Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors
Abstract
:1. Introduction
2. Unconformity-Type Uranium Deposits—Descriptive Model
3. The Unconformity-Type Uranium Mineral System
3.1. Geodynamic Setting
3.1.1. Exhumation and Weathering of Crystalline Basement Rocks
3.1.2. The Clastic Basins
3.1.3. Pressure, Temperature and Time History at the Unconformity
3.2. Regional Fault Architecture
3.3. Archean Complexes
3.4. Fluid Reservoirs
3.5. Metal Sources
3.6. Fluid Pathways and Flow Drivers
3.6.1. Fluid Pathways
3.6.2. Drivers of Fluid Flow
3.7. Metal and Ligand Transport and Deposition
4. Prospectivity Mapping
4.1. Background
- Build an inventory of all relevant GIS data in order to assess their suitability for MPM.
- Construct suitable predictor maps (inputs) applicable to the mineralisation models under consideration.
- Test spatial relationship of features to known deposits using weights of evidence.
- Apply appropriate fuzzy weights to predictor maps and their features, based on lessons learnt from statistical assessments, and their perceived importance in the ore genesis model.
- Rasterise predictor maps using the fuzzy weights as the pixel values.
- Combine weighted predictor maps with the fuzzy logic inference network.
4.2. Compilation and Assessment of Available Spatial Data
4.3. Geophysical Linears from Potential Field Data
4.4. Creating Proxies for Mappable Criteria
4.4.1. NW McArthur Basin
4.4.2. Athabasca Basin
4.5. Establishing Spatial Relationships between Uranium Mineralisation and Proxies
4.5.1. Weights of Evidence
4.5.2. NW McArthur Basin
4.5.3. Athabasca Basin
4.6. Assigning Fuzzy Weights
4.7. Combining Predictors
5. Results
6. Discussion
6.1. Sources of Statistical Anomalism in Data-Driven MPM
6.2. Unbiased Structure Definition
6.3. Interpreting Fuzzy Logic MPM Results
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Jefferson, C.; Thomas, D.J.; Gandhi, S.; Ramaekers, P.; Delauney, G.; Brisbin, D.; Cutts, C.; Portella, P.; Olson, R. Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Bull. Geol. Surv. Can. 2007, 588, 23–67. [Google Scholar]
- International Atomic Energy Agency. Unconformity-Related Uranium Deposits; TECDOC 1857; International Atomic Energy Agency: Vienna, Austria, 2018; ISBN 978-92-0-108518-4. [Google Scholar]
- Jefferson, C.W.; Thomas, D.; Quirt, D.; Mwenifumbo, C.J.; Brisbin, D. Empirical models for Canadian unconformity-associated uranium deposits. In Proceedings of the Exploration 07-Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 741–769. [Google Scholar]
- Dahlkamp, F.J. Uranium Deposits of the World: Asia; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-78557-6. [Google Scholar]
- Dahlkamp, F.J. Uranium Deposits of the World: USA and Latin America; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-78555-2. [Google Scholar]
- Dahlkamp, F.J. Uranium Deposits of the World: Europe; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-540-78553-8. [Google Scholar]
- Wyborn, L.A.I.; Heinrich, C.A.; Jaques, A.L. Australian Proterozoic Mineral Systems: Essential Ingredients and Mappable Criteria. In Proceedings of the AusIMM Annual Conference, Darwin, Australia, 5 August 1994; pp. 109–115. [Google Scholar]
- Knox-Robinson, C.M.; Wyborn, L.A.I. Towards a holistic exploration strategy: Using Geographic Information Systems as a tool to enhance exploration. Aust. J. Earth Sci. 1997, 44, 453–463. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- McCuaig, T.; Hronsky, J. The mineral system concept: The key to exploration targeting. Soc. Econ. Geol. Spec. Publ. 2014, 18, 153–175. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Lisitsin, V.A.; Huston, D.L. Mineral system analysis: Quo vadis. Ore Geol. Rev. 2016, 76, 504–522. [Google Scholar] [CrossRef]
- Kreuzer, O.; Yousefi, M.; Nykänen, V. Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting. Ore Geol. Rev. 2020, 103391. [Google Scholar] [CrossRef]
- Porwal, A.K.; Kreuzer, O.P. Introduction to the Special Issue: Mineral prospectivity analysis and quantitative resource estimation. Ore Geol. Rev. 2010, 38, 121–127. [Google Scholar] [CrossRef]
- Knox-Robinson, C.M. Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Aust. J. Earth Sci. 2000, 47, 929–941. [Google Scholar] [CrossRef]
- Bierlein, F.P.; Bruce, M.D. A Continent-scale GIS-based Assessment of the Distribution and Potential for Sandstone-hosted Uranium Deposits. In Quantitative and Spatial Evaluations of Undiscovered Uranium Resources; IAEA TECDOC 1861; IAEA: Vienna, Austria, 2018; pp. 133–171. ISBN 978-92-0-109518-3. [Google Scholar]
- Bruce, M.D.; Bierlein, F.P.; Fairclough, M. Using Continent-Scale Spatial Targeting to Delineate Permissive Areas for Sandstone-Hosted Uranium. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018); International Atomic Energy Agency: Vienna, Austria, 2018. [Google Scholar]
- Chorlton, L.B. Generalized geology of the world: Bedrock domains and major faults in GIS format: A small-scale world geology map with an extended geological attribute database. Geol. Surv. Can. 2007, 5529, 1. [Google Scholar] [CrossRef]
- Wheeler, J.O.; Hoffman, P.F.; Card, K.D.; Davidson, A.; Sanford, B.V.; Okulitch, A.V.; Roest, W.R. Geological map of Canad: Map D1860A; Geological Survey of Canada: Ottawa, ON, Canada, 2015.
- Schobbenhaus, C.; Bellizzia, A. Geological Map of South America 1:5 000 000; CPRM-DNPM: Belo Horizonte, Brasil, 2001.
- Garrity, C.P.; Soller, D.R. Database of the Geologic Map of North America-Adapted from the Map by J.C. Reed, Jr. and Others (2005); Data Series DS-424; U.S. Geological Survey: Reston, VA, USA, 2009.
- OneGeology-Europe EGDI 1M-Scale Surface Geology. Available online: http://www.eurogeosurveys.org/projects/onegeology-europe/2019 (accessed on 11 April 2018).
- Geological Survey of India. Geology of India 1:2M Scale 2019. Available online: http://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx (accessed on 20 June 2020).
- Blake, D.H.; Kilgour, B. Geological Regions of Australia, 1:5 000 000 Scale; Geoscience Australia: Canberra, Australia, 2009.
- Geological Survey of South Australia. South Australian Solid Geology: Middle Mesoproterozoic Polygons. Available online: https://map.sarig.sa.gov.au/ (accessed on 12 January 2017).
- Singer, D.A.; Jaireth, S.; Roach, I. A three-part quantitative assessment of undiscovered unconformity-related uranium deposits in the Pine Creek region of Australia. In Quantitative and Spatial Evaluations of Undiscovered Uranium Resources; IAEA TECDOC 1861; IAEA: Vienna, Austria, 2018; pp. 264–348. ISBN 978-92-0-109518-3. [Google Scholar]
- Lally, J.H.; Bajwah, Z.U. Uranium Deposits of the Northern Territory; Northern Territory Geological Survey: Darwin, Australia, 2006; ISBN 978-0-7245-7107-9.
- Government of Saskatchewan-Central Services Mineral Deposit Index. Available online: http://applications.saskatchewan.ca/mineral-deposit-index (accessed on 4 August 2020).
- DevEx Resources West Arnhem Nabarlek Project | DevEX Resources. Available online: https://www.devexresources.com.au/west-arnhem-nabarlek-project (accessed on 11 August 2020).
- Wilde, A.R.; Wall, V.J. Geology of the Nabarlek uranium deposit, Northern Territory, Australia. Econ. Geol. 1987, 82, 1152–1168. [Google Scholar] [CrossRef]
- Rheinberger, G.; Hallenstein, C.; Stegman, C.L. Westmoreland Uranium Deposits. In Geology of Australian and Papua New Guinean Mineral Deposits; Monograph Series No. 22; Australasian Institute of Mining and Metallurgy: Carlton, Victoria, Australia, 1998; pp. 807–814. ISBN 1-875776-53-2. [Google Scholar]
- Alexandre, P.; Layton-Matthews, D.; Beyer, S.; Hiatt, E.; Lafontaine, J. Formation of the enigmatic Matoush uranium deposit in the Paleoprotozoic Otish Basin, Quebec, Canada. Miner. Depos. 2015, 50. [Google Scholar] [CrossRef]
- Gyorfi, I.; Hajnal, Z.; White, D.J.; Takács, E.; Reilkoff, B.; Annesley, I.; Powell, B. High-resolution seismic survey from the McArthur River region: Contributions to mapping of the complex P2 uranium ore zone, Athabasca Basin, Saskatchewan. Bull. Geol. Surv. Can. 2007, 588, 397–412. [Google Scholar]
- Johnston, D.J. Structural Geology of the Pine Creek Inlier and Mineralization Therein. Ph.D. Thesis, Monash University, Melbourne, Australia, 1984; p. 1984. [Google Scholar]
- Hein, K.A.A. Geology of the Ranger Uranium Mine, Northern Territory, Australia: Structural constraints on the timing of uranium emplacement. Ore Geol. Rev. 2002, 20, 83–108. [Google Scholar] [CrossRef]
- Tourigny, G.; Quirt, D.H.; Wilson, N.S.F.; Wilson, S.; Breton, G.; Portella, P. Geological and structural features of the Sue C uranium deposit, McClean Lake area, Saskatchewan. Bull. Geol. Surv. Can. 2007, 588, 229. [Google Scholar] [CrossRef]
- Hoeve, J.; Sibbald, T.I. On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Econ. Geol. 1978, 73, 1450–1473. [Google Scholar] [CrossRef]
- Hoeve, J.; Quirt, D. Mineralization and Host Rock Alteration in Relation to Clay Mineral Diagenesis and Evolution of the Middle-Proterozoic, Athabasca Basin, Northern Saskatchewan, Canada; Saskatchewan Research Council: Saskatoon, SK, Canada, 1984; p. 187. [Google Scholar]
- Hoeve, J.; Quirt, D. A stationary redox front as a critical factor in the formation of high-grade, unconformity-type uranium ores in the Athabasca Basin, Saskatchewan, Canada. Bull. De Minéralogie 1987, 110, 151–171. [Google Scholar] [CrossRef]
- Wallis, R.; Saracoglu, N.; Golightly, J.; Brummer, J. Geology of the McClean uranium deposits, northern Saskatchewan. CIM Bull. 1984, 77, 69–96. [Google Scholar]
- Kotzer, T.G.; Kyser, T.K. Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology. Chem. Geol. 1995, 120, 45–89. [Google Scholar] [CrossRef]
- Quirt, D.Q. Athabasca unconformity-type uranium deposits: One deposit type with many variations. In Proceedings of the Uranium Geochemistry, Nancy, France, 13–16 April 2003; pp. 309–312. [Google Scholar]
- Alexandre, P.; Kyser, K.; Polito, P.; Thomas, D. Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type uranium deposits in the Athabasca Basin, Canada. Econ. Geol. 2005, 100, 1547–1563. [Google Scholar] [CrossRef]
- Taylor, J. Origin and Controls of Uranium Mineralisation in South Alligator Valley; Lucas Heights, N.S.W., Ed.; Australian Atomic Energy Commission: Sydney, Australia, 1969.
- Binns, R.A.; McAndrew, J.; Sun, S.S. Origin of uranium mineralization at Jabiluka. In Uranium in the Pine Creek Geosyncline, Proc. International Symposium on Pine Creek Geosyncline; Ferguson, J., Goleby, A., Eds.; IAEA: Vienna, Austria, 1980; pp. 543–562. [Google Scholar]
- Ferguson, J.; Ewers, G.R.; Donnelly, T.H. Model for the Development of Economic Uranium Mineralization in the Alligator Rivers Uranium Field; IAEA: Vienna, Austria, 1980; ISBN 92-0-140080-2. [Google Scholar]
- Needham, R.S. A Review of Mineralisation in the South Alligator Conservation Zone; Bureau of Mineral Resources: Canberra, Australia, 1987; p. 24.
- Valenta, R.K. Structure and Mineralization in the South Alligator Valley Part 1. In Structural Controls on Mineralisation of the Coronation Hill Deposits and Surrounding Area; Mineral Provinces, Bureau of Mineral Resources, Geology and Geophysics: Canberra, Australia, 1991; Volume 7, p. 231. ISBN 0-642-16997-7. [Google Scholar]
- Wilde, A.R. Unconformity-related uranium-gold deposits of Northern Australia; resources, genesis and exploration. In IAEA Tecdoc 650, Proceedings of New Developments in Uranium Exploration, Resources, Production and Demand, Vienna, Austria, 26–29 August 1991; IAEA: Vienna, Austria, 1992; pp. 49–58. [Google Scholar]
- Polito, P.A.; Kyser, T.K.; Marlatt, J.; Alexandre, P.; Bajwah, Z.; Drever, G. Significance of alteration assemblages for the origin and evolution of the Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory, Australia. Econ. Geol. 2004, 99, 113–139. [Google Scholar]
- Polito, P.; Kyser, T.; Alexandre, P.; Hiatt, E.; Stanley, C. Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles. Aust. J. Earth Sci. 2011, 58, 453–474. [Google Scholar] [CrossRef]
- Ahmad, M.; Lally, J.H.; McCready, A.J.; Survey, N.T.G.; Territory, N. Economic Geology of the Rum Jungle Mineral Field; Northern Territory Geological Survey: Darwin, Australia, 2006.
- Ahmad, M.; Dunster, J.; Munson, T. Chapter 15: McArthur Basin. In Ahmad M and Munson TJ (Compilers). ‘Geology and Mineral Resources of the Northern Territory’; Northern Territory Geological Survey: Darwin, Australia, 2013; p. 15. ISBN 978-0-7245-7257-1. [Google Scholar]
- Wall, V. Unconformity-related uranium systems: Downunder and over the top. Aseg Ext. Abstr. 2006. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Jaireth, S.; Huston, D.L.; Bastrakov, E.N.; Schofield, A.; van der Wielen, S.E.; Barnicoat, A.C. Uranium mineral systems: Processes, exploration criteria and a new deposit framework. Geosci. Aust. 2009, 20, 44. [Google Scholar]
- Skirrow, R.G.; Mercadier, J.; Armstrong, R.; Kuske, T.; Deloule, E. The Ranger uranium deposit, northern Australia: Timing constraints, regional and ore-related alteration, and genetic implications for unconformity-related mineralisation. Ore Geol. Rev. 2016, 76, 463–503. [Google Scholar] [CrossRef]
- Wilde, A.R.; Bloom, M.S.; Wall, V.J. Transport and Deposition of Gold, Uranium, and Platinum-Group Elements in Unconformity-Related Uranium Deposits. In Economic Geology Monograph #6: The Geology of Gold Deposits: The Perspective in 1988; Keays, R.R., Ramsay, W.R.H., Groves, D.I., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1989; ISBN 978-1-62949-001-4. [Google Scholar]
- Derome, D.; Cathelineau, M.; Lhomme, T.; Cuney, M. Fluid inclusion evidence of the differential migration of H2 and O2 in the McArthur River unconformity-type uranium deposit (Saskatchewan, Canada). Possible role on post-ore modifications of the host rocks. J. Geochem. Explor. 2003, 78–79, 525–530. [Google Scholar] [CrossRef]
- Richard, A.; Cathelineau, M.; Boiron, M.-C.; Mercadier, J.; Banks, D.A.; Cuney, M. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada). Miner. Depos. 2016, 51, 249–270. [Google Scholar] [CrossRef] [Green Version]
- Chi, G.; Li, Z.; Chu, H.; Bethune, K.; Quirt, D.; Ledru, P.; Normand, C.; Card, C.; Bosman, S.; Davis, W.; et al. A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca Basin. Econ. Geol. 2018, 113, 1209–1217. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Thomas, D.; Polito, P.; Marlat, J. Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Miner. Depos. 2007, 44, 41. [Google Scholar] [CrossRef]
- Fayek, M.; Camacho, A.; Beshears, C.; Jiricka, D.; Halaburda, J. Two sources of uranium at the Millennium uranium deposit, Athabasca Basin, Saskatchewan, Canada. In Annual Conference Abstracts Volume, Geological Association of Canada; Mineralogical Association of Canada: Calgary, AB, Canada, 2010; pp. 1–4. [Google Scholar]
- Worden, K.; Carson, C.; Scrimgeour, I.; Lally, J.; Doyle, N. A revised Palaeoproterozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: Evidence from SHRIMP U–Pb zircon geochronology. Precambr. Res. 2008, 166, 122–144. [Google Scholar] [CrossRef]
- Macdonald, C.C. Mineralogy and Geochemistry of a Precambrian Regolith in the Athabasca Basin. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 1980; p. 151. [Google Scholar]
- Wilde, A.R. On the Origin of Unconformity Uranium Deposits. Ph.D. Thesis, Monash University, Melbourne, Australia, 1988. [Google Scholar]
- Hecht, L.; Cuney, M. Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): Implications for the formation of unconformity-related uranium deposits. Miner. Depos. 2000, 35, 791–795. [Google Scholar] [CrossRef]
- Pascal, M.; Ansdell, K.; Annesley, I.R.; Kotzer, T.; Jiricka, D. Graphite-bearing Pelitic Schists and their Altered Equivalents in the Dufferin Lake Zone, South-central Athabasca Basin, Saskatchewan: Constraints On Graphite Formation and Destruction, and Implications For Uranium Mineralization. Can. Mineral. 2016, 54, 1459–1491. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Descriptive Uranium Deposit and Mineral System Models; Non-Serial Publications: Vienna, Austria, 2020; ISBN 978-92-0-109220-5. [Google Scholar]
- Kyser, T.K. Fluids, basin analysis, and mineral deposits. Geofluids 2007, 7, 238–257. [Google Scholar] [CrossRef]
- Gac, S.; Huismans, R.S.; Simon, N.S.C.; Podladchikov, Y.Y.; Faleide, J.I. Formation of intracratonic basins by lithospheric shortening and phase changes: A case study from the ultra-deep East Barents Sea basin. Terra Nova 2013, 25, 459–464. [Google Scholar] [CrossRef]
- Aspler, L.; Wisotzek, I.; Chiarenzelli, J.; Losonczy, M.; Cousens, B.; Mcnicoll, V.; Davis, W. Paleoproterozoic intracratonic basin processes, from breakup of Kenorland to assembly of Laurentia: Hurwitz Basin, Nunavut, Canada. Sediment. Geol. 2001, 141, 287–318. [Google Scholar] [CrossRef]
- Rainbird, R.; Stern, R.; Rayner, N.; Jefferson, C. Age, provenance, and regional correlation of the Athabasca Group, Saskatchewan and Alberta, constrained by igneous and detrital zircon geochronology. In Jefferson, C.W., and Delaney, G., Eds., EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Bull. Geol. Surv. Can. 2007, 588, 193. [Google Scholar]
- Sweet, I.P.; Brakel, A.T.; Carson, L. The Kombolgie Subgroup—A New Look at an Old Formation. AGSO Res. Newsl. 1999, 30, 26–28. [Google Scholar]
- Rawlings, D. Stratigraphic resolution of a multiphase intracratonic basin system: The McArthur Basin, northern Australia. Aust. J. Earth Sci. 2001, 46, 703–723. [Google Scholar] [CrossRef]
- Jaireth, S.; Roach, I.C.; Bastrakov, E.; Liu, S. Basin-related uranium mineral systems in Australia: A review of critical features. Ore Geol. Rev. 2016, 76, 360–394. [Google Scholar] [CrossRef]
- McKay, A.D.; Miezitis, Y. Australia’s Uranium Resources, Geology and Development of Deposits; AGSO-Geoscience Australia: Canberra, Australia, 2001; p. 195.
- Ramaekers, P. Geology of the Athabasca Group (Helikian) in Northern Saskatchewan; Saskatchewan Energy and Mines, Saskatchewan Geology Survey: Saskatoon, SK, Canada, 1990. [Google Scholar]
- Ramaekers, P.; Jefferson, C.W.; Yeo, G.M.; Collier, B.; Long, D.; Drever, G.; McHardy, S.; Jiricka, D.; Cutts, C.; Wheatley, K.; et al. Revised geological map and stratigraphy of the Athabasca group, Saskatchewan and Alberta. Bull. Geol. Surv. Can. 2007, 588, 155–191. [Google Scholar]
- Durak, B.; Pagel, M.; Poty, B. Temperatures et salinites des fluides au cours des silicifications diagenetiques d’une formation greseuse surmontant un gisement d’uranium du socle: L’exemple des gres Kombolgie (Australie). Comptes Rendus Des Seances De L’academie Des. Sci. Ser. 1983, 296, 571–574. [Google Scholar]
- Patrier, P.; Beaufort, D.; Laverret, E.; Bruneton, P. High-grade diagenetic dickite and 2M1 illite from the middle proterozoic kombolgie formation (Northern Territory, Australia). Clays Clay Min. 2003, 51, 102–116. [Google Scholar] [CrossRef]
- Jeanneret, P.; Goncalves, P.; Durand, C.; Poujol, M.; Trap, P.; Marquer, D.; Quirt, D.; Ledru, P. Geochronological constraints on the trans-Hudsonian tectono-metamorphic evolution of the pre-Athabasca basement within the Wollaston-Mudjatik Transition Zone, Saskatchewan. Precambr. Res. 2017, 301, 152–178. [Google Scholar] [CrossRef] [Green Version]
- Creaser, R.; Stasiuk, L.D. Depositional age of the Douglas Formation, Northern Saskatchewan, determined by RE-Os geochronology. Bull. Geol. Surv. Can. 2007, 588, 341–346. [Google Scholar]
- Hendry, H.E.; Wealthy, K.L. The Carswell Formation, Northern Saskatchewan: Stratigraphy, Sedimentology and Structure. Geol. Ass. Can. Spec. Pap. 1985, 29, 87–103. [Google Scholar]
- Quirt, D.H. Kaolinite and Dickite in the Athabasca Sandstone, Northern Saskatchewan, Canada. Sask. Res. Counc. Publ. 2001, 10400, 1–27. [Google Scholar]
- Ramaekers, P. Development, Stratigraphy and Summary Diagenetic History of the Athabasca Basin, Early Proterozoic of Alberta and Its Relation to Uranium Potential. Alta. Geol. Surv. Alta. Energy Util. BoardSpec. Rep. 2004, 62, 94. [Google Scholar]
- Ypma, P.J.M.; Fuzikawa, K. Fluid inclusion and oxygen isotope studies of the Nabarlek and Jabiluka uranium deposits, Northern Territory, Australia. In Uranium in the Pine Creek Geosyncline; Ferguson, J., Goleby, A.B., Eds.; IAEA: Vienna, Austria, 1980; pp. 375–395. ISBN 92-0-140080-2. [Google Scholar]
- Wilde, A.R.; Mernagh, T.P.; Bloom, M.S.; Hoffmann, C.F. Fluid inclusion evidence on the origin of some Australian unconformity-related uranium deposits. Econ. Geol. 1989, 84, 1627–1642. [Google Scholar] [CrossRef]
- Lanson, B.; Beaufort, D.; Berger, G.; Baradat, J.; Lacharpagne, J. Illitization of diagenetic kaolinite-to-dickite conversion series: Late-stage diagenesis of the Lower Permian Rotliegene sandstone reservoir, offshore of the Netherlands. J. Sediment. Res. 1996, 66, 501–518. [Google Scholar] [CrossRef]
- Renac, C.; Kyser, T.K.; Durocher, K.; Dreaver, G.; O’Connor, T. Comparison of diagenetic fluids in the Proterozoic Thelon and Athabasca Basins, Canada: Implications for protracted fluid histories in stable intracratonic basins. Can. J. Earth Sci. 2002, 39, 113–132. [Google Scholar] [CrossRef]
- Pagel, M. Détermination des conditions physico-chimiques de la silicification diagénétique des grès Athabasca (Canada) au moyen des inclusions fluides. Comptes Rendus Académie Sci. Paris 1975, 280, 2301–2304. [Google Scholar]
- Derome, D.; Cathelineau, M.; Cuney, M.; Fabre, C.; Lhomme, T.; Banks, D.A. Mixing of Sodic and Calcic Brines and Uranium Deposition at McArthur River, Saskatchewan, Canada: A Raman and Laser-Induced Breakdown Spectroscopic Study of Fluid Inclusions. Econ. Geol. 2005, 100, 1529–1545. [Google Scholar] [CrossRef]
- Cloutier, J.; Olivo, G.; Alexandre, P.; Halaburda, J. The Millennium Uranium Deposit, Athabasca Basin, Saskatchewan, Canada: An Atypical Basement-Hosted Unconformity-Related Uranium Deposit. Econ. Geol. 2009, 104, 815–840. [Google Scholar] [CrossRef]
- Annesley, I.R.; Madore, C.; Portella, P. Geology and thermotectonic evolution of the western margin of the Trans-Hudson Orogen: Evidence from the eastern sub-Athabasca basement, Saskatchewan. Can. J. Earth Sci. 2005, 42, 573–597. [Google Scholar] [CrossRef]
- Ledru, P. The mineral system concept applied to unconformity related uranium deposits of the Athabasca Basin (Canada). In Proceedings of the 15th SGA Biennial Meeting, Glasgow, Scotland, 27–30 August 2019; pp. 1179–1182. [Google Scholar]
- Martz, P.; Mercadier, J.; Cathelineau, M.; Boiron, M.-C.; Quirt, D.; Doney, A.; Gerbeaud, O.; De Wally, E.; Ledru, P. Formation of U-rich mineralizing fluids through basinal brine migration within basement-hosted shear zones: A large-scale study of the fluid chemistry around the unconformity-related Cigar Lake U deposit (Saskatchewan, Canada). Chem. Geol. 2019, 508, 116–143. [Google Scholar] [CrossRef]
- Eldursi, K.; Chi, G.; Bethune, K.; Li, Z.; Ledru, P.; Quirt, D. New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit, eastern Athabasca Basin, Canada. Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Cui, T.; Yang, J.; Samson, I.M. Tectonic Deformation and Fluid Flow: Implications for the Formation of Unconformity-Related Uranium Deposits. Econ. Geol. 2012, 107, 147–163. [Google Scholar] [CrossRef]
- Li, Z.; Chi, G.; Bethune, K.; Thomas, D.; Zaluski, G. Structural Controls on Fluid Flow During Compressional Reactivation of Basement Faults: Insights from Numerical Modeling for the Formation of Unconformity-Related Uranium Deposits in the Athabasca Basin, Canada. Econ. Geol. 2017, 112, 451–466. [Google Scholar] [CrossRef]
- Benedicto, A.; MacKay, C.; Slugoski, D.; Frostad, S.; Ledru, P. Uranium mineralization and structural controls in the Spitfire prospect, Hook Lake Project, Patterson Lake Trend, Canada. In Proceedings of the 14th SGA Biennial Meeting, Québec City, QC, Canada, 20–23 August 2017; pp. 715–718. [Google Scholar]
- Hillacre, S.; Ansdell, K.; Mcewan, B.; Mcnamara, G. Structural analysis, paragenesis, and preliminary geochronology of the Arrow uranium deposit, Athabasca Basin, northern Saskatchewan, Canada: Implications for controls on mineralization. In Proceedings of the 14th SGA Biennial Meeting, Québec City, QC, Canada, 20–23 August 2017; pp. 743–746. [Google Scholar]
- Abdelrazek, M.; Benedicto, A.; Fayek, M.; Mackay, C.; Slugoski, D.; Gerbeaud, O.; Ledru, P. Permeability network, alteration and mineralization of the Spitfire basement- hosted uranium prospect, Western Athabasca, Canada. In Proceedings of the 15th SGA Biennial Meeting, Glasgow, Scotland, UK, 27–30 August 2019; pp. 1175–1178. [Google Scholar]
- Bray, C.J.; Spooner, E.T. Unconformity-related uranium mineralization, McClean deposits, North Saskatchewan, Canada. Can. Mineral. 1988, 26, 249–268. [Google Scholar]
- Gyorfi, I. Seismic Constraints on the Geological Evolution of the McArthur River Region in View of the Tectonics of the Eastern Athabasca Basin, Northern Saskatchewan. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2006. [Google Scholar]
- Hajnal, Z.; White, D.J.; Takacs, E.; Gyorfi, I.; Annesley, I.R.; Wood, G.; O’Dowd, C.; Nimeck, G. Application of modern 2-D and 3-D seismic-reflection techniques for uranium exploration in the Athabasca Basin. Can. J. Earth Sci. 2010, 47, 761–782. [Google Scholar] [CrossRef]
- Tourigny, G.; Wilson, S.; Breton, G.; Portella, P. Structural controls and emplacement of uranium mineralization at the Sue C deposit, McClean Lake operation, northern Saskatchewan. Sask. Energy Mines Misc. Rep. 2001, 4, 334–352. [Google Scholar]
- Martz, P.; Cathelineau, M.; Mercadier, J.; Boiron, M.-C.; Jaguin, J.; Tarantola, A.; Demacon, M.; Gerbeaud, O.; Quirt, D.; Doney, A.; et al. C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U deposit. Lithos 2017, 294–295, 222–245. [Google Scholar] [CrossRef]
- Harvey, S.E. Structural geology of the Deilmann orebody, Key Lake, Saskatchewan. Sask. Geol. Surv. Summ. Investig. 1999, 2, 99-42. [Google Scholar]
- Baudemont, D.; Fedorowich, J. Structural control of uranium mineralization at the Dominique-Peter Deposit, Saskatchewan, Canada. Econ. Geol. 1996, 91, 855–874. [Google Scholar] [CrossRef]
- Lorilleux, G.; Jébrak, M.; Cuney, M.; Baudemont, D. Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): From fractal analysis to structural significance. J. Struct. Geol. 2002, 24, 323–338. [Google Scholar] [CrossRef]
- Goodwin, L.B.; Tikoff, B. Competency contrast, kinematics, and the development of foliations and lineations in the crust. J. Struct. Geol. 2002, 24, 1065–1085. [Google Scholar] [CrossRef]
- Browne, A. Alligator Rivers uranium: Facts and fiction. In Proceedings of the NTGS Annual Geoscience Exploration Seminar, Alice Springs, Darwin, Australia, 20 March 2013. [Google Scholar]
- Pilkington, M. Variable-depth magnetization mapping: Application to the Athabasca basin, northern Alberta and Saskatchewan, Canada. Geophysics 1989, 54. [Google Scholar] [CrossRef]
- Lane, R.; Beckitt, G.; Duffett, M. 3D geological mapping and potential field modelling of West Arnhem Land, Northern Territory. Aseg. Ext. Abstr. 2007, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Carson, L.J.; Haines, P.W.; Brakel, A.T.; Pietsch, B.A.; Ferenczi, P.A. Milingimbi, Northern Territory: Explanatory Notes; Northern Territory Geological Survey: Darwin, Australia, 1999; ISBN 978-0-7245-7155-0.
- Lally, J.H.; Doyle, N. Pine Creek Orogen 1:500 000 Solid Geology Interpretation, Regional Dataset; Northern Territory Geological Survey: Darwin, Australia, 2005.
- Dunn, P.R. Alligator Rivers, Northern Territory Explanatory Notes; 1:250 000 Geological Map Series; Bureau of Mineral Resources: Canberra, Australia, 1962.
- Needham, R.S. Nabarlek Region, Northern Territory, Explanatory Notes; 1:100 000 Geological Map Series; Bureau of Mineral Resources: Canberra, Australia, 1982; ISBN 978-0-644-01905-7.
- Hollis, J.A.; Carson, C.J.; Glass, L.M. The discovery of an Archaean Inlier in Arnhem Land. In Annual Geoscience Exploration Seminar (AGES); Record of Abstracts; Northern Territory Geological Survey: Northern Territory, Australia, 2008; Volume 2008-002. [Google Scholar]
- Hollis, J.A.; Carson, C.J.; Glass, L.M. Regionally extensive Neoarchaean basement in Arnhem Land. In Annual Geoscience Exploration Seminar (AGES); Record of Abstracts; Northern Territory Geological Survey: Northern Territory, Australia, 2009; Volume 2009-002. [Google Scholar]
- Hollis, J.A.; Carson, C.J.; Glass, L.M. SHRIMP U–Pb zircon geochronological evidence for Neoarchean basement in western Arnhem Land, northern Australia. Precambr. Res. 2009, 174, 364–380. [Google Scholar] [CrossRef]
- Carson, C.; Hollis, J.; Glass, L.; Close, D.; Whelan, J.; Wygralak, A. Summary of Results. Joint NTGS-GA Geochronology Project: East Arunta, Pine Creek Orogen and Murphy Inlier Regions, July 2007–June 2009; NTGS Record 2010-004; Northern Territory Geological Survey: Darwin, Australia, 2011.
- Richard, A.; Banks, D.A.; Mercadier, J.; Boiron, M.-C.; Cuney, M.; Cathelineau, M. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions. Geochim. Cosmochim. Acta 2011, 75, 2792–2810. [Google Scholar] [CrossRef]
- Mercadier, J.; Richard, A.; Cathelineau, M. Boron- and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: δ11B evidence from Mg-tourmalines. Geology 2012, 40, 231–234. [Google Scholar] [CrossRef]
- Jaireth, S. The calculated solubility of platinum and gold in oxygen-saturated fluids and the genesis of platinum-palladium and gold mineralization in the unconformity-related uranium deposits. Miner. Depos. 1992, 27, 42–54. [Google Scholar] [CrossRef]
- Komninou, A.; Sverjensky, D.A. Geochemical modeling of the formation of an unconformity-type uranium deposit. Econ. Geol. 1996, 91, 590–606. [Google Scholar] [CrossRef]
- Rowntree, J.C.; Mosher, D.V. Jabiluka Uranium Deposits. In Economic Geology of Australia and Papua New Guinea. 1. Metals; Knight, C.L., Ed.; Monograph Series No. 5; Australasian Institute of Mining and Metallurgy: Carlton, Australia, 1975; pp. 321–326. [Google Scholar]
- Annesley, I.; Mercadier, J.; McKechnie, C.; Millar, R.; Cuney, M. Carbon-sulfur-metal-rich graphitic pelitic gneisses from the Fraser Lakes Zone B deposit area, Saskatchewan, Canada: Implications for metal source(s). In Proceedings of the 13th Biennial SGA Meeting, Nancy, France, 24–27 August 2015; Volume 5, pp. 1769–1772. [Google Scholar]
- Annesley, I.; Madore, C.; Stanley, C. Leucogranites and pegmatites of the sub-Athabasca basement, Saskatchewan: U protore. In Mineral Deposits: Processes to Processing; Stanley, C.J., Ed.; Balkema: Rotterdam, The Netherlands, 1999; pp. 297–300. [Google Scholar]
- Madore, C.; Annesley, I.; Wheatley, K. Petrogenesis, age, and uranium fertility of peraluminous leucogranites and pegmatites of the McClean Lake/Sue and Key Lake/P-Patch deposit areas. In Proceedings of the Geo Canada 2000, The Millennium Geoscience Summit, Saskatchewan, SK, Canada, 29 May 2000; Volume 25. [Google Scholar]
- Kyser, K.; Hiatt, E.; Renac, C.; Durocher, K.; Holk, G.; Deckart, K. Diagenetic fluids in Paleo-and Meso-Proterozoic sedimentary basins and their implications for long protracted fluid histories. Mineral. Assoc. Can. Short Course 2000, 28, 225–262. [Google Scholar]
- Raffensperger, J.; Garven, G. The formation of unconformity-type uranium ore deposits 1. Coupled groundwater flow and heat transport modeling. Am. J. Sci. 1995, 295, 581–636. [Google Scholar] [CrossRef]
- Raffensperger, J.; Garven, G. The formation of unconformity-type uranium ore deposits 2. Coupled hydrochemical modeling. Am. J. Sci. 1995, 295, 639–696. [Google Scholar] [CrossRef]
- Ferenczi, P.A.; Sweet, I.P. Mount Evelyn, Northern Territory: Explanatory Notes, 2nd ed.; 1:250 000 Geological Map Series; Northern Territory Geological Survey: Darwin, Australia, 2005; ISBN 978-0-7245-7095-9.
- Oliver, N.; McLellan, J.; Hobbs, B.; Cleverley, J.; Ord, A. 100th Anniversary Special Paper: Numerical Models of Extensional Deformation, Heat Transfer, and Fluid Flow across Basement-Cover Interfaces during Basin-Related Mineralization. Econ. Geol. 2006, 101, 1–31. [Google Scholar] [CrossRef]
- Fehn, U.; Cathles, L.M.; Holland, H.D. Hydrothermal convection and uranium deposits in abnormally radioactive pluton. Econ. Geol. 1978, 73, 1556–1566. [Google Scholar] [CrossRef]
- Schaubs, P.M.; Ord, A.; Hobbs, B.E.; Annesley, I.R.; Madore, C.; Quirt, D.; Fox, N.P.G.; Thomas, D.; Portella, P. Some thermal considerations for the formation of unconformity related uranium deposits of the Athabasca basin, Canada, based on numerical models. In Proceedings of the GAC-MAC Joint Annual meeting; CSIRO Exploration and Mining, Kensington, Saskatoon, SK, Canada, 27 May 2002; p. 105. [Google Scholar]
- Mercadier, J.; Annesley, I.R.; Verran, D.; Pascal, M. New U–Pb Ages and Geochemistry from the Wheeler River Uranium Deposits, Athabasca Basin, Canada. In Proceedings of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Book of Abstracts and Extended Abstracts Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues, Vienna, Austria, 25–29 June 2018; p. 506. [Google Scholar]
- Derome, D.; Cathelineau, M.; Fabre, C.; Boiron, M.-C.; Banks, D.; Lhomme, T.; Cuney, M. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-proterozoic evaporitic Na–Ca brines (Alligator Rivers Uranium Field, northern territories Australia). Chem. Geol. 2007, 237, 240–254. [Google Scholar] [CrossRef]
- Chi, G.; Chu, H.; Petts, D.; Potter, E.; Jackson, S.; Williams-Jones, A. Uranium-rich diagenetic fluids provide the key to unconformity-related uranium mineralization in the Athabasca Basin. Sci. Rep. 2019, 9, 5530. [Google Scholar] [CrossRef]
- Yeo, G.; Potter, E. Reducing mechanisms potentially involved in formation of Athabasca Basin uranium deposits: Relevance to exploration. In Proceedings of the Saskatchewan Geological Survey Open House 2010 Conference Presentation, Saskatoon, SK, Canada, 29 November 2010. [Google Scholar]
- Dargent, M.; Truche, L.; Dubessy, J.; Bessaque, G.; Marmier, H. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits. Geochim. Cosmochim. Acta 2015, 167, 11–26. [Google Scholar] [CrossRef]
- Bonham-Carter, G.; Agterberg, F.P.; Wright, D.F. Weights of evidence modelling: A new approach to mapping mineral potential. In Statistical Applications in the Earth Sciences; Agterberg, F.P., Bonham-Carter, G.F., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 1990; pp. 171–183. [Google Scholar]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS; Elsevier: Pergamon, UK, 1994; ISBN 978-0-08-041867-4. [Google Scholar]
- Brown, W.M.; Gedeon, T.D.; Groves, D.I.; Barnes, R.G. Artificial neural networks: A new method for mineral prospectivity mapping. Aust. J. Earth Sci. 2000, 47, 757–770. [Google Scholar] [CrossRef]
- Porwal, A.; Carranza, E.J.M.; Hale, M. Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from Aravalli Province, Western India. Nat. Resour. Res. 2003, 12, 155–171. [Google Scholar] [CrossRef]
- Moon, W.M. Integration and fusion of geological exploration data: A theoretical review of fuzzy logic approach. Geosci. J. 1998, 2, 175–183. [Google Scholar] [CrossRef]
- Carranza, E.J. Handbook of Exploration and Environmental Geochemistry. In Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier: Amsterdam, The Netherlands, 2008; Volume 11, ISBN 978-0-444-51325-0. [Google Scholar]
- Chudasama, B.; Porwal, A.; Kreuzer, O.P.; Butera, K. Geology, geodynamics and orogenic gold prospectivity modelling of the Paleoproterozoic Kumasi Basin, Ghana, West Africa. Ore Geol. Rev. 2016, 78, 692–711. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P. Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping. Nat. Resour. Res. 1999, 8, 27–35. [Google Scholar] [CrossRef]
- Porwal, A.; Carranza, E.J.M.; Hale, M. A Hybrid Neuro-Fuzzy Model for Mineral Potential Mapping. Math. Geol. 2004, 36, 803–826. [Google Scholar] [CrossRef]
- Thomas, D. EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta.: Jefferson, C.W., Delaney, G., Eds. Geological Survey of Canada Bulletin 588, Saskatchewan Geological Society Special Publication 18, and Mineral Deposits Division of the Geological Association of Canada Special Publication 4. 645 Pp. 2007. Report and CD-ROM. ISBN 978-0-660-19492-9. Econ. Geol. 2007, 102, 645. [Google Scholar] [CrossRef]
- Raymond, O.L.; Liu, S.; Gallagher, R.; Highet, L.M.; Zhang, W. Surface Geology of Australia, 1:1 000 000 Scale, 2012 ed.; (Digital Dataset); Geoscience Australia: Canberra, Australia, 2012.
- Wyborn, L.A.I.; Ratajkoski, M.; Thost, D. ON47 Pine Creek Metallogenic GIS Package 1:500 000 Scale; Geoscience Australia: Canberra, Australia, 1998.
- Nakamura, A. Isostatic Residual Gravity Anomaly Grid of Onshore Australia. ASEG Ext. Abstr. 2016, 2010, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Milligan, P.R. Total Magnetic Intensity (TMI) Grid of Australia, 6th ed.; Geoscience Australia: Canberra, Australia, 2015.
- Saskatchewan Geological Survey. 250K Bedrock Geology of Saskatchewan Merged from 1:250,000 Scale Bedrock Mapping Compilation Series. CSRS NAD83 Zone 13. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Saskatchewan Geological Survey. Athabasca_Conductors_Air. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Saskatchewan Geological Survey. Athabasca_Conductors_Ground. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Saskatchewan Geological Survey. 250k_Faults Merged from 1:250,000 Scale Bedrock Mapping Compilation Series, CSRS NAD83 Zone 13. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Saskatchewan Geological Survey. Magnetic Domains of Saskatchewan. CSRS NAD83 Zone 13. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Geological Survey of Canada. Airborne Gravity-Isostatic Residual-Grid Spacing: 2 km. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Geological Survey of Canada. Northern Saskatchewan 100 m MAG-Residual Total Field. GSC Open File 7039 SMER Open File 2011-58. Available online: https://gisappl.saskatchewan.ca/Html5Ext/index.html?viewer=GeoAtlas (accessed on 15 February 2017).
- Debeglia, N.; Martelet, G.; Perrin, J.; Truffert, C.; Ledru, P.; Tourlière, B. Semi-automated structural analysis of high resolution magnetic and gamma-ray spectrometry airborne surveys. J. Appl. Geophys. 2005, 58, 13–28. [Google Scholar] [CrossRef]
- Kovesi, P. Image Features from Phase Congruency. Videre J. Comput. Vis. Res. 1999, 1, 1–26. [Google Scholar]
- Garrison, J., Jr.; Pearn, W.; Von Rosenberg, D. The Fractal Nature of Geological Data Sets: Power Law Processes Everywhere! In Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. Denver, CO, USA, 6–9 October 1991. [Google Scholar]
- Turcotte, D.L. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Vos, I.M.A.; Bierlein, F.P.C.; Murphy, B.; Barlow, M. The mineral potential of major fault systems: Case studies from northeastern Queensland, Australia. In Proceedings of the Predictive Mineral Discovery Cooperative Research Centre “Focus on Science” Conference, Canberra, Australia, 1–3 June 2004; Barnicoat, A.C., Korsch, R.J., Eds.; Geoscience Australia: Canberra, Australia, 2004; Volume 9, pp. 209–212. [Google Scholar]
- Cox, S.F. Coupling between Deformation, Fluid Pressures, and Fluid Flow in Ore-Producing Hydrothermal Systems at Depth in the Crust. In One Hundredth Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; ISBN 978-1-887483-01-8. [Google Scholar]
- Agterberg, F.P.; Bonham-Carter, G.F.; Cheng, Q.; Wright, D.F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology-25 Years of Progress; Oxford University Press, Inc.: New York, NY, USA, 1993; pp. 13–32. ISBN 978-0-19-508593-8. [Google Scholar]
- Porwal, A.; Carranza, E.J.M.; Hale, M. Extended Weights-of-Evidence Modelling for Predictive Mapping of Base Metal Deposit Potential in Aravalli Province, Western India. Explor. Min. Geol. 2001, 10, 273–287. [Google Scholar] [CrossRef]
- Agterberg, F.; Cheng, Q. Conditional Independence Test for Weights-of-Evidence Modeling. Nat. Resour. Res. 2002, 11, 249–255. [Google Scholar] [CrossRef]
- Sawatzky, D.L.; Raines, G.L.; Bonham-Carter, G.F.; Looney, C.G. Spatial Data Modeller (SDM): ArcMAP 9.3 Geoprocessing Tools for Spatial Data Modelling Using Weights of Evidence, Logistic Regression, Fuzzy Logic and Neural Networks. Available online: https://github.com/gtkfi/ArcSDM/ (accessed on 21 August 2020).
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Vearncombe, J.; Vearncombe, S. The spatial distribution of mineralization; applications of Fry analysis. Econ. Geol. 1999, 94, 475–486. [Google Scholar] [CrossRef]
- Kreuzer, O.P.; Blenkinsop, T.G.; Morrison, R.J.; Peters, S.G. Ore controls in the Charters Towers goldfield, NE Australia: Constraints from geological, geophysical and numerical analyses. Ore Geol. Rev. 2007, 32, 37–80. [Google Scholar] [CrossRef]
- Keevil, M. Patterson Lake discovery triggers junior uranium frenzy. In The Northern Miner Magazine; The Northern Miner: Toronto, ON, Canada, 2013; Volume 99. [Google Scholar]
- Hronsky, J.M.A.; Groves, D.I. Science of targeting: Definition, strategies, targeting and performance measurement. Aust. J. Earth Sci. 2008, 55, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hollis, J.A.; Glass, L.M. Howship and Oenpelli, Northern Territory. 1:100 000 Geological Map Series Explanatory Notes, 5572, 5573; Northern Territory Geological Survey: Northern Territory, Australia, 2012; p. 122. ISBN 978-0-7245-7219-9.
- Cuney, M.; Brouand, M.; Cathelineau, M.; Derome, D.; Freiberger, R.; Hecht, L.; Kister, P.; Lobaev, V.; Lorilleux, G.; Peiffert, C.; et al. What parameters control the high-grade-large tonnage of Proterozoic unconformity related uranium deposits? In Proceedings of the International Conference on Uranium Geochemistry, Nancy, France, 13–16 April 2003; pp. 123–126. [Google Scholar]
- Hronsky, J.M.A.; Kreuzer, O.P. Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geol. Rev. 2019, 107, 647–653. [Google Scholar] [CrossRef]
- Lesher, M.; Hannington, M.; Galley, A.; Ansdell, K.; Astic, T.; Banerjee, N.; Beauchamp, S.; Beaudoin, G.; Bertelli, M.; Bérubé, C.; et al. Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network. In Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration; Tschirhart, V., Thomas, M.D., Eds.; DMEC: Toronto, ON, Canada, 2017; pp. 325–347. [Google Scholar]
- Brooks, F.P. The computer scientist as toolsmith II. Commun. Acm 1996, 39, 61–68. [Google Scholar] [CrossRef]
- Wright, D.; Potter, E.; Comeau, J.-S. Athabasca Basin Uranium Geochemistry Database v. 2; Natural Resources Canada: Ottawa, ON, Canada, 2015.
Province | Deposit Name | Dominant Setting | Latitude | Longitude | Discovery Year | t U3O8 | % U3O8 | Associated Metals |
---|---|---|---|---|---|---|---|---|
AB | Cigar Lake | 58.071 | −104.539 | 1981 | 158,440 | 15.65 | Co, Cu, Ni, Pb, Zn | |
Key Lake | 57.202 | −105.666 | 1975 | 82,710 | 3.07 | As, Cu, Pb, Zn | ||
Shea Creek | 58.236 | −109.512 | 1994 | 43,519 | 1.47 | Au, Co, Cu, Mo, Ni, Pb, Te, V, Cs | ||
Phoenix | 57.51 | −105.381 | 2009 | 32,160 | 19.23 | Ni, Co, As, Pb, Cu, REEs, Au | ||
Roughrider-J-Zone | 58.338 | −104.05 | 2008 | 32,111 | 4.75 | Ni, Co, As, Pb, Cu, REEs, Au | ||
Fox Lake | 57.763 | −105.221 | 2010 | 30,871 | 7.98 | As, Co, Cu, Ni, Pb, V | ||
Collins Bay | 58.284 | −103.628 | 1971 | 27,989 | 1.94 | As, Au, Co, Fe, Gf, Pb | ||
Midwest | 58.313 | −104.074 | 1978 | 22,314 | 3.55 | Ag, As, Co, Cu, Ni, Pb | ||
Centennial | 57.611 | −107.572 | 2005 | No Data | No Data | Ni, Co, As (?) | ||
McArthur River | U/C, basement | 57.763 | −105.051 | 1988 | 306,111 | 16.99 | Ni, Co, As, Au, REE | |
Sue | 58.254 | −103.813 | 1988 | 20,836 | 3.75 | As, Co, Cu, Pb, V | ||
Arrow | Basement | 57.679 | −109.235 | 2014 | 138,845 | 4.62 | Co, Cu, Ni | |
Eagle Point | 58.317 | −103.55 | 1980 | 96,888 | 0.61 | Fe, Cu, Mo, Pb | ||
Triple R | 57.64 | −109.362 | 2012 | 47,890 | 1.51 | Co, Cu, Ni | ||
Millennium | 57.52 | −105.635 | 2000 | 47,532 | 3.76 | Cu, Ni, Pb | ||
Carswell-Cluff | 58.369 | −109.529 | 1970 | 31,730 | 1.48 | Au | ||
Gryphon | 57.528 | −105.418 | 2014 | 19,522 | 2.3 | Ni, Co, As, Pb, Cu, REEs, Au | ||
Rabbit Lake | 58.183 | −103.717 | 1968 | 19,408 | 0.32 | As, Au, Co, Fe, Gf, Pb | ||
Raven-Horseshoe | 58.155 | −103.766 | 1972 | 17,127 | 0.46 | As, Au, Co, Fe, Gf, Pb | ||
Christie Lake | 57.844 | −104.874 | 1989 | 9475 | 3.25 | Ni, Co, As, Au, REE | ||
ARUF | Ranger | Basement | −12.673 | 132.916 | 1969 | 242,601 | 0.27 | Au |
Jabiluka | −12.5 | 132.906 | 1971 | 144,410 | 0.48 | Au | ||
Koongarra | −12.867 | 132.842 | 1970 | 16,500 | 0.74 | Au | ||
Nabarlek | −12.308 | 133.32 | 1970 | 10,858 | 1.81 | Cu, Au, Pd, Pt | ||
Ranger 68 | −12.512 | 132.854 | 1976 | 5354 | 0.36 | Cu | ||
Caramal | −12.5 | 133.233 | 1971 | 2927 | 0.31 | Au, Pt | ||
Angularli | U/C contact | −11.74 | 133.157 | 2011 | 8844 | 0.88 | ||
SAVUF | Coronation Hill | Basement | −13.584 | 132.606 | 1953 | 1848 | 0.54 | Au, Pd, Pt |
El Sherana | −13.509 | 132.521 | 1954 | 414 | 0.66 | Au |
Source Data | Derived Predictor Maps | Description |
---|---|---|
Solid Geology Interp 1:500,000 scale [114]; Surface Geology of Australia 1:1 million scale [151] | Simplified lithology | Modified and reduced to 13 generalised classes. |
Simplified stratigraphy | Stratigraphic data grouped by Eon | |
Archean buffered | Mapped Archean complexes buffered at 5000 m intervals to 50 km | |
Unconformity buffered | Current unconformity surface trace buffered at 5000 m interval to 50 km | |
Faults 1:500,000 scale [114] | Faults WNW buffered | Faults separated into six orientation classes and buffered at 500 m intervals to 5 km. |
Faults NW buffered | ||
Faults NNW buffered | ||
Faults NNE buffered | ||
Faults NE buffered | ||
Faults ENE buffered | ||
Metamorphic/Igneous regions 1:500,000 scale [152] | Metamorphic regions | Nine classes of metamorphic region |
Pine Creek isostatic residual (IR) gravity edges 1600 (Fathom Geophysics Australia—Derived from: [153]) | Gravity 1600 WNW buffered | The ‘1600’ filter isolates short wavelength lateral variations in gravity data which may represent structure concealed below cover—Data were split into six orientation classes and buffered at 500 m intervals to 5 km. |
Gravity 1600 NW buffered | ||
Gravity 1600 NNW buffered | ||
Gravity 1600 NNE buffered | ||
Gravity 1600 NE buffered | ||
Gravity 1600 ENE buffered | ||
Pine Creek isostatic residual (IR) gravity edges 6400 (Fathom Geophysics Australia—Derived from: [153]) | Gravity 6400 buffered | The ‘6400’ filter isolates longer wavelength variations in gravity data. They are used here as proxies for ‘deep’ structural development zones—buffered at 1000 m intervals to 10 km. |
Pine Creek Magnetics edges 1600 (Fathom Geophysics Australia—Derived from: [154]) | Magnetics 1600 edge density | Line density function with a 10 km search radius used on proprietary ‘1600’ edge detection data. Proxy for basement lithological complexity. |
Source Data | Derived Predictor Maps | Description |
---|---|---|
Solid Geology 1:250,000 scale [155] | Solid geology | Solid geology data reduced to 9 generalised classes. |
Conductors—air [156] | Conductors (air) | Air electromagnetic conductors buffered to 50 m. |
Conductors—ground [157] | Conductors (ground) | Ground electromagnetic conductors buffered to 50 m |
Faults 1:250,000 scale [158] | Faults WNW buffered | Faults separated into six orientation classes and buffered at 200 m intervals to 2 km. |
Faults NW buffered | ||
Faults NNW buffered | ||
Faults NNE buffered | ||
Faults NE buffered | ||
Faults ENE buffered | ||
Magnetic Domains [159] | Magnetic domains | Mag interpretation of 19 Precambrian domains beneath Athabasca Basin. |
Extech IV Faults [150] | Extech IV faults | Buffered at 2000 m intervals to 20 km. Used to represent large-scale, through-going basement structural development zones. |
Canada 2 km isostatic residual (IR) gravity edges 1600 Fathom Geophysics Australia—derived from: [160] | Gravity 1600 WNW buffered | The ‘1600’ filter isolates short wavelength lateral variations in gravity data, which may represent structure concealed below cover—Data split into six orientation classes and buffered at 500 m intervals to 5 km. |
Gravity 1600 NW buffered | ||
Gravity 1600 NNW buffered | ||
Gravity 1600 NNE buffered | ||
Gravity 1600 NE buffered | ||
Gravity 1600 ENE buffered | ||
Canada 2 km isostatic residual (IR) gravity edges 6400 Fathom Geophysics Australia—Derived from: [160] | Gravity 6400 WNW buffered | The ‘6400’ filter isolates longer wavelength variations in gravity data. They are used here as proxies for ‘deep’ structural development zones—split into six orientation classes and buffered at 1000 m intervals to 10 km. |
Gravity 6400 NW buffered | ||
Gravity 6400 NNW buffered | ||
Gravity 6400 NNE buffered | ||
Gravity 6400 NE buffered | ||
Gravity 6400 ENE buffered | ||
Athabasca Basin 100 m Magnetics edges 1600 Fathom Geophysics Australia—Derived from: [161] | Magnetics 1600 edge density | Line density function with a 10 km search radius used on proprietary ‘1600’ edge detection data. Proxy for basement lithological complexity. |
Predictor Map | Criterion | W+ | W− | Contrast | Student Value |
---|---|---|---|---|---|
Simplified lithology | Carbonaceous sediments | 3.32 | −0.06 | 3.38 | 12.22 |
Felsic volcanics | 0.73 | −0.02 | 0.75 | 2.42 | |
Gneiss | 0.89 | −0.09 | 0.98 | 5.13 | |
Haematitic breccia | 4.53 | −0.01 | 4.54 | 6.94 | |
Sandstone | −0.65 | 0.14 | −0.79 | −4.03 | |
Schist | 0.83 | −0.15 | 0.97 | 6.29 | |
Simplified stratigraphy | Archean | 0.89 | −0.07 | 0.95 | 4.50 |
Proterozoic | 0.05 | −0.33 | 0.38 | 1.82 | |
Metamorphic regions | Amphibolite facies | 1.06 | −0.27 | 1.34 | 9.67 |
Granulite facies | 1.56 | −0.01 | 1.57 | 2.20 | |
Lower greenschist facies | 2.06 | −0.10 | 2.16 | 10.10 | |
Sub greenschist facies | 0.29 | −0.09 | 0.38 | 2.65 | |
Unmetamorphosed cover | −1.37 | 0.59 | −1.96 | −10.34 | |
Upper greenschist facies | 0.46 | −0.02 | 0.48 | 1.81 | |
Archean buffered | 05 km | 1.46 | −0.42 | 1.89 | 14.33 |
Gravity 6400 buffered | 20 km | 0.00 | −4.01 | 4.02 | 0.40 |
Faults WNW buffered | 1 km | 1.60 | −0.20 | 1.79 | 11.39 |
Faults NW buffered | 1 km | 1.34 | −0.29 | 1.64 | 11.76 |
Faults NNW buffered | 2 km | 1.09 | −0.40 | 1.49 | 11.41 |
Faults NNE buffered | 1 km | 1.09 | −0.12 | 1.21 | 6.90 |
Faults NE buffered | 1 km | 1.31 | −0.15 | 1.46 | 8.62 |
Faults ENE buffered | 1 km | 1.17 | −0.10 | 1.26 | 6.53 |
Gravity 1600 NNE buffered | 9 km | 0.10 | −0.42 | 0.51 | 2.87 |
Gravity 1600 NE buffered | 6 km | 0.17 | −0.25 | 0.42 | 3.07 |
Magnetics 1600 edge density | 0.21–0.24 | 0.31 | −0.07 | 0.38 | 2.41 |
0.24–0.3 | 0.43 | −0.17 | 0.60 | 4.41 | |
0.3 + | 0.21 | −0.05 | 0.26 | 1.66 | |
Unconformity buffered | 45 km | 0.12 | −1.71 | 1.83 | 4.43 |
Predictor Map | Criterion | W+ | W− | Contrast | Student Value |
---|---|---|---|---|---|
Solid geology | Athabasca quartzarenite | −0.07 | 1.57 | −1.64 | 0.22 |
Carswell gneiss | 3.83 | −0.07 | 3.91 | 0.26 | |
Magnetic domains | Carswell structure | 3.19 | −0.09 | 3.28 | 14.47 |
Mudjatik—undifferentiated | 0.73 | −0.24 | 0.97 | 7.40 | |
Shear zone | 0.33 | −0.01 | 0.34 | 0.89 | |
Tantato—low mag | 0.76 | −0.04 | 0.79 | 3.15 | |
Wollaston—high mag | 1.68 | −0.07 | 1.75 | 7.80 | |
Wollaston—low mag | 1.51 | −0.23 | 1.74 | 12.09 | |
Gravity 6400 WNW buffered | 02 km | 0.68 | −0.06 | 0.73 | 3.58 |
Gravity 6400 NNE buffered | 01 km | 0.43 | −0.01 | 0.44 | 1.21 |
Gravity 6400 EN buffered | 01 km | 0.52 | −0.02 | 0.54 | 1.81 |
Magnetics 1600 edge density | 0.26–0.33 | 0.33 | −0.09 | 0.41 | 2.88 |
0.33–0.52 | 1.44 | −0.28 | 1.72 | 12.72 | |
Conductors (air) | Conductor | 2.88 | −0.13 | 3.01 | 15.96 |
Conductors (ground) | Conductor | 3.58 | −0.32 | 3.90 | 27.07 |
Extech IV faults | 10 km | 0.06 | −0.21 | 0.27 | 1.76 |
Faults WNW buffered | 2000 m | 1.20 | −0.12 | 1.32 | 7.74 |
Faults NW buffered | 400 m | 1.82 | −0.09 | 1.91 | 9.14 |
Faults NNW buffered | 200 m | 1.77 | −0.05 | 1.81 | 6.53 |
Faults NNE buffered | 2000 m | 1.62 | −0.34 | 1.96 | 14.95 |
Faults NE buffered | 200 m | 1.56 | −0.04 | 1.60 | 5.59 |
Faults ENE buffered | 400 m | 1.26 | −0.03 | 1.29 | 4.34 |
Gravity 1600 WNW buffered | 3500 m | 0.44 | −0.10 | 0.54 | 3.66 |
Gravity 1600 NW buffered | 4500 m | 0.17 | −0.08 | 0.25 | 1.92 |
Gravity 1600 NE buffered | 3000 m | 0.17 | −0.03 | 0.20 | 1.18 |
Gravity 1600 ENE buffered | 5000 m | 0.15 | −0.09 | 0.23 | 1.84 |
Derived Predictor Maps | Map Weight | Comments |
---|---|---|
Simplified lithology | 8 | Strong conceptual control and highlighted by WofE analysis. |
Simplified stratigraphy | 8 | Strong conceptual control and highlighted by WofE analysis. |
Archean buffered | 9 | Very important conceptually and highlighted by WofE analysis. |
Unconformity buffered | 9 | Critical control on mineralisation but with a large zone of influence, as supported by WofE. |
Faults WNW buffered | 9 | Dominant trend highlighted by WofE (occurrences and deposits). |
Faults NW buffered | 8 | Highlighted by WofE (occurrences) and dominant in Fry 1 km to 50 km analysis (occurrences and deposits). |
Faults NNW buffered | 5 | Highlighted by WofE (occurrences) and strong trend in Fry 1 km to 50 km analysis (occurrences and deposits). |
Faults NNE buffered | 5 | Relatively weak trend highlighted by Fry analysis, weak trend in WofE analysis. |
Faults NE buffered | 8 | Strong trend in WofE analysis (occurrences and deposits). |
Faults ENE buffered | 7 | Highlighted in WofE analysis (strong in deposits only data). |
Metamorphic regions | 4 | Weak predictor of U mineralisation. Little differentiation between metamorphic classes in WofE. |
Gravity 1600 NNE buffered | 3 | Weak trend highlighted by WofE analysis (occurrences data). |
Gravity 1600 NE buffered | 5 | Relatively weak trend in WofE analysis (deposits and occurrences). |
Gravity 6400 buffered | 6 | Strong contrast returned from WofE analysis. Conceptually important. |
Magnetics 1600 edge density | 5 | Modest response from WofE analysis. Conceptually important. |
Derived Predictor Maps | Map Weight | Comments |
---|---|---|
Solid geology | 9 | Conceptually strong control on mineralisation. |
Conductors (air) | 7 | Strong response from WofE analysis. Important in historical targeting. |
Conductors (ground) | 8 | Very strong response from WofE. Important in historical targeting. |
Faults WNW buffered | 6 | Clear spatial association with known deposits. Highlighted by WofE. |
Faults NW buffered | 7 | Clear spatial association with known deposits. Highlighted by WofE. |
Faults NNW buffered | 6 | Clear spatial association with known deposits. Highlighted by WofE. |
Faults NNE buffered | 7 | Clear spatial association with known deposits. Highlighted by WofE. |
Faults NE buffered | 8 | Clear spatial association with known deposits. Highlighted by WofE. |
Faults ENE buffered | 6 | Weaker response from WofE. Still important conceptually. |
Magnetic domains | 10 | Representation of basement domains—critical control on U mineralisation. |
Extech IV faults | 4 | Broad zones of structural weakness with high levels of spatial uncertainty. |
Gravity 1600 WNW buffered | 4 | Weak spatial association with known deposits in WofE analysis. |
Gravity 1600 NW buffered | 3 | Very weak response from WofE. |
Gravity 1600 NE buffered | 5 | Important conceptually. Weak spatial association with known deposits. |
Gravity 1600 ENE buffered | 3 | Important conceptually. Weak spatial association with known deposits. |
Gravity 6400 WNW buffered | 6 | Moderate response from WofE analysis. Possibly represent significant basement structures. |
Gravity 6400 NW buffered | 3 | No spatial association observed in WofE analysis but conceptually important. |
Gravity 6400 NNW buffered | 4 | No spatial association observed in WofE analysis but conceptually significant. |
Gravity 6400 NNE buffered | 5 | Moderate response from WofE analysis. Possibly represent significant basement structures. |
Gravity 6400 NE buffered | 2 | No spatial association observed in WofE analysis but conceptually significant. |
Gravity 6400 ENE buffered | 6 | Moderate response from WofE analysis. Possibly represent significant basement structures. |
Magnetics 1600 edge density | 5 | Modest response from WofE analysis. Conceptually important. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruce, M.; Kreuzer, O.; Wilde, A.; Buckingham, A.; Butera, K.; Bierlein, F. Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors. Minerals 2020, 10, 738. https://doi.org/10.3390/min10090738
Bruce M, Kreuzer O, Wilde A, Buckingham A, Butera K, Bierlein F. Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors. Minerals. 2020; 10(9):738. https://doi.org/10.3390/min10090738
Chicago/Turabian StyleBruce, Matt, Oliver Kreuzer, Andy Wilde, Amanda Buckingham, Kristin Butera, and Frank Bierlein. 2020. "Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors" Minerals 10, no. 9: 738. https://doi.org/10.3390/min10090738
APA StyleBruce, M., Kreuzer, O., Wilde, A., Buckingham, A., Butera, K., & Bierlein, F. (2020). Unconformity-Type Uranium Systems: A Comparative Review and Predictive Modelling of Critical Genetic Factors. Minerals, 10(9), 738. https://doi.org/10.3390/min10090738