also suggested or interpreted by
other authors, such as Richter et al. [84] and Hoffman et al. [36], respectively, for other Jurassic and
Cretaceous belemnite species (Belemnitella, Cylindroteuthis, Gonioteuthis, Megateuthis, and Pachyteuthis).
Additionally, Benito and Reolid [30] and Benito et al. [31] observed that the concentric layers and
sectors of the crystals displaying intense FL also had higher Mg, Na and S concentrations than those
showing weak or no FL.
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Figure 7. Details of the micro-fibrous texture of the prismatic crystals and the concentric layering
of belemnite rostra. (A–C) Longitudinal thin section under TL (A), PL (B) and FL (C) microscopy
(specimen PC-31-04) showing the micro-fibrous texture of the crystals (black arrows) and the concentric
layering. Under FL, the concentric layering is enhanced: some layers display weak FL and micro-fibrous
texture; they are separated by very thin and intense FL layers, in which the micro-fibrous texture is
no evident. (D–F) Transversal fresh-cut sample (CE-25-04) under SEM. Prismatic crystals of calcite
internally display a micro-fibrous texture (E,F, red arrows). Perpendicular growth layering is also
observable. Note that microfibers traverse the concentric growth layering (F, white arrows). (G,H)
Longitudinal (G) and transversal (H) thin sections (specimens PC-31-04 and PC-37-01, respectively)
observed under backscattered (B) SEM. The micro-fibrous texture is observable as fibers displaying
alternating light- and dark- grey colours. Note that the light-grey fibers traverse the concentric growth
layers displaying an overall dark-grey colour (white arrows), which correspond to the thin layers that
displays intense FL (see C). Note also that, in transversal sections (H), the micro-fibrous texture is not
observable in the inner part of the rostra (in the apical area) but progressively becomes more evident
towards the external wall of the rostra.
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Figure 7. Details of the micro-fibrous texture of the prismatic crystals and the concentric layering of
belemnite rostra. (A–C) Longitudinal thin section under TL (A), PL (B) and FL (C) microscopy (specimen
PC-31-04) showing the micro-fibrous texture of the crystals (black arrows) and the concentric layering.
Under FL, the concentric layering is enhanced: some layers display weak FL and micro-fibrous texture;
they are separated by very thin and intense FL layers, in which the micro-fibrous texture is no evident.
(D–F) Transversal fresh-cut sample (CE-25-04) under SEM. Prismatic crystals of calcite internally
display a micro-fibrous texture ((E,F) red arrows). Perpendicular growth layering is also observable.
Note that microfibers traverse the concentric growth layering ((F) white arrows). (G,H) Longitudinal
(G) and transversal (H) thin sections (specimens PC-31-04 and PC-37-01, respectively) observed under
backscattered (B) SEM. The micro-fibrous texture is observable as fibers displaying alternating light-
and dark- grey colours. Note that the light-grey fibers traverse the concentric growth layers displaying
an overall dark-grey colour (white arrows), which correspond to the thin layers that displays intense
FL (see (C)). Note also that, in transversal sections (H), the micro-fibrous texture is not observable in
the inner part of the rostra (in the apical area) but progressively becomes more evident towards the
external wall of the rostra.
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Figure 8. SEM images of fresh-cut samples of belemnite rostra after etching with 25% glutardialdehyde.
Note that the micro-fibrous texture is enhanced after etching. (A) Equivalent image to 6B showing the
spherulites developed along the apical line after etching. (B,C) Transversal (B) and longitudinal (C)
sections of specimens PC-39 and CE-25-04, respectively, showing the prismatic habit of crystals (up),
and the equivalent image after etching (down). Note that fibers traverse the concentric layers (B).
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Figure 9. Photographs showing the composite nature of calcite crystals in belemnite rostra, which is 
observed in longitudinal sections that do not cross-cut the rostrum along the apical line. (A–C) TL 
(A), PL (B) and FL (C) photographs (specimen PC 31-4). In the central area, calcite crystals are cut 
perpendicularly to their c-axis and they are observed as an equigranular mosaic of crystals. Outwards, 
towards the external wall, crystals are cut tangentially to their c-axis and become elongated. Note also 
that the concentric layering is enhanced under FL microscopy and that layers become thinner towards 
the external walls. (D–F) Detailed images of (A–C). Note the triangular shape of crystals that comprise 
sectors displaying relatively low optical relief (D,E) and intense FL (F) (red arrows) and sectors 
displaying relatively high optical relief (D,E) and none-to-weak FL (F) (purple arrows). (G–I) Detailed 
photographs showing the composite nature of calcite crystals under TL (G), PL (H) and FL (I) 
microscopy (specimen PC-11-31). Triangular-shaped crystals comprise an inner sector (red arrows), 
which displays an overall relatively low optical relief (D,E), intense FL (F) and an internal “patchy” 
appearance (black arrows). Note that the “patches” also displays a triangular shape and higher optical 
relief than the surrounding calcite. The outer sector of the crystals (purple arrows), which is in optical 
continuity with the inner sector (red square in (H)), displays relatively high optical relief (D,E) and 
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Figure 9. Photographs showing the composite nature of calcite crystals in belemnite rostra, which is
observed in longitudinal sections that do not cross-cut the rostrum along the apical line. (A–C) TL
(A), PL (B) and FL (C) photographs (specimen PC 31-4). In the central area, calcite crystals are cut
perpendicularly to their c-axis and they are observed as an equigranular mosaic of crystals. Outwards,
towards the external wall, crystals are cut tangentially to their c-axis and become elongated. Note
also that the concentric layering is enhanced under FL microscopy and that layers become thinner
towards the external walls. (D–F) Detailed images of (A–C). Note the triangular shape of crystals
that comprise sectors displaying relatively low optical relief (D,E) and intense FL (F) (red arrows) and
sectors displaying relatively high optical relief (D,E) and none-to-weak FL (F) (purple arrows). (G–I)
Detailed photographs showing the composite nature of calcite crystals under TL (G), PL (H) and FL (I)
microscopy (specimen PC-11-31). Triangular-shaped crystals comprise an inner sector (red arrows),
which displays an overall relatively low optical relief (D,E), intense FL (F) and an internal “patchy”
appearance (black arrows). Note that the “patches” also displays a triangular shape and higher optical
relief than the surrounding calcite. The outer sector of the crystals (purple arrows), which is in optical
continuity with the inner sector (red square in (H)), displays relatively high optical relief (D,E) and
non-to weak FL (F). Note the crystal boundaries (purple arrows and red square in (G) and (H)). Note
also that the triangular “patches” of the inner sector has an identical optical relief and FL than the
outer sector of the crystals. (J) Same thin section as in (A–F), observed under BSEM. The triangular
inner sectors of the crystal displaying intense FL are dark-grey in colour (red arrows), and the outer
sectors of the crystals, displaying non-to weak FL, are light-grey in colour (purple arrows). (K,L). Same
thin section as in (A–G), observed under BSEM after etching with 25% glutardialdehyde. Note that
the triangular shape of crystals and the concentric layering (white arrows in (K)) is enhanced under
etching. The triangular areas comprise an inner sector, which has been largely etched (red arrows),
and an outer sector where dissolution is less pervasive (purple arrows). The largely etched concentric
layers, which would correspond to the intense FL concentric layers, are thin (white arrows) compared
to those where etching is less pervasive.
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Figure 9. Photographs showing the composite nature of calcite crystals in belemnite rostra, which is
observed in longitudinal sections that do not cross-cut the rostrum along the apical line. (A–C) TL
(A), PL (B) and FL (C) photographs (specimen PC 31-4). In the central area, calcite crystals are cut
perpendicularly to their c-axis and they are observed as an equigranular mosaic of crystals. Outwards,
towards the external wall, crystals are cut tangentially to their c-axis and become elongated. Note
also that the concentric layering is enhanced under FL microscopy and that layers become thinner
towards the external walls. (D–F) Detailed images of (A–C). Note the triangular shape of crystals
that comprise sectors displaying relatively low optical relief (D,E) and intense FL (F) (red arrows) and
sectors displaying relatively high optical relief (D,E) and none-to-weak FL (F) (purple arrows). (G–I)
Detailed photographs showing the composite nature of calcite crystals under TL (G), PL (H) and FL (I)
microscopy (specimen PC-11-31). Triangular-shaped crystals comprise an inner sector (red arrows),
which displays an overall relatively low optical relief (D,E), intense FL (F) and an internal “patchy”
appearance (black arrows). Note that the “patches” also displays a triangular shape and higher optical
relief than the surrounding calcite. The outer sector of the crystals (purple arrows), which is in optical
continuity with the inner sector (red square in (H)), displays relatively high optical relief (D,E) and
non-to weak FL (F). Note the crystal boundaries (purple arrows and red square in (G) and (H)). Note
also that the triangular “patches” of the inner sector has an identical optical relief and FL than the
outer sector of the crystals. (J) Same thin section as in (A–F), observed under BSEM. The triangular
inner sectors of the crystal displaying intense FL are dark-grey in colour (red arrows), and the outer
sectors of the crystals, displaying non-to weak FL, are light-grey in colour (purple arrows). (K,L). Same
thin section as in (A–G), observed under BSEM after etching with 25% glutardialdehyde. Note that
the triangular shape of crystals and the concentric layering (white arrows in (K)) is enhanced under
etching. The triangular areas comprise an inner sector, which has been largely etched (red arrows),
and an outer sector where dissolution is less pervasive (purple arrows). The largely etched concentric
layers, which would correspond to the intense FL concentric layers, are thin (white arrows) compared
to those where etching is less pervasive.

Figure 9. Photographs showing the composite nature of calcite crystals in belemnite rostra, which is
observed in longitudinal sections that do not cross-cut the rostrum along the apical line. (A–C) TL
(A), PL (B) and FL (C) photographs (specimen PC 31-4). In the central area, calcite crystals are cut
perpendicularly to their c-axis and they are observed as an equigranular mosaic of crystals. Outwards,
towards the external wall, crystals are cut tangentially to their c-axis and become elongated. Note also
that the concentric layering is enhanced under FL microscopy and that layers become thinner towards
the external walls. (D–F) Detailed images of (A–C). Note the triangular shape of crystals that comprise
sectors displaying relatively low optical relief (D,E) and intense FL (F) (red arrows) and sectors
displaying relatively high optical relief (D,E) and none-to-weak FL (F) (purple arrows). (G–I) Detailed
photographs showing the composite nature of calcite crystals under TL (G), PL (H) and FL (I) microscopy
(specimen PC-11-31). Triangular-shaped crystals comprise an inner sector (red arrows), which displays
an overall relatively low optical relief (D,E), intense FL (F) and an internal “patchy” appearance (black
arrows). Note that the “patches” also displays a triangular shape and higher optical relief than the
surrounding calcite. The outer sector of the crystals (purple arrows), which is in optical continuity
with the inner sector (red square in (H)), displays relatively high optical relief (D,E) and non-to weak
FL (F). Note the crystal boundaries (purple arrows and red square in (G) and (H)). Note also that the
triangular “patches” of the inner sector has an identical optical relief and FL than the outer sector of
the crystals. (J) Same thin section as in (A–F), observed under BSEM. The triangular inner sectors
of the crystal displaying intense FL are dark-grey in colour (red arrows), and the outer sectors of
the crystals, displaying non-to weak FL, are light-grey in colour (purple arrows). (K,L). Same thin
section as in (A–G), observed under BSEM after etching with 25% glutardialdehyde. Note that the
triangular shape of crystals and the concentric layering (white arrows in (K)) is enhanced under etching.
The triangular areas comprise an inner sector, which has been largely etched (red arrows), and an outer
sector where dissolution is less pervasive (purple arrows). The largely etched concentric layers, which
would correspond to the intense FL concentric layers, are thin (white arrows) compared to those where
etching is less pervasive.
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3.2. Sepiida

The cuttlebone of Sepia is composed of aragonite, coated with a thin layer of organic matter, and
encased by an epithelium also called the cuttlebone sac [48,85]. The cuttlebone is composed of three
different parts, the phragmocone, the dorsal shield and the prong (Figures 3 and 10).
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Figure 10. Thin sections of Sepia. (A) S. orbignyana. (B–I) S. officinalis. (A) Cuttlebone of S. orbignyana 
(SP-12) under magnification glasses showing the phragmocone, the dorsal shield and the prong. (B) 
Phragmocone and dorsal shield under TL microscopy (SP-07) with the tubercles. (C–E) Detailed view 
of (B), under TL (C), PL (D), and FL (E). The dorsal shield comprises 3 layers: the inner (red bar), 
displaying weak FL, the middle layer (white bar), displaying intense FL, and the outer layer (yellow 
and orange bars). The outer layer, which forms the tubercles and displays undulose extinction and 
concentric layering, comprises an inner part (yellow bar) composed of radially arranged aragonite 
crystals displaying non- to weak FL (despite its internal FL concentric pattern), and an outer part 
(orange bar) displaying very intense FL. (F–I) Longitudinal thin section of the prong under TL (A), 
PL (B,I) and FL (C) microscopy (SP-01). The red square on G represents the area shown in (I). Note 
the concentric growth pattern of the prong (red arrows in (H)), and the high intra-skeletal porosity 
(white arrows in (G) and (I)), which is enhanced in the apical area. Spherulites are developed in the 
inner part of the prong (yellow arrows), displaying radially arranged aragonite crystals and undulose 
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Figure 10. Thin sections of Sepia. (A) S. orbignyana. (B–I) S. officinalis. (A) Cuttlebone of S. orbignyana
(SP-12) under magnification glasses showing the phragmocone, the dorsal shield and the prong.
(B) Phragmocone and dorsal shield under TL microscopy (SP-07) with the tubercles. (C–E) Detailed
view of (B), under TL (C), PL (D), and FL (E). The dorsal shield comprises 3 layers: the inner (red bar),
displaying weak FL, the middle layer (white bar), displaying intense FL, and the outer layer (yellow
and orange bars). The outer layer, which forms the tubercles and displays undulose extinction and
concentric layering, comprises an inner part (yellow bar) composed of radially arranged aragonite
crystals displaying non- to weak FL (despite its internal FL concentric pattern), and an outer part
(orange bar) displaying very intense FL. (F–I) Longitudinal thin section of the prong under TL (A),
PL (B,I) and FL (C) microscopy (SP-01). The red square on G represents the area shown in (I). Note the
concentric growth pattern of the prong (red arrows in (H)), and the high intra-skeletal porosity (white
arrows in (G) and (I)), which is enhanced in the apical area. Spherulites are developed in the inner part
of the prong (yellow arrows), displaying radially arranged aragonite crystals and undulose extinction.
Towards the outer wall of the prong, aragonite crystals become longer and radially arranged, displaying
undulose extinction and traversing the concentric layering (red squares). Modified from Figure 7 of
Benito et al. [31], who erroneously assigned this specimen to S. orbignyana.
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The phragmocone contains many spaced septae (around 400 in Sepia officinalis [48]), connected
by small undulating transverse pillars (undular plates [69], or palisades [44]) (Figures 10A,B and 11).
The septae are connected to the inner mineralized layer of the dorsal shield and extend rearward from
it (Figure 11B,C). The septae are composed of two layers: the anterior (~9 µm) is of prismatic structure
with fine and densely arranged parallel prisms, which are perpendicular to the septum; the posterior
layer is lamellar (~15 µm; Figure 11F).

The analysis of septae under BSEM allowed to recognise that the lamellar layer is richer in
organic matter than the prismatic layer. In detail, the lamellar layer is composed of an alternation
of organic- and aragonitic-rich sublayers (Figure 11G). The transverse pillars are made up of laminae
composed of small randomly oriented aragonite crystals [69] that, under BSEM, show an internal
alternation of organic-rich and organic-poor laminae (Figure 11E). In S. officinalis, the heights of the
transverse pillars range between 490 and 150 µm, meanwhile in S. orbignyana they range between
195 and 80 µm. According to Florek et al. [86], septa are richer in β-chitin and pillars in aragonite.
Organic films are also observed between septae (Figure 11D,H,I).

The chambered cuttlebone has a dual function as a support and as buoyancy regulation through
liquid and gas adjustments, which requires an open structure that is pressure-resistant while maintaining
a constant volume [87]. The porosity of the cuttlebone of S. officinalis is 93% [88], although Sepia species
that live in deeper habitats had thicker septa and less space between pillars than shallow species [89].

The dorsal shield (Figures 10A–E and 12) contains high organic matter content and has an
important mechanical role by increasing the flexural strength of the cuttlebone at the same time
that has high porosity and high permeability [87,88]. In the case of S. officinalis, the phragmocone
contains 10% of organic matrix and the dorsal shield 30–40% [86,88]. Dorsal shield occupies the dorsal
region of the cuttlebone, above the phragmocone, and comprises three mineralized layers [69,70]
(Figures 3, 10C–E and 12). The outer layer consists of convex outwards hemispheres composed of
radially arranged acicular crystals of aragonite, which display undulose extinction under PL microscopy
and concentric layering of alternating non- to intense FL (Figures 10C–E and 12B–G). The hemispheres
constitute the tubercles in the surface of the dorsal shield of S. officinalis but, in S. orbignyana, tubercles
are poorly developed. The thickness of the outer layer is variable along the dorsal shield, ranging
between 315 and 411 µm and the contact with the middle layer is stepped in the proximal parts
of the cuttlebone in S. officinalis. Over the outer mineralized layer of the dorsal shield, there is an
organic granulated layer (170 µm maximum thick), which is highly porous and displays intense FL
(Figures 10C–E, 11B,C and 12D).

The middle layer of the dorsal shield (Figure 10C–E) presents a laminated structure (Figure 12H–J)
composed of organic-rich lamellar sublayers (1.5 µm) alternating with prismatic sublayers of aragonite
(4–5 µm). The distribution of organic matter is clearly observed under BSEM (Figure 12C). The thickness
of the middle layer is variable along the dorsal shield and displays a stepped distribution with a
thinner middle layer of about 50–60 µm, and it becomes progressively thicker, reaching 95–130 µm.
In addition, the middle layer is thinner in the distal parts of the cuttlebone.

The prong or spine (also called mucron by Cuif et al. [90]) is a solid tooth-like continuation
of the middle layer of the dorsal shield, according to Barskov [69] (Figures 3, 10A,F–H and 13).
Dauphin [91] proposed that the Sepia spine consists of the same three layers which form the dorsal
shield, with the inner and middle ones being very thin. In our samples, we have not observed these
layers in the spine from S. orbignyana and S. officinalis. The prong is comparatively better developed in
S. orbignyana (7.6–11.2% of the total length) than in S. officinalis (1.5–2.7% of the total length) (Figure 2).
In transversal sections, the prong is composed of alternating concentric laminae of aragonite crystals,
displaying radial arrangement, and organic-rich and very thin laminae (Figure 13B). In a close view,
the aragonite crystals are composed of clusters of small crystalline units (Figure 13B) with rod-like
appearance. To the outer parts of the prong, aragonite crystals are progressively more elongated and
become parallel (Figure 14), displaying a similar microstructure to that observed in transversal sections
of the belemnite rostra (compare Figures 7E,F,H, 13B and 14).
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Figure 11. Phragmocone structure of Sepia. (A) Distal end of cuttlebone with contact between dorsal 
shield and youngest chambers of the phragmocone (SP-10). (B) General view of the phragmocone and 
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than the rest of the dorsal shield. (D) Detail of the phragmocone of S. officinalis (SP-03) composed by 
septae supported by undulating transverse pillars or palisades. (E) BSEM image (SP-02) of undular 
plates with alternating dark (organic rich) and white (aragonite rich) layers. (F) Detailed view of a 
septum (SP-07) composed of two layers, the anterior (~9 µm) is of prismatic structure with fine and 
densely arranged prisms perpendicular to the septum, and the posterior layer is lamellar (~15 µm). 
(G) Lamellar layer is composed of an alternation of organic and aragonitic-rich sublayers (SP-07). 
(H,I) Detail of the pillars between septae showing the rhythmic growth as well as the presence of 
organic films (SP-07). 

The analysis of septae under BSEM allowed to recognise that the lamellar layer is richer in 
organic matter than the prismatic layer. In detail, the lamellar layer is composed of an alternation of 
organic- and aragonitic-rich sublayers (Figure 11G). The transverse pillars are made up of laminae 
composed of small randomly oriented aragonite crystals [69] that, under BSEM, show an internal 
alternation of organic-rich and organic-poor laminae (Figure 11E). In S. officinalis, the heights of the 
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The chambered cuttlebone has a dual function as a support and as buoyancy regulation through 
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Figure 11. Phragmocone structure of Sepia. (A) Distal end of cuttlebone with contact between dorsal
shield and youngest chambers of the phragmocone (SP-10). (B) General view of the phragmocone and
the dorsal shield of Sepia officinalis under the SEM (SP-07). (C) General view of the phragmocone and the
dorsal shield of S. officinalis under BSEM (SP-02); note that the organic granulated layer is darker than
the rest of the dorsal shield. (D) Detail of the phragmocone of S. officinalis (SP-03) composed by septae
supported by undulating transverse pillars or palisades. (E) BSEM image (SP-02) of undular plates with
alternating dark (organic rich) and white (aragonite rich) layers. (F) Detailed view of a septum (SP-07)
composed of two layers, the anterior (~9 µm) is of prismatic structure with fine and densely arranged
prisms perpendicular to the septum, and the posterior layer is lamellar (~15 µm). (G) Lamellar layer is
composed of an alternation of organic and aragonitic-rich sublayers (SP-07). (H,I) Detail of the pillars
between septae showing the rhythmic growth as well as the presence of organic films (SP-07).
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Figure 12. SEM images of the dorsal shield of S. officinalis. (A) Distal end of the cuttlebone (SP-03) 
with the contact between dorsal shield and the youngest chambers of the phragmocone. (B) The three 
mineralized layers of the dorsal shield, from the inner one, close to the phragmocone, to the outer 
one, in contact with the organic layer (SP-03). (C) BSEM image (SP-02) of the mineralized layers: the 
inner layer (prismatic microstructure); the middle layer (laminated microstructure, composed of 
organic-rich lamellar sublayers alternating with aragonitic prismatic sublayers); the outer layer 
(radially arranged crystals of aragonite with low presence of organic matter). (D) Outer layer with 
presence of tubercles in the contact with the external organic granulated layer (SP-07). (E) Differences 
between the microstructure of the outer and the middle layers (SP-07). (F,G) Radially arranged 
aragonite crystals of the outer layer (SP-07), which resemble hemispheres (G). (H) Prismatic 
microstructure of the inner layer and structural relation with the septum and the middle layer of the 
dorsal shield (SP-07). (I,J) Laminated structure of the middle layer with alternating organic-rich and 
aragonitic-rich sublayers (SP-07). (K,L) BSEM image in the distal part of the cuttlebone where the 
middle layer is very thin (SP-07). Radially arranged crystals of the inner layer growth from the middle 
layer to the phragmocone (laminated appearance due the organic matter content). 

Figure 12. SEM images of the dorsal shield of S. officinalis. (A) Distal end of the cuttlebone (SP-03)
with the contact between dorsal shield and the youngest chambers of the phragmocone. (B) The three
mineralized layers of the dorsal shield, from the inner one, close to the phragmocone, to the outer
one, in contact with the organic layer (SP-03). (C) BSEM image (SP-02) of the mineralized layers:
the inner layer (prismatic microstructure); the middle layer (laminated microstructure, composed of
organic-rich lamellar sublayers alternating with aragonitic prismatic sublayers); the outer layer (radially
arranged crystals of aragonite with low presence of organic matter). (D) Outer layer with presence of
tubercles in the contact with the external organic granulated layer (SP-07). (E) Differences between
the microstructure of the outer and the middle layers (SP-07). (F,G) Radially arranged aragonite
crystals of the outer layer (SP-07), which resemble hemispheres (G). (H) Prismatic microstructure of the
inner layer and structural relation with the septum and the middle layer of the dorsal shield (SP-07).
(I,J) Laminated structure of the middle layer with alternating organic-rich and aragonitic-rich sublayers
(SP-07). (K,L) BSEM image in the distal part of the cuttlebone where the middle layer is very thin
(SP-07). Radially arranged crystals of the inner layer growth from the middle layer to the phragmocone
(laminated appearance due the organic matter content).
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Figure 13. SEM images of the prong or spine of Sepia orbignyana. (A) General view of the prong 
(specimen SP-11). (B) Transversal section of the prong displaying fibrous and radial aragonite crystals 
distributed in concentric laminae (SP-12). (C–E) Longitudinal section (SP-14) showing the concentric 
laminae, which is parallel to the prong surface, and has the maximum curvature along the apical area 
(C–E). (E) Detailed image of (D), showing the concentric layering with and alternation of relatively 
thick aragonite-rich layers, and relatively very thin organic-layers. (F) Detail of the aragonite crystals 
displaying rod-like appearance and containing short organic fibers among them. 

 
Figure 14. (A-B) SEM images of a transversal thin section of a prong of S. officinalis (SP-10) showing 
micro-fibrous texture of the crystals, which are distributed in concentric laminae.  

Figure 13. SEM images of the prong or spine of Sepia orbignyana. (A) General view of the prong
(specimen SP-11). (B) Transversal section of the prong displaying fibrous and radial aragonite crystals
distributed in concentric laminae (SP-12). (C–E) Longitudinal section (SP-14) showing the concentric
laminae, which is parallel to the prong surface, and has the maximum curvature along the apical area
(C–E). (E) Detailed image of (D), showing the concentric layering with and alternation of relatively
thick aragonite-rich layers, and relatively very thin organic-layers. (F) Detail of the aragonite crystals
displaying rod-like appearance and containing short organic fibers among them.
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micro-fibrous texture of the crystals, which are distributed in concentric laminae.
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In longitudinal sections, the prong is also composed of concentric laminae, which are parallel and
younger towards the prong surface, similarly to that observed in longitudinal sections of belemnite
rostra (compare Figures 5D–F, 9H, 10F–I and 13C–E). The highest porosity has been observed along the
area where laminae have their maximum curvature (c.f. the apical area). In detail, under FL microscopy,
concentric laminae of the Sepia prong are composed of alternating intense and non-to weak FL laminae
(Figure 10H); under SEM relatively thick and organic-poor (aragonite-rich) laminae (2–5-µm-thick in
the apical area) alternate with relatively thin and organic-rich laminae (0.5–1-µm-thick) (Figures 13D,E
and 15). The overall thickness of the laminae decreases from the curved apical area to the straight
lateral margins, similarly to that observed in belemnite rostra (compare Figures 5D–F, 9H, 10F,I and
13C–E). Some laminae in the apical area pinch out laterally and disappear (Figure 15A). Moreover,
in longitudinal sections of the prong of S. officinalis, spherulites of radially arranged acicular crystals of
aragonite have been observed in the inner area of the prong (Figure 10F,I). However, it has not been
possible to observe the arrangement of spherulites properly, because of the difficulty in obtaining
a section completely parallel to the apical area of the prongs. Aragonite crystals, which display
undulose extinction under PL microscopy, become progressively longer towards the external wall of
the prong, crossing-cut through different concentric laminae, similarly to that occurring in belemnite
rostra (compare Figures 5E, 6C, 7A–C,G and 10I). However, under SEM it can be observed that radially
arranged crystals are internally composed of clusters of nannometer-sized aragonite crystalline units
(Figure 13E,F). In S. orbignyana, organic fibers (500 nm length, 60 nm diameter) are observed among the
aragonite crystalline units, which may be aligned, displaying a poorly developed concentric layering
(Figure 13F). In the case of S. officinalis, concentric thin organic films (<50 nm), comprising organic fibers,
which are projected out, are observed interlayered with the aragonite crystalline units (Figure 15B–D).

Minerals 2020, 10, x FOR PEER REVIEW 17 of 26 

Minerals 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/minerals 

In longitudinal sections, the prong is also composed of concentric laminae, which are parallel 
and younger towards the prong surface, similarly to that observed in longitudinal sections of 
belemnite rostra (compare Figures 5D–F, 9H, 10F–I and 13C–E). The highest porosity has been 
observed along the area where laminae have their maximum curvature (c.f. the apical area). In detail, 
under FL microscopy, concentric laminae of the Sepia prong are composed of alternating intense and 
non-to weak FL laminae (Figure 10H); under SEM relatively thick and organic-poor (aragonite-rich) 
laminae (2–5-µm-thick in the apical area) alternate with relatively thin and organic-rich laminae (0.5–
1-µm-thick) (Figure 13D,E and 15). The overall thickness of the laminae decreases from the curved 
apical area to the straight lateral margins, similarly to that observed in belemnite rostra (compare 
Figures 5D–F, 9H, 10F,I and 13C–E). Some laminae in the apical area pinch out laterally and disappear 
(Figure 15A). Moreover, in longitudinal sections of the prong of S. officinalis, spherulites of radially 
arranged acicular crystals of aragonite have been observed in the inner area of the prong (Figure 
10F,I). However, it has not been possible to observe the arrangement of spherulites properly, because 
of the difficulty in obtaining a section completely parallel to the apical area of the prongs. Aragonite 
crystals, which display undulose extinction under PL microscopy, become progressively longer 
towards the external wall of the prong, crossing-cut through different concentric laminae, similarly 
to that occurring in belemnite rostra (compare Figures 5E, 6C, 7A–C,G and 10I). However, under SEM 
it can be observed that radially arranged crystals are internally composed of clusters of nannometer-
sized aragonite crystalline units (Figure 13E,F). In S. orbignyana, organic fibers (500 nm length, 60 nm 
diameter) are observed among the aragonite crystalline units, which may be aligned, displaying a 
poorly developed concentric layering (Figure 13F). In the case of S. officinalis, concentric thin organic 
films (<50 nm), comprising organic fibers, which are projected out, are observed interlayered with 
the aragonite crystalline units (Figure 15B–D). 

 
Figure 15. SEM images of fibrous and radial aragonite crystals of the prong. (A) Some laminae in the 
apical area pinch out laterally and disappear (white arrows) (SP-14). (B–D) Fibrous aragonite crystals 
at nanoscale are composed of clusters of small aragonite crystalline units, which are aligned. Among 
these crystals there are thin organic films (SP-15).  

Figure 15. SEM images of fibrous and radial aragonite crystals of the prong. (A) Some laminae in the
apical area pinch out laterally and disappear (white arrows) (SP-14). (B–D) Fibrous aragonite crystals
at nanoscale are composed of clusters of small aragonite crystalline units, which are aligned. Among
these crystals there are thin organic films (SP-15).
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4. Discussion: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum?

The analyses of belemnites and cuttlebones show that biomineralization was strongly controlled
by the organism during its stepping growth. In the case of Sepia, the organic matter is present
everywhere in the phragmocone, dorsal shield and prong, always in alternation between organic-rich
and organic-poor layers and sublayers, which may be observed at different scales (Figures 11, 12 and 15).
Despite the difficulties related to preservation of organic matter and the incidence of diagenesis, this
type of growth architecture is also observed in the belemnites, as indicated by petrographic features
(Figures 5 and 7–9; see the results section and Benito and Reolid, [30] and Benito et al. [31] for details)
and by the distribution of Mg, Na and S contents, which are higher in the intense FL layers than in the
none-to-weak FL layers [30,31].

The prismatic structure of the inner layer of the dorsal shield of the cuttlebone has been interpreted
as equivalent to the inner prismatic layer of the phragmocone wall in belemnites (primordial rostrum
sensu Fuchs [71]). The structure of the middle layer of the dorsal shield and of the prong combines
organic-rich and organic-poor aragonitic elements, such as has been deduced in the belemnite rostrum
after SEM and FL examination [30,31]. The outer layer of the dorsal shield cannot be compared with
the rostrum solidum of belemnites, but this type of radially arranged microstructure is observed in
other cephalopods, such as the Nautilus external shell [69] and the brood case of Argonauta [33,92,93].

In belemnite rostra, as indicated in the results section, calcite crystals start growing from the
spherulites, which are distributed along the apical line, displaying a regular spherulitic-prismatic
microstructure [31]. The spherulitic–prismatic structure of belemnite rostra was firstly described by
Bandel et al. [43] in other specimens of Hibolithes and, after Benito et al. [31], has been confirmed in
Neohibolites minimum and Gonioteuthis rostra [33,36].

Crystals become progressively longer and radially distributed until, towards the external wall of
the rostrum, they convert into parallel prismatic crystals (Figure 6), which, in turn, displays an internal
micro-fibrous texture (Figure 7). Benito et al. [31] interpreted that the slight variation in the orientation
of the c-axis of calcite crystals during progressive growth could be the cause of the undulose extinction
that is observed in belemnite rostra under PL microscopy. The slight changes in c-axis direction
between neighboring calcite crystals have been subsequently confirmed in Neohibolites minimum [33].
Similarly, in longitudinal sections of Sepia, an equivalent arrangement of aragonite crystals, emerging
from spherulites, becoming progressively longer and radially arranged to the outer wall of the prong,
and displaying undulose extinction, has been also observed (Figure 10). Moreover, in transversal
sections of the prong, a micro-fibrous texture, similar to that observed in belemnite rostra, has been
also recognized (compare Figures 7F and 14). In this regard, Yancey and Garvei [56] have reported
radial-prismatic and spherulitic-like aragonite crystal arrangements in Anomalosaepia specimens.

The concentric layering of belemnite rostra also resembles that observed in the prong of Sepia
orbignyana and S. officinalis (compare Figures 7, 9H, 10F,I and 13C–E). In the studied belemnite rostra,
the concentric pattern comprises an alternation of radially arranged layers, displaying weak FL,
and very thin layers without radial structure, displaying intense FL. The alternation of weak and
intense FL concentric layering has been interpreted as an alternation of organic-poor and organic-rich
layers, respectively [30], in agreement with interpretations previously made by Sælen [44] in Neohibolites
and Belemnellocamax. In the case of the Sepia prong, consecutive and concentric layers of aragonite
crystals with radial arrangement are interlayered with organic-rich and non-radially distributed
laminae. Additionally, in both belemnite rostrum and Sepia prong, it is observed that calcite and
aragonite crystals, respectively, which are in optical continuity, cross-cut the organic-rich concentric
layers (compare Figures 7, 9A–C, 10I and 14).

The presence of original organic matter in belemnites and other fossil shells has been observed
or suggested by several authors [1,30,31,33,40,44,47,55,82,94–100]. In this regard, Benito et al. [31]
also observed that single calcite crystals of belemnite rostra are composite (Figure 9; see the results
section), interpreting that the FL was activated by organic compounds, which were incorporated
into the belemnite skeleton during progressive growth, preferentially in the apical area and in some
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concentric layers. This interpretation is in agreement with that given by Florek et al. [40] and Dunca
et al. [99], who observed an excess of carbon in Jurassic belemnites, mainly in the apical line [40],
and interpreted that organic matrix was involved in the formation of belemnite skeleton.

Based on these findings, Benito et al. [31] interpreted that belemnite rostra were originally porous
(20–60% of porosity) and that crystals were formed during two different growth stages: the fluorescent
sectors of the crystals formed during belemnite skeletal growth, as a product of biologically controlled
mineralization, and the non-fluorescent sectors precipitated subsequently as a postmorten cement,
filling the intra- and inter-crystalline porosity. In this regard, Benito et al. [31] argued that if calcite
overgrowths would have precipitated while belemnites were alive, the density of the rostrum would
have increased, changing their buoyancy and gravity center and making them too heavy to support
the swimming animal’s horizontal living posture, as suggested by Spaeth [38]. Thus, Benito et al. [31]
highlighted that caution should be taken when analysing geochemically the belemnite rostra for
palaeoenvironmental studies, in agreement with interpretations previously made by Benito and
Reolid [30] based on geochemical data obtained from the studied belemnites. This assessment has
been reinforced by Hoffmann et al. [42] and Stevens et al. [33], based on data obtained in Belemnitella
mucronate and Megateuthis gigantea and in Neohibolites minimum, respectively.

Although it has not been possible to observe current porosity or pristine organic matter in belemnite
rostra, the presence of high organic matter content together with the high porosity observed in the Sepia
prong, mostly along the “apical area” (Figures 10F,I and 13C–E), is in agreement with the interpretation
that belemnite rostra were originally porous [1,2,31,37–42]. The areas displaying the highest porosity,
probably related to the higher organic matter content [40] and its decay, such as the apical line
and growth rings displaying intense FL, were more susceptible for diagenetic alteration [30,31].
In this regard, the apical line commonly displays a cloudy appearance and bright orange-reddish
luminescence due to diagenetic alteration [30,31,33,38,40,43,44,99]. Based on that, and on the high
organic matter content observed along the apical line, Stevens et al. [33] proposed that the apical line
of belemnite rostra is an original feature, most probably of organic origin. However, this is not in
agreement with observations made by Bandel et al. [43] (1984), Benito et al. [31] and in this work (see
Figure 6, Figure 5 of Bandel et al. [43], Figures 3A–F and 5A–D of Benito et al. [31]). As shown in
these figures, primary spherulites are observed along the apical line, despite its cloudy appearance
and bright luminescence, suggesting that the apical line was not fully organic, but an organic-rich
area [31,40,43,99], where diagenetic fluids could easily percolate, because of its relatively higher original
porosity, favoring the breakdown of the organic matter and the diagenetic alteration. This is also
in agreement with observations made in the apical area of the Sepia prong (Figure 10F,I), which is
composed of spherulites and displays high porosity, and with observations made by Yancey and
Garvei [56], who reported that “the prong growth axis and the prong’s median fissure of Anomalosaepia
is less mineralized than other areas of skeleton, suggesting a high proportion of non-mineralized
organic material that decayed after death.

Thus, the strong growth convergences observed between the belemnite rostra and the Sepia prong
(Table 1) suggest that growing of belemnites occurred similarly to the growth of the prong of sepiids
and that the Sepia prong is the analog of the belemnite rostrum solidum.
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Table 1. Summary of the main convergences and divergences observed between the rostrum solidum of belemnites (BR) and the Sepia prong (SP).

Features
This Study Related References

Convergences Divergences Belemnite Rostrum Solidum (BR) Sepia Prong
(SP)

Primary mineralogy BR: Calcite
SP: Aragonite

Veizer [2], Sælen [44], Podhala et al., [7],
Arkhipkin et al. [47],

Bandel & Spaeth [58], Rosales et al., [57]

Jeletzky [50],
Dauphin [51],

House [52]

Spherulitic-prismatic
microestructure

Radially arranged crystals start
growing from spherulites from

which crystals emerge and
diverge

BR: Spherulites observed along the apical line
(Figure 6).

SP: Spherulites observed in the apical area of the
prong (Figure 10I)

Bandel et al., [43], Benito et al., [31],
Stevens et al., [33],

Hoffmann and Stevens [36]
Benito et al., [31]

Microfibrous texture
of crystals

Radially arranged crystals
displays micro-fibrous texture

(Figures 7, 8 and 14).

Bandel et al., [43], Sælen [44]; Richter et
al., [84], Benito and Reolid [30],

Benito et al., [31]

Relationship between
the concentric and

radial pattern

Concentric pattern, observed at
different scales, is traversed by

the radially-arranged
micro-fibrous crystals.

BR: Concentric pattern is formed by an alternation
of thin layers, displaying intense FL (organic-rich)
and layers displaying internal radial micro-fibrous

texture and weak FL (organic-poor) (Figure 7).
SP: Concentric pattern is formed by an alternation
of thin and organic-rich laminae and organic-poor

layers comprising radially arranged aragonite
crystals (Figures 10I and 13).

Sælen [44], Benito et al., [31]

Primary porosity
High primary porosity inferred
(BR) or observed (SP) along the

apical area.

BR: Primary porosity is not preserved because it
was later filled by calcite cement (Figure 9).

SP: Primary porosity is preserved (Figure 10)

Spaeth et al., [1], Spaeth [37,38], Veizer [2],
Richter et al., [39], Florek et al., [40],

Benito et al., [31], Hoffmann et al., [42]

Organic matter
content

High original organic matter
content inferred (BR) and

observed(SP) along the apical
area and in thin concentric

layers

BR: Original organic matter is not preserved; it is
inferred based on petrographic features and on
geochemical data obtained in the studied BR by

Benito and Reolid [30] and Benito et al. [31]
(Figure 7and Figure 9).

SP: Organic matter is preserved (Figures 13 and 15)

Müller-Stoll 1936 [82],
Bandel et al., 1984 [43], Sælen [44],

Florek et al., [40], Dunca et al., [100],
Benito and Reolid [30], Benito et al., [31],
Hoffmann et al., [42], Stevens et al., [33]

Non-classical
mineralization

Non-classical crystallization
processes are proposed to be
involved in the formation of

Sepia endoskeleton

Cuif et al., [90], Benito et al., [31]
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Another question to address is how to interpret, in the Sepia prong, the fact that single
aragonite crystals are internally composed of aligned clusters of nanometer-sized crystalline units,
which are iso-orientated and include abundant organic matter inclusions (Figures 12, 13F and 15C,D).
These structures resemble those observed in calcite crystals of the studied belemnite rostra (Figure 7E,F)
and those reported by Cuif et al. [90] in belemnites (see Figure 7.42 of Cuif et al. [90]). These authors
noted that radial prims of belemnites were internally composed of clusters of nanometer-sized
iso-orientated crystalline units, suggesting that fusion of their crystal lattices formed the broader units
under a non-classical crystallization process. Non-classical crystallization has been proposed as the
mechanism for the biomineralization of living and fossil organisms, such as some echinoderms, corals,
foraminifera and mollusks, including belemnites [31,90,101–104]. Thus, the observations made in Sepia
also suggest that non-classical crystallization is probably involved in the growth of their cuttlebone.
These observations also suggest the possibility that small, biologically controlled and iso-orientated
aragonite crystalline units were fused into larger crystals, leaving intra- and inter-crystalline pore
spaces, similarly to what has been interpreted for belemnites [31,90].

5. Conclusions

The analyses of Jurassic belemnites (Hibolithes, Belemnopsis and Passaloteuthis) and cuttlebones
(from Sepia officinalis and S. orbignyana) show that biomineralization of these shells was strongly
related with the presence of organic matter in their structure. The organic matter in the cuttlebones
is present in the phragmocone, dorsal shield and prong, always in alternation between organic-rich
and organic-poor layers. In the case of belemnite rostra the organic matter is not directly observed,
but the epifluorescence and BSEM pattern, the distribution of Mg, Na and S content and the pattern
observed when rostrum solidum is etched with glutardialdehyde, indicates that organic matter was
incorporated into the belemnite skeleton during progressive growth, preferentially in the apical area
and in some concentric layers. Similarly, organic-rich and organic-poor (aragonite-rich) concentric
layers of aragonite crystals are interlayered in the Sepia prong.

In belemnite rostra, calcite crystals start growing from spherulitic centers of growth, developed
along the apical line, from which calcite crystals emerge and diverge becoming larger and prismatic
towards the external wall of the rostra. These calcite crystals traverse the concentric growth layering
of the rostra, display undulose extinction, and internal micro-fibrous texture. This microstructure
resemble that observed in the prong of Sepia.

Additionally, the presence of high organic matter content together with the high porosity observed
in the Sepia prong, mostly along the “apical area” is consistent with the interpretation that belemnite
rostra were originally porous, that the areas displaying the highest porosity (the apical area and the
organic-rich concentric layers) were more suitable for diagenetic alteration, and that caution should be
taken when analysing geochemically belemnites for performing palaeoenvironmental interpretations.

The strong growth convergences observed between the belemnite rostra and the Sepia prong
suggest that growing of belemnites occurred similarly to the growth of the prong of sepiids and that
the Sepia prong is the analog of the belemnite rostrum solidum.

Finally, the fact that single aragonite crystals of the Sepia prong are internally composed of aligned
clusters of nanometer-sized crystalline units, which are iso-orientated and contain abundant organic
matter, suggest non-classical crystallization, as has been previously interpreted for other living and
fossil organisms.
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