pXRF Measurements on Soil Samples for the Exploration of an Antimony Deposit: Example from the Vendean Antimony District (France)
Abstract
:1. Introduction
1.1. Objectives
1.2. Site and Geology
2. Materials and Methods
2.1. Sampling
2.2. pXRF Analyses
2.3. QA/QC
2.4. Laboratory Analyses
2.5. Data Processing
3. Results
3.1. Exploratory Data Analysis
3.1.1. B Horizon
3.1.2. Ah Horizon
3.1.3. Variations Between Ah and B Horizons
3.2. Spatial Anomaly Mapping
3.2.1. Sb Spatial Anomaly Patterns
3.2.2. As Spatial Anomaly Patterns
3.2.3. Mn Spatial Anomaly Patterns
3.3. Quality Control
3.3.1. pXRF QA/QC
3.3.2. pXRF Quality Control by Laboratory Analyses
4. Discussion
4.1. CoDa Processing
4.2. Soil Horizons
4.3. Spatial Anomaly Mapping
4.4. Application to Exploration
- -
- Ranking samples according to Sb and pathfinder concentrations, as a linear relationship is observed between pXRF measurements and laboratory analyses, even with a bias affecting absolute accuracy.
- -
- Delineating precise anomalies, as the spatial consistency of anomalies with known mineralisation location is good.
5. Conclusions: Prospecting for Sb with a pXRF
- -
- Based on single-element Sb patterns, mineralisation can often be detected, but not for all intercepts.
- -
- Based on Sb, As and Mn patterns, Sb mineralisation can be detected using pathfinders. A composite signature search (Sb, As, Mn) turned out to be more effective for mineralisation detection than single Sb maps. The pathfinder signature needs to be determined prior to the survey. Maps drawn with PCA factor scores did not bring a significant advantage, but this may be due to the rather simple signature and to the lack of lithogeochemical influence. Factor-score maps might be useful at other sites.
- -
- Sb, As and Mn contrast is good, but the background values are not much above the lower analytical limit of the instrument on raw samples.
- -
- Using the same signature (Sb, As, Mn) for deeper ore detection is theoretically possible but more difficult. Based on the thickness of the surficial cover and on the structural control, a weaker signal could be expected.
- -
- Detection of weak anomalies may be hampered by background noise and scatter. No demonstration was made on the site, as previous prospection did not target the deeper ore.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lemiere, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Middleton, M.S.; Nykänen, V.; Melleton, J.; Lemiere, B.; Sarala, P.; Filzmoser, P.; Järvinen, P.; Rinkkala, M.; Rönnqvist, J.; Thaarup, S. Upscaling deep buried geochemical exploration techniques into European business—UpDeep. In Proceedings of the Resources for Future Generations—RFG2018, Vancouver, BC, Canada, 16–21 June 2018; p. 1227. [Google Scholar]
- Cameron, E.M.; Hamilton, S.M.; Leybourne, M.I.; Hall, G.E.M.; McClenaghan, M.B. Finding deeply buried deposits using geochemistry. Geochem. Explor. Environ. Anal. 2004, 4, 7–32. [Google Scholar] [CrossRef]
- Heberlein, D.; Dunn, C. Sweat, Sap And Emanations—What Trees and Snow Can Reveal About Hidden Mineralization. In Proceedings of the Resources for Future Generations—RFG2018, Vancouver, BC, Canada, 16–21 June 2018; p. 1941. [Google Scholar]
- Melleton, J.; Lemière, B.; Derycke, V.; Serrand, A.S.; Fournier, E.; Gloaguen, E.; Lacquement, F.; Auger, P.; Middleton, M.; Nykänen, V. Exploration geochemistry: Comparison between classic trace elements geochemistry, soil partial leaches, portable XRF, on soils and biogeochemistry in Western Europe Environment. Example from Li-Ta-Sn and W deposits. In Proceedings of the Resources for Future Generations—RFG2018, Vancouver, BC, Canada, 16–21 June 2018; p. 1395. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Tackling the Challenges in Commodity Markets and on Raw Materials (COM/2011/0025 Final). 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0025 (accessed on 20 December 2018).
- USGS 2015 Minerals Yearbook—Antimony. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/antimony/myb1-2015-antim.pdf (accessed on 20 December 2018).
- Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsportion behavior and surface structure. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef]
- Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E. How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use. Resour. Conserv. Recycl. 2016, 108, 54–62. [Google Scholar] [CrossRef]
- He, J.; Wei, Y.; Zhai, T.; Li, H. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front. 2018, 3, 437–455. [Google Scholar] [CrossRef]
- ATSDR, Public Health Statement for Antimony, in Toxic Substances Portal. Available online: https://www.atsdr.cdc.gov/phs/phs.asp?id=330&tid=58 (accessed on 31 January 2020).
- Herath, I.; Vithanage, M.; Bundschuh, J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Pohl, W. Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Munoz, M.; Courjault-Rade, P.; Tollon, F. The massive stibnite veins of the French Palaeozoic basement: A metallogenic marker of Late Variscan brittle extension. Terra Nova 2007. [Google Scholar] [CrossRef]
- Pochon, A.; Gloaguen, E.; Branquet, Y.; Poujol, M.; Ruffet, G.; Boiron, M.C.; Boulvais, P.; Gumiaux, C.; Cagnard, F.; Gouazou, F.; et al. Variscan Sb-Au mineralization in Central Brittany (France): A new metallogenic model derived from the Le Semnon district. Ore Geol. Rev. 2018, 97, 109–142. [Google Scholar] [CrossRef]
- Scratch, R.B.; Watson, G.P.; Kerrich, R.; Hutchinson, R.W. Fracture-controlled antimony-quartz mineralization, Lake George Deposit, New Brunswick; mineralogy, geochemistry, alteration, and hydrothermal regimes. Econ. Geol. 1984, 79, 1159–1186. [Google Scholar] [CrossRef]
- Sainsbury, C.L. Geochemical exploration for antimony in southeastern Alaska. USGS Open-File Rep. 1955, 55–158. [Google Scholar] [CrossRef]
- Marcoux, E.; Serment, R.; Allon, A. Les gites d’antimoine de Vendée (Massif armoricain, France); historique des recherches et synthèse métallogénique. Chron. Rech. Min. 1984, 476, 3–30. [Google Scholar]
- Le Fur, Y.; Allon, A.; Biron, R.; Lequertier, M.; Roussel, M. La découverte du gisement d’antimoine des Brouzils en Vendée (Massif Armoricain, France). Historique des travaux, description du gisement et projet d’exploitation. Chron. Rech. Min. 1988, 492, 5–18. [Google Scholar]
- Godard, G.; Bouton, P.; Poncet, D.; Carlier, G.; Chevallier, M. Geological Map 1:50,000, Montaigu; BRGM Editions: Orleans, France, 2007; p. 536. [Google Scholar]
- Bailly, L.; Bouchot, V.; Beny, C.; Milesi, J.-P. Fluid inclusion study of stibnite using infrared microscopy: An example from the Brouzils antimony deposit (Vendee, Armorican massif, France). Econ. Geol. 2000, 95, 221–226. [Google Scholar] [CrossRef]
- Pochon, A.; Gapais, D.; Gloaguen, E.; Gumiaux, C.; Branquet, Y.; Cagnard, F.; Martelet, G. Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova 2016, 28, 138–145. [Google Scholar] [CrossRef]
- Pochon, A.; Branquet, Y.; Gloaguen, E.; Ruffet, G.; Poujol, M.; Boulvais, P.; Gumiaux, C.; Cagnard, F.; Baele, J.-M.; Kéré, I.; et al. A Sb ± Au mineralizing peak at 360 Ma in the Variscan belt, BSGF. Earth Sci. Bull. 2019, 190, 4. [Google Scholar] [CrossRef] [Green Version]
- Ters, M. Action morphologique des phénomènes périglaciaires dans la region littorale vendéenne. Bull. Assoc. Géogr. Fr. 1953, 232–233, 78–87. [Google Scholar] [CrossRef] [Green Version]
- INRA. Base de Données Géographique des Sols de France à 1/1,000,000. 1998. Available online: www.gissol.fr (accessed on 24 July 2020).
- Béchennec, F. Carte Géologique Harmonisée du Département de Loire-Atlantique. BRGM Report RP-55703-FR. 2007. 369p. Available online: http://infoterre.brgm.fr/rapports/RP-55703-FR.pdf (accessed on 18 August 2020).
- Hall, G.; Buchar, A.; Bonham-Carter, G. Quality Control Assessment of Portable XRF Analysers: Development of Standard Operating Procedures, Performance on Variable Media and Recommended Uses. Canadian Mining Industry Research Organization (Camiro) Exploration Division, Project 10E01 Phase I Report. 2012. Available online: https://www.appliedgeochemists.org/index.php/publications/other-publications/2-uncategorised/106-portable-xrf-for-the-exploration-and-mining-industry (accessed on 24 July 2020).
- Gray, A. Form, Distribution, and Genesis of Precious Metal Mineralization within the Bald Hill Antimony Deposit, South-Central New Brunswick, Canada. Master’s Thesis, University of New Brunswick, Fredericton and Saint John, NB, Canada, 2019. [Google Scholar]
- Bastos, R.O.; Melquiades, F.L.; Biasi, G.E.V. Correction for the effect of soil moisture on in situ XRF analysis using low-energy background. X-Ray Spectrom. 2012, 41, 304–307. [Google Scholar] [CrossRef]
- Ge, L.; Lai, W.; Lin, Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrom 2005, 34, 28–34. [Google Scholar] [CrossRef]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Sci. Total Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability; Chapman & Hall Ltd.: London, UK, 1986; p. 416. [Google Scholar]
- Filzmoser, P.; Hron, K.; Reimann, C. The bivariate statistical analysis of environmental (compositional) data. Sci. Total Environ. 2010, 408, 4230–4238. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C.; Garrett, R. Robust factor analysis for compositional data. Comput. Geosci. 2009, 35, 1854–1861. [Google Scholar] [CrossRef] [Green Version]
- Reimann, C.; Filzmoser, P.; Hronc, K.; Kynčlová, P.; Garrett, R.G. A new method for correlation analysis of compositional (environmental) data—A worked example. Sci. Total Environ. 2017, 607–608, 965–971. [Google Scholar] [CrossRef]
- Nicholson, K. Contrasting mineralogical-geochemical signatures of manganese oxides; guides to metallogenesis. Econ. Geol. 1992, 87, 1253–1264. [Google Scholar] [CrossRef]
- Ashley, P.M.; Craw, D.; Graham, B.P.; Chappell, D.A. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J. Geochem. Explor. 2003, 7, 1–14. [Google Scholar] [CrossRef]
- Belzile, N.; Chen, Y.; Wang, Z. Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides. Chem. Geol. 2001, 174, 379–387. [Google Scholar] [CrossRef]
- Young, K.E.; Evans, C.A.; Hodges, K.V.; Bleacher, J.E.; Graff, T.G. A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration. Appl. Geochem. 2016, 72, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.J.; Dunn, C.E. Final report on Results of the Cordilleran Geochemistry Project: A comparative assessment of soil geochemical methods for detecting buried mineral deposits. Geosci. BC Pap. 2007, 7, 225. [Google Scholar]
- Baker, B.E. An application of soil humix substances to geochemical exploration. Appl. Geochem. 1986, 2, 307–310. [Google Scholar] [CrossRef]
- Robbat, J.R.A. Dynamic Workplans and Field Analytics: The Keys to Cost-Effective Site Investigations; Case Study; Tufts University: Medford, MA, USA, 1997. [Google Scholar]
- US Department of Energy. Adaptive Sampling and Analysis Programs (ASAPs); Report DOE/EM-0592; US Department of Energy: Washingon, DC, USA, 2001.
- Ramsey, M.H.; Boon, K.A. Can in situ geochemical measurements be more fit-for-purpose than those made ex situ? Appl. Geochem. 2012, 27, 969–976. [Google Scholar] [CrossRef]
Measurements | As | Ba | Ca | Cr | Cu | Fe | K | Mn | Mo | Ni |
---|---|---|---|---|---|---|---|---|---|---|
number | 79 | 96 | 96 | 60 | 27 | 96 | 96 | 87 | 17 | 5 |
min | 8 | 135 | 958 | 28 | 21 | 5188 | 9266 | 68 | 7 | 46 |
max | 117 | 497 | 9471 | 98 | 66 | 49,077 | 22,665 | 4177 | 9 | 71 |
avg | 28 | 306 | 2696 | 46 | 28 | 20,367 | 15,440 | 474 | 7 | 57 |
med | 19 | 307 | 2180 | 43 | 27 | 19,517 | 15,048 | 386 | 7 | 49 |
Measurements | Pb | Rb | S | Sb | Sr | Th | Ti | V | Zn | Zr |
number | 96 | 96 | 1 | 33 | 96 | 94 | 96 | 94 | 92 | 96 |
min | 9 | 42 | 19 | 49 | 5 | 4852 | 53 | 11 | 181 | |
max | 32 | 93 | 879 | 515 | 134 | 15 | 9184 | 170 | 67 | 433 |
avg | 20 | 67 | 107 | 81 | 9 | 5637 | 93 | 27 | 310 | |
med | 20 | 67 | 52 | 79 | 9 | 5613 | 89 | 24 | 302 |
Contribution | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
As | 0.273 | −0.147 | 0.3891 | −0.141 | −0.116 | 0.035 |
Ba | 0.286 | 0.070 | −0.168 | −0.019 | −0.177 | −0.402 |
Ca | 0.206 | −0.312 | −0.254 | −0.128 | 0.152 | 0.446 |
Cr | 0.268 | 0.229 | −0.039 | 0.054 | −0.159 | −0.217 |
Cu | 0.157 | −0.002 | 0.025 | 0.048 | 0.637 | 0.150 |
Fe | 0.359 | 0.005 | 0.044 | 0.086 | 0.024 | −0.166 |
K | 0.243 | 0.066 | −0.329 | −0.451 | −0.112 | 0.064 |
Mn | 0.293 | −0.054 | 0.2101 | 0.208 | 0.041 | −0.209 |
Pb | 0.125 | 0.433 | 0.257 | 0.047 | 0.166 | 0.311 |
Rb | 0.136 | 0.488 | −0.178 | −0.269 | 0.006 | 0.105 |
S | 0.325 | −0.043 | 0.038 | 0.026 | 0.171 | 0.121 |
Sb | 0.143 | −0.005 | 0.6041 | −0.139 | 0.061 | −0.088 |
Sr | 0.125 | −0.157 | −0.294 | 0.502 | 0.328 | −0.234 |
Th | −0.043 | 0.527 | −0.132 | 0.106 | 0.239 | −0.105 |
Ti | 0.051 | 0.094 | 0.011 | 0.533 | −0.404 | 0.507 |
V | 0.277 | 0.092 | −0.080 | 0.215 | −0.309 | 0.022 |
Zn | 0.280 | 0.031 | −0.008 | 0.007 | 0.018 | 0.196 |
Zr | −0.309 | 0.262 | 0.158 | 0.125 | 0.051 | −0.036 |
Measurement | As | Ba | Ca | Cr | Cu | Fe | K | Mn | Mo | Ni |
---|---|---|---|---|---|---|---|---|---|---|
number | 81 | 70 | 96 | 38 | 19 | 96 | 96 | 91 | 13 | 0 |
min | 7 | 62 | 1297 | 27 | 19 | 6837 | 8811 | 78 | 7 | |
max | 486 | 409 | 69,043 | 86 | 183 | 32,732 | 21,678 | 1992 | 8 | |
avg | 29 | 169 | 5511 | 42 | 41 | 17,982 | 14,865 | 409 | 7 | |
med | 16 | 163 | 3329 | 40 | 24 | 16,921 | 14,442 | 334 | 7 | |
Measurement | Pb | Rb | S | Sb | Sr | Th | Ti | V | Zn | Zr |
number | 96 | 96 | 27 | 27 | 96 | 84 | 96 | 93 | 94 | 96 |
min | 12 | 43 | 523 | 20 | 52 | 5 | 2672 | 49 | 13 | 170 |
max | 60 | 113 | 3252 | 436 | 137 | 12 | 6667 | 156 | 330 | 390 |
avg | 23 | 64 | 1204 | 80 | 79 | 8 | 5326 | 87 | 38 | 284 |
med | 21 | 64 | 979 | 44 | 76 | 8 | 5282 | 83 | 26 | 280 |
Contribution | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
As | −0.627 | −0.035 | −0.401 | 0.5161 | −0.140 | −0.084 |
Ba | −0.425 | 0.573 | −0.449 | −0.232 | −0.145 | 0.133 |
Ca | −0.807 | −0.371 | −0.017 | −0.198 | −0.040 | −0.028 |
Cr | −0.682 | 0.418 | 0.045 | −0.170 | 0.015 | −0.004 |
Cu | −0.520 | −0.645 | 0.179 | 0.025 | −0.179 | 0.291 |
Fe | −0.824 | 0.367 | 0.016 | 0.045 | 0.137 | 0.003 |
K | −0.582 | 0.461 | −0.006 | −0.285 | −0.300 | −0.402 |
Mn | −0.763 | 0.182 | −0.096 | 0.075 | 0.185 | 0.283 |
Pb | −0.017 | 0.292 | 0.574 | 0.5361 | 0.286 | 0.085 |
Rb | −0.251 | 0.635 | 0.413 | −0.101 | −0.454 | 0.029 |
S | −0.311 | −0.581 | 0.586 | −0.008 | −0.092 | −0.131 |
Sb | −0.419 | −0.323 | −0.312 | 0.5331 | −0.430 | 0.231 |
Sr | −0.431 | −0.158 | −0.079 | −0.368 | 0.516 | 0.460 |
Th | 0.277 | 0.512 | 0.280 | −0.132 | −0.405 | 0.482 |
Ti | 0.201 | 0.788 | −0.039 | 0.223 | 0.230 | 0.172 |
V | −0.433 | 0.687 | 0.173 | 0.233 | 0.179 | −0.157 |
Zn | −0.811 | −0.315 | 0.250 | −0.045 | −0.071 | 0.177 |
Zr | 0.834 | 0.125 | −0.068 | −0.008 | −0.235 | 0.341 |
Reference | As | Ba | Ca | Cr | Cu | Fe | K | Mn | Mo | Ni | Pb | Rb | S | Sb | Sr | Th | Ti | V | Zn | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blank | ||||||||||||||||||||
average | <LD | <LD | 668 | <LD | <LD | 281 | 446 | <LD | <LD | <LD | <LD | <LD | <LD | <LD | 102 | <LD | 99 | <LD | <LD | 20 |
std deviation | 15 | 26 | 5 | 14 | 3 | |||||||||||||||
NIST 2709 | ||||||||||||||||||||
average | 16 | 875 | 18,892 | 113 | 37 | 33,878 | 18,818 | 492 | 5 | 74 | 17 | 90 | <LOD | 16 | 221 | 11 | 3474 | 117 | 86 | 136 |
std deviation | 4 | 40 | 883 | 25 | 9 | 507 | 387 | 77 | 2 | 8 | 3 | 2 | 5 | 1 | 110 | 19 | 8 | 6 | ||
recommended | 18 | 968 | 18,900 | 130 | 35 | 35,000 | 20,300 | 538 | 2 | 88 | 19 | 96 | 890 | 8 | na | 11 | 3420 | 112 | 106 | 160 |
+/− | 1 | 40 | 500 | 4 | 1 | 1100 | 600 | 17 | nc | 5 | 1 | nc | 20 | 1 | na | nc | 240 | 5 | 3 | nc |
NIST 2710 | ||||||||||||||||||||
average | 17 | 90 | <LOD | 16 | 221 | 11 | 3474 | 117 | 86 | 136 | 5548 | 126 | 2525 | 41 | 316 | 33 | 2659 | 75 | 6894 | 115 |
std deviation | 3 | 2 | 5 | 1 | 110 | 19 | 8 | 6 | 193 | 4 | 1472 | 13 | 7 | 7 | 257 | 16 | 275 | 5 | ||
recommended | 19 | 96 | 890 | 8 | na | 11 | 3420 | 112 | 106 | 160 | 5532 | 120 | 2400 | 38 | 330 | 13 | 2830 | 77 | 6952 | na |
+/− | 1 | nc | 20 | 1 | na | nc | 240 | 5 | 3 | nc | 80 | nc | 60 | 3 | nc | nc | 100 | 2 | 91 | na |
NIST 2710a | ||||||||||||||||||||
average | 1689 | 877 | 8221 | 60 | 3395 | 47,587 | 22,104 | 2273 | 9 | 50 | 5572 | 112 | 11,926 | 53 | 250 | 49 | 3052 | 90 | 4363 | 207 |
std deviation | 99 | 83 | 385 | 49 | 8440 | 900 | 408 | 3 | 253 | 6 | 18 | 6 | 120 | 40 | 196 | 1 | ||||
recommended | 1540 | 792 | 9640 | 23 | 3420 | 43,200 | 21,700 | 2140 | na | 8 | 5520 | 117 | na | 53 | 255 | 18 | 3110 | 82 | 4180 | na |
+/− | 100 | 36 | 450 | 6 | 50 | 800 | 1300 | 60 | na | 1 | 30 | 3 | na | 2 | 7 | 0 | 70 | 9 | 150 | na |
NIST 2780 | ||||||||||||||||||||
average | <LOD | 1106 | 2394 | 36 | 184 | 28,619 | 33,977 | 499 | 12 | 43 | 5152 | 183 | 12,262 | 175 | 233 | 34 | 6859 | 241 | 2167 | 175 |
std deviation | 29 | 461 | 15 | 18 | 1157 | 2236 | 53 | 2 | 3 | 186 | 3 | 710 | 3 | 4 | 8 | 355 | 17 | 181 | 1 | |
recommended | 49 | 993 | 1950 | 44 | 216 | 27,840 | 33,800 | 462 | 11 | 12 | 5770 | 175 | 12,630 | 160 | 217 | 12 | 6990 | 268 | 2570 | 176 |
+/− | 3 | 71 | 200 | nc | 8 | 800 | 2600 | 21 | nc | nc | 410 | nc | 420 | nc | 18 | nc | 190 | 13 | 160 | nc |
Measurements | As | Ba | Ca | Cr | Cu | Fe | K | Mn | Mo | Ni | Pb | Rb | S | Sb | Sr | Th | Ti | V | Zn | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
average | 43 | 1298 | 10,070 | 77 | 447 | 65,349 | 30,653 | 1769 | 37 | 106 | 588 | 227 | 7958 | 60 | 78 | 39 | 3961 | 113 | 209 | 240 |
median of averages | 38 | 541 | 2543 | 70 | 74 | 26,952 | 30,803 | 640 | 15 | 81 | 98 | 233 | 7868 | 42 | 69 | 27 | 3921 | 100 | 102 | 242 |
average of standard deviations | 6 | 42 | 151 | 11 | 20 | 698 | 437 | 83 | 5 | 17 | 10 | 6 | 1646 | 19 | 3 | 5 | 123 | 16 | 13 | 5 |
median of standard deviations | 5 | 29 | 129 | 10 | 12 | 310 | 391 | 55 | 5 | 13 | 7 | 5 | 1986 | 13 | 3 | 4 | 109 | 12 | 10 | 5 |
sdev/average | 13% | 3% | 1% | 15% | 4% | 1% | 1% | 5% | 12% | 16% | 2% | 2% | 21% | 32% | 3% | 11% | 3% | 15% | 6% | 2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemière, B.; Melleton, J.; Auger, P.; Derycke, V.; Gloaguen, E.; Bouat, L.; Mikšová, D.; Filzmoser, P.; Middleton, M. pXRF Measurements on Soil Samples for the Exploration of an Antimony Deposit: Example from the Vendean Antimony District (France). Minerals 2020, 10, 724. https://doi.org/10.3390/min10080724
Lemière B, Melleton J, Auger P, Derycke V, Gloaguen E, Bouat L, Mikšová D, Filzmoser P, Middleton M. pXRF Measurements on Soil Samples for the Exploration of an Antimony Deposit: Example from the Vendean Antimony District (France). Minerals. 2020; 10(8):724. https://doi.org/10.3390/min10080724
Chicago/Turabian StyleLemière, Bruno, Jeremie Melleton, Pascal Auger, Virginie Derycke, Eric Gloaguen, Loïc Bouat, Dominika Mikšová, Peter Filzmoser, and Maarit Middleton. 2020. "pXRF Measurements on Soil Samples for the Exploration of an Antimony Deposit: Example from the Vendean Antimony District (France)" Minerals 10, no. 8: 724. https://doi.org/10.3390/min10080724
APA StyleLemière, B., Melleton, J., Auger, P., Derycke, V., Gloaguen, E., Bouat, L., Mikšová, D., Filzmoser, P., & Middleton, M. (2020). pXRF Measurements on Soil Samples for the Exploration of an Antimony Deposit: Example from the Vendean Antimony District (France). Minerals, 10(8), 724. https://doi.org/10.3390/min10080724