Geochemistry of Carboniferous–Permian Coal from the Wujiawan Mine, Datong Coalfield, Northern China: Modes of Occurrence, Origin of Valuable Trace Elements, and Potential Industrial Utilization
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Methods
4. Results
4.1. Bulk Coal Characteristics
4.2. Mineralogical Characteristics
4.2.1. Kaolinite
4.2.2. Calcite
4.2.3. Pyrite
4.3. Geochemistry
4.3.1. Major Element Oxides
4.3.2. Trace Elements
4.3.3. Rare Earth Elements and Yttrium (REY)
5. Discussion
5.1. Affinity of the Elements
5.2. Sediment Source Region
5.3. Modes of Occurrence of Enriched Valuable Elements
5.3.1. Lithium
5.3.2. Gallium
5.3.3. Zirconium, Niobium, Hafnium, Tantalum, and Thorium
5.3.4. REY
5.4. Evaluation of Li in the Wujiawan Coals and Comparison with Adjacent Coals in the Datong Coalfield
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BP Full Report—BP Statistical Review of World Energy 2019; BP: London, UK, 2019.
- Bai, X.; Ding, H.; Lian, J.; Ma, D.; Yang, X.; Sun, N.; Xue, W.; Chang, Y. Coal production in China: Past, present, and future projections. Int. Geol. Rev. 2018, 60, 535–547. [Google Scholar] [CrossRef]
- Prachiti, P.K.; Manikyamba, C.; Singh, P.K.; Balaram, V.; Lakshminarayana, G.; Raju, K.; Singh, M.P.; Kalpana, M.S.; Arora, M. Geochemical systematics and precious metal content of the sedimentary horizons of Lower Gondwanas from the Sattupalli coal field, Godavari Valley, India. Int. J. Coal Geol. 2011, 88, 83–100. [Google Scholar] [CrossRef]
- Seredin, V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Wang, P.; Yan, X.; Guo, W.; Zhang, S.; Wang, Z.; Xu, Y.; Wang, L. Geochemistry of trace elements in coals from the yueliangtian mine, western guizhou, China: Abundances, modes of occurrence, and potential industrial utilization. Energy Fuels 2016, 30, 10268–10281. [Google Scholar] [CrossRef]
- Zhao, F.; Cong, Z.; Sun, H.; Ren, D. The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China. Int. J. Coal Geol. 2007, 70, 184–192. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Zhang, J.; Jin, Z.; Lin, M.; Wolfgang, K. Further Information of the Associated Li Deposits in the No.6 Coal Seam at Jungar Coalfield, Inner Mongolia, Northern China. Acta Geol. Sin. Engl. Ed. 2013, 87, 1097–1108. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y.; Sang, S.; Zhu, Y.; Wang, C.; Weiss, D.J. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China. Int. J. Coal Geol. 2008, 76, 309–317. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield, Hebei, China. Energy Fuels 2007, 21, 1663–1673. [Google Scholar] [CrossRef]
- Bai, X.; Li, W.; Wang, Y.; Ding, H. The distribution and occurrence of mercury in Chinese coals. Int. J. Coal Sci. Technol. 2017, 4, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Wang, J.; He, H.; Mishra, V.; Li, Y.; Wang, J.; Zhao, C. Geochemistry of Carboniferous coals from the Laoyaogou mine, Ningwu coalfield, Shanxi Province, northern China: Emphasis on the enrichment of valuable elements. Fuel 2020, 279, 118414. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Li, S. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Chinese Sci. Bull. 2006, 51, 2243–2252. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Qin, S.; Xiao, L.; Li, Z.; Lin, M. Occurrence of some valuable elements in the unique “high-aluminium coals” from the Jungar coalfield, China. Ore Geol. Rev. 2016, 72, 659–668. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Y.; Kalkreuth, W. Characteristics of Trace Elements of the No. 6 Coal in the Guanbanwusu Mine, Junger Coalfield, Inner Mongolia. Energy Explor. Exploit. 2011, 29, 827–841. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y.; Lu, X.; Zhao, J.; Wang, J.; Wu, G.; Liu, J. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia. Sci. China Earth Sci. 2011, 54, 1053–1068. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Xiao, L.; Li, Y.; Liu, S.; Li, Z.; Zhao, B.; Ma, J.; Chu, G.; Gao, P.; et al. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, northern Qaidam Basin, China—A hidden gem. Ore Geol. Rev. 2017, 83, 1–13. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Chu, G.; Xiao, L.; Jin, Z.; Lin, M.; Blokhin, M.G. The Relationship between Trace Element Concentrations and Coal-Forming Environments in the No. 6 Coal Seam, Haerwusu Mine, China. Energy Explor. Exploit. 2015, 33, 91–104. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, B.; Duan, P.; Shi, Z.; Ma, J.; Lin, M. Geochemical Characteristics of Trace Elements in the No. 6 Coal Seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. Minerals 2016, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Tang, S.; Zhang, S. Concentrations and modes of occurrence of some potentially valuable and toxic elements in the No. 5 coal from the Yanzishan Mine, Datong Coalfield, Shanxi Province, China. Energy Explor. Exploit. 2019, 37, 1694–1720. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of Occurrence of Trace Elements and Minerals in Coal: An Analytical Approach. In Atomic and Nuclear Methods in Fossil Energy Research; Springer US: Boston, MA, USA, 1982; pp. 141–149. [Google Scholar]
- Sun, Y.; Zhao, C.; Zhang, J.; Yang, J.; Zhang, Y.; Yuan, Y.; Xu, J.; Duan, D. Concentrations of Valuable Elements of the Coals from the Pingshuo Mining District, Ningwu Coalfield, Northern China. Energy Explor. Exploit. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Qin, S.; Lu, Q.; Li, Y.; Wang, J.; Zhao, Q.; Gao, K. Relationships between trace elements and organic matter in coals. J. Geochemical Explor. 2018, 188, 101–110. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, S.; Zhang, S.; Yang, N. Mineralogical and geochemical characteristics of trace elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi province, China. Minerals 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Tang, S.; Zhang, S. Geochemical and mineralogical characteristics of the middle Jurassic coals from the tongjialiang mine in the northern Datong Coalfield, Shanxi province, China. Minerals 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Liu, B.; Zhang, K.; Wang, Z.; Li, J.; Blokhin, M.G.; Zhao, C. Geochemical characteristics of No. 6 coal from Nanyangpo Mine, Datong coalfield, north China: Emphasis on the influence of hydrothermal solutions. Energy Explor. Exploit. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Q.; Tian, L. Characteristics of trace elements of the No. 9 coal seam from the Anjialing Mine, Ningwu coalfield, China. Chinese J. Geochem. 2015, 34, 391–400. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, F.; Zhou, A.; Ma, M.; Wen, X. The geochemistry of trace elements in the No.2 coal seam of Qifengshan coalmine at Datong coalfield. J. China Coal Soc. 2013, 38, 637–643. [Google Scholar]
- Zhao, G.; Cawood, P.A.; Wilde, S.A.; Sun, M. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Rev. 2002, 59, 125–162. [Google Scholar] [CrossRef]
- GB/T 2008. 482: 2008 Sampling of Coal Seams [in Chinese]; National Coal Standardization Technical Committee: Beijing, China, 2008.
- ASTM D3173-11 Standard Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011; p. 202.
- ASTM D3174-11 Standards Test Method for ash in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3175-11 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3177-02(2007) Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D2798-05 Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal; ASTM International: West Conshohocken, PA, USA, 2011.
- China Coal Science Research Institute. GB/T 15224.1-2010 Classification for Quality of Coal—Part 1: Ash [in Chinese]; National Coal Standardization Technical Committee: Beijing, China, 2010. [Google Scholar]
- China Coal Research Institute. MT/T 849-2000 Classification for Volatile Matter of Coal [in Chinese]; National Coal Standardization Technical Committee: Beijing, China, 2000. [Google Scholar]
- China Coal Research Institute. MT/T 850-2000 CClassification for Total Moisture in Coal [in Chinese]; National Coal Standardization Technical Committee: Beijing, China, 2000. [Google Scholar]
- China Coal Science Research Institute. GB/T 15224.2-2010 Classification for Quality of Coal—Part 2: Sulfur Content [in Chinese]; National Coal Standardization Technical Committee: Beijing, China, 2010. [Google Scholar]
- Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116–117, 185–207. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Jiang, Y.; Wei, J.; Chen, Z. Mineralogical and Geochemical Characteristics of the Early Permian Upper No. 3 Coal from Southwestern Shandong, China. Minerals 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Rajak, P.K.; Singh, V.K.; Singh, A.L.; Kumar, N.; Kumar, O.P.; Singh, V.; Kumar, A.; Rai, A.; Rai, S.; Naik, A.S.; et al. Study of minerals and selected environmentally sensitive elements in Kapurdi lignites of Barmer Basin, Rajasthan, western India: Implications to environment. Geosci. J. 2019, 24, 441–458. [Google Scholar] [CrossRef]
- Rajak, P.K.; Singh, V.K.; Singh, P.K.; Singh, A.L.; Kumar, N.; Kumar, O.P.; Singh, V.; Kumar, A. Geochemical implications of minerals and environmentally sensitive elements of Giral lignite, Barmer Basin, Rajasthan (India). Environ. Earth Sci. 2018, 77, 698. [Google Scholar] [CrossRef]
- Wang, P.; Ji, D.; Yang, Y.; Zhao, L. Mineralogical compositions of Late Permian coals from the Yueliangtian mine, western Guizhou, China: Comparison to coals from eastern Yunnan, with an emphasis on the origin of the minerals. Fuel 2016, 181, 859–869. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. Int. J. Coal Geol. 2013, 116–117, 208–226. [Google Scholar] [CrossRef]
- Kortenski, J. Carbonate minerals in Bulgarian coals with different degrees of coalification. Int. J. Coal Geol. 1992, 20, 225–242. [Google Scholar] [CrossRef]
- Dai, S.; Chou, C.-L.; Yue, M.; Luo, K.; Ren, D. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Wang, Z.; Zhang, K.; Gao, Z.; Ma, J.; Zhao, C. Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China. Minerals 2020, 10, 714. [Google Scholar] [CrossRef]
- Chou, C.L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Raes, F.; Van Dingenen, R.; Vignati, E.; Wilson, J.; Putaud, J.P.; Seinfeld, J.H.; Adams, P. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000, 34, 4215–4240. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Yaroshevsky, A.A. Abundances of chemical elements in the Earth’s crust. Geochemistry Int. 2006, 44, 48–55. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Eskenazy, G.M. Trace elements geochemistry of the Dobrudza coal basin, Bulgaria. Int. J. Coal Geol. 2009, 78, 192–200. [Google Scholar] [CrossRef]
- Eskanazy, G.; Finkelman, R.B.; Chattarjee, S. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. Int. J. Coal Geol. 2010, 83, 491–493. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Spears, D.A.; Zheng, Y. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol. 1999, 38, 161–179. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, O.; Nakazato, T.; Zhang, Z.G.; Suzuki, Y.; Sakanishi, K. Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence. Fuel 2008, 87, 2211–2222. [Google Scholar] [CrossRef]
- Xu, N.; Finkelman, R.B.; Xu, C.; Dai, S. What do coal geochemistry statistics really mean? Fuel 2020, 267, 117084. [Google Scholar] [CrossRef]
- Dai, S.; Guo, W.; Nechaev, V.P.; French, D.; Ward, C.R.; Spiro, B.F.; Finkelman, R.B. Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. Int. J. Coal Geol. 2018, 189, 94–110. [Google Scholar] [CrossRef]
- Hower, J.; Eble, C.; O’Keefe, J.; Dai, S.; Wang, P.; Xie, P.; Liu, J.; Ward, C.; French, D. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals 2015, 5, 592–622. [Google Scholar] [CrossRef]
- Guo, W.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Wei, G.; Finkelman, R.B.; Spiro, B.F. Geochemistry of Palaeogene coals from the Fuqiang Mine, Hunchun Coalfield, northeastern China: Composition, provenance, and relation to the adjacent polymetallic deposits. J. Geochemical Explor. 2019, 196, 192–207. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Zhong, Y.T.; Guan, J.P. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Salters, V.J.M. Elements: High field strengthHigh field strength. In Geochemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; pp. 209–210. [Google Scholar]
- Wang, J.; Wang, Q.; Shi, J.; Li, Z. Distribution and enrichment mode of Li in the No. 11 coal seam from Pingshuo mining district, Shanxi province. Energy Explor. Exploit. 2015, 33, 203–216. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.-h.; Zhang, S.-h.; Xi, Z.-d.; Li, J.; Yuan, Y.; Guo, Y.-y. ying In seam variation of element-oxides and trace elements in coal from the eastern Ordos Basin, China. Int. J. Coal Geol. 2018, 197, 31–41. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Liu, S. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu Mine, Inner Mongolia, northern China. Energy Explor. Exploit. 2012, 30. [Google Scholar] [CrossRef] [Green Version]
- Jian, P.; Kröner, A.; Windley, B.F.; Zhang, Q.; Zhang, W.; Zhang, L. Episodic mantle melting-crustal reworking in the late neoarchean of the Northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Res. 2012, 222–223, 230–254. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Zhou, X. Geochemistry of the rare earth elements in natural terrestrial waters: A review of what is currently known. Chinese J. Geochem. 1997, 16, 20–42. [Google Scholar] [CrossRef]
- Qin, S.; Zhao, C.; Li, Y.; Zhang, Y. Review of coal as a promising source of lithium. Int. J. Oil Gas Coal Technol. 2015, 9, 215–229. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A. Gallium and germanium in selected Indiana coals. Int. J. Coal Geol. 2012, 94, 302–313. [Google Scholar] [CrossRef]
- Vejahati, F.; Xu, Z.; Gupta, R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization—A review. Fuel 2010, 89, 904–911. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Simonetti, A. Major and Trace Element Geochemistry of Coals and Intra-Seam Claystones from the Songzao Coalfield, SW China. Minerals 2015, 5, 870–893. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, Y.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z.; et al. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Zhao, C.; Duan, D.; Li, Y.; Zhang, J. Rare Earth Elements in No. 2 Coal of Huangling Mine, Huanglong Coalfield, China. Energy Explor. Exploit. 2012, 30, 803–818. [Google Scholar] [CrossRef] [Green Version]
- Eskenazy, G.M. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem. 1987, 11, 83–89. [Google Scholar] [CrossRef]
- Ward, C.R.; Corcoran, J.F.; Saxby, J.D.; Read, H.W. Occurrence of phosphorus minerals in Australian coal seams. Int. J. Coal Geol. 1996, 30, 185–210. [Google Scholar] [CrossRef]
- Swaine, D.J. Chapter 7—Variations within seams. In Trace Elements in Coal; Swaine, D.J., Ed.; Butterworth-Heinemann: London, UK, 1990; p. 278. ISBN 9780408033091. [Google Scholar]
- Ma, J. Geochemical Characteristics of NO.6 Coal in Nanyangpo Mine. Master’s Thesis, Hebei University of Engineering, Handan, China, 2018. [Google Scholar]
- Shao, P. Paragenetic Association and Synergistic Separation of Li-Ga-REE Multielements in High-Alumina Coal and Coal Ash: A Case Study of Datong Coalfield. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J. Minimum mining grade of the selected trace elements in Chinese coal. J. China Coal Soc. 2014, 39, 744–748. [Google Scholar]
- Meij, R.; te Winkel, B.H. Trace elements in world steam coal and their behaviour in Dutch coal-fired power stations: A review. Int. J. Coal Geol. 2009, 77, 289–293. [Google Scholar] [CrossRef]
- Clarke, L.B.; Sloss, L.L. IEA Coal Research. In Trace Elements: Emissions from Coal Combustion and Gasification; IEA Coal Research: London, UK, 1992; ISBN 9290292040. [Google Scholar]
Sample | Ad | Vdaf | Mad | St,d | Ro, ran |
---|---|---|---|---|---|
WJW5-1 | 17.85 | 30.46 | 4.14 | 0.63 | 0.63 |
WJW5-3 | 22.15 | 32.68 | 4.47 | 0.79 | 0.57 |
WJW5-4 | 31.15 | 24.76 | 3.29 | 0.50 | 0.59 |
WJW5-6 | 13.60 | 32.70 | 4.01 | n.a. | 0.61 |
WJW5-8 | 14.15 | 25.46 | 3.97 | 0.93 | 0.62 |
WJW5-10 | 13.40 | 34.72 | 5.38 | 3.89 | 0.62 |
AVE | 18.72 | 30.13 | 4.21 | 1.35 | 0.61 |
Sample | SiO2 | Al2O3 | CaO | P2O5 | TiO2 | Fe2O3 | MgO | K2O | Na2O | MnO | SiO2/Al2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|
WJW-5-1 | 8.03 | 8.08 | 0.54 | 0.49 | 0.13 | 0.13 | 0.05 | 0.01 | 0.01 | 0.002 | 0.99 |
WJW-5-2P | 37.8 | 34.93 | 0.06 | 0.03 | 0.67 | 0.32 | 0.14 | 0.1 | 0.03 | bdl | 1.08 |
WJW-5-3 | 9.68 | 9.2 | 2.02 | 0.03 | 0.13 | 0.27 | 0.11 | 0.04 | 0.01 | 0.011 | 1.05 |
WJW-5-4 | 14.79 | 13.7 | 0.82 | 0.04 | 0.44 | 0.27 | 0.13 | 0.07 | 0.04 | 0.005 | 1.08 |
WJW-5-5P | 34.69 | 31.2 | 0.09 | 0.02 | 0.39 | 0.18 | 0.15 | 0.25 | 0.05 | bdl | 1.11 |
WJW-5-6 | 5.84 | 5.65 | 1.09 | 0.01 | 0.1 | 0.96 | 0.05 | 0.01 | 0.01 | 0.007 | 1.03 |
WJW-5-7P | 27.37 | 24.75 | 0.1 | 0.04 | 0.89 | 0.17 | 0.12 | 0.1 | 0.03 | bdl | 1.11 |
WJW-5-8 | 6.47 | 6.05 | 0.88 | 0.01 | 0.13 | 0.2 | 0.05 | 0.01 | 0.01 | 0.004 | 1.07 |
WJW-5-9P | 33.14 | 29.82 | 0.14 | 0.01 | 0.32 | 0.18 | 0.15 | 0.11 | 0.02 | bdl | 1.11 |
WJW-5-10 | 6.21 | 5.75 | 0.16 | 0.01 | 0.18 | 0.62 | 0.06 | 0.01 | 0.01 | 0.066 | 1.08 |
WJW-5-11P | 40.5 | 31.9 | 0.21 | 0.05 | 0.93 | 0.91 | 0.36 | 0.85 | 0.05 | 0.002 | 1.27 |
WJW-5-12F | 35.47 | 32.76 | 0.08 | 0.02 | 1.13 | 0.21 | 0.12 | 0.07 | 0.03 | bdl | 1.08 |
AVE-C | 8.50 | 8.07 | 0.92 | 0.10 | 0.19 | 0.41 | 0.08 | 0.03 | 0.02 | 0.02 | 1.05 |
AVE-P | 34.83 | 30.89 | 0.11 | 0.03 | 0.72 | 0.33 | 0.17 | 0.25 | 0.04 | bdl | 1.13 |
*China | 8.47 | 5.98 | 1.23 | 0.092 | 0.33 | 4.85 | 0.22 | 0.19 | 0.16 | 0.015 | 1.42 |
Samples | Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Zr | Nb | Mo | Cd | Cs | Ba | Hf | Ta | W | Pb | Bi | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WJW-5-1 | 97.4 | 3.17 | 6.8 | 18.3 | 4.6 | 0.5 | 1.8 | 10.7 | 6.6 | 16.6 | 0.4 | 140.1 | 7.06 | 0.57 | 0.08 | 0.06 | 63.0 | 3.71 | 0.36 | 0.32 | 15.6 | 0.33 | 7.29 | 2.90 |
WJW-5-2P | 411.6 | 1.46 | 7.4 | 22.8 | 7.3 | 0.4 | 2.1 | 14.2 | 11.0 | 32.7 | 3.6 | 333.0 | 33.71 | 1.08 | 0.25 | 0.43 | 18.1 | 10.10 | 2.57 | 2.31 | 14.0 | 0.89 | 22.69 | 4.38 |
WJW-5-3 | 77.5 | 2.09 | 4.9 | 12.2 | 5.1 | 0.7 | 2.1 | 3.5 | 8.7 | 27.4 | 1.7 | 108.1 | 12.50 | 0.97 | 0.11 | 0.18 | 18.7 | 3.81 | 0.63 | 0.50 | 12.7 | 0.46 | 8.90 | 4.03 |
WJW-5-4 | 132.9 | 3.34 | 7.5 | 17.1 | 8.1 | 0.3 | 1.7 | 10.6 | 9.4 | 19.0 | 2.3 | 163.4 | 15.46 | 0.89 | 0.16 | 0.29 | 23.1 | 5.62 | 1.15 | 1.61 | 27.5 | 0.66 | 17.95 | 3.42 |
WJW-5-5P | 143.1 | 1.06 | 3.9 | 12.1 | 4.3 | 0.3 | 0.6 | 6.9 | 6.0 | 28.5 | 9.9 | 123.9 | 19.44 | 1.33 | 0.14 | 0.77 | 23.7 | 4.41 | 1.68 | 1.91 | 6.5 | 0.25 | 12.02 | 2.02 |
WJW-5-6 | 31.3 | 2.53 | 3.7 | 8.6 | 2.5 | 0.6 | 1.2 | 3.5 | 7.2 | 8.7 | 0.3 | 71.1 | 3.56 | 0.72 | <0.05 | 0.03 | 11.8 | 2.37 | 0.31 | 0.83 | 10.5 | 0.12 | 8.59 | 2.14 |
WJW-5-7P | 181.3 | 1.11 | 4.6 | 11.8 | 3.4 | 0.2 | 1.4 | 11.8 | 13.2 | 24.7 | 3.5 | 188.6 | 24.98 | 1.85 | 0.23 | 0.32 | 12.8 | 5.81 | 2.57 | 6.15 | 9.7 | 0.93 | 26.42 | 4.36 |
WJW-5-8 | 44.1 | 2.56 | 3.1 | 7.3 | 1.7 | 0.4 | 1.2 | 3.8 | 5.5 | 16.4 | 0.3 | 112.5 | 8.73 | 1.27 | <0.05 | 0.03 | 7.0 | 3.54 | 0.58 | 0.94 | 9.3 | 0.18 | 9.71 | 2.84 |
WJW-5-9P | 132.0 | 1.40 | 3.7 | 5.8 | 1.6 | 0.2 | 0.5 | 3.1 | 7.0 | 29.3 | 3.8 | 143.1 | 16.37 | 0.94 | <0.05 | 0.29 | 18.2 | 4.68 | 1.27 | 1.24 | 10.7 | 0.19 | 4.81 | 1.07 |
WJW-5-10 | 22.7 | 3.51 | 3.4 | 11.0 | 3.6 | 0.6 | 2.9 | 2.6 | 4.3 | 18.2 | 0.2 | 123.5 | 10.01 | 1.73 | <0.05 | 0.03 | 2.9 | 3.70 | 0.36 | 0.44 | 11.5 | 0.13 | 5.77 | 3.29 |
WJW-5-11P | 195.4 | 3.18 | 16.6 | 132.3 | 115.5 | 7.2 | 25.3 | 22.7 | 41.4 | 34.8 | 34.7 | 205.4 | 18.72 | 0.86 | 0.14 | 3.87 | 110.8 | 6.07 | 1.07 | 2.26 | 21.7 | 0.44 | 16.89 | 4.41 |
WJW-5-12F | 345.9 | 1.33 | 9.4 | 36.7 | 8.9 | 0.5 | 3.0 | 19.3 | 21.7 | 32.5 | 2.0 | 472.9 | 39.70 | 4.32 | 0.38 | 0.23 | 17.7 | 10.59 | 2.82 | 4.05 | 14.3 | 1.04 | 20.62 | 5.44 |
AVE-C | 67.66 | 2.87 | 4.90 | 12.42 | 4.29 | 0.52 | 1.81 | 5.77 | 6.95 | 17.72 | 0.88 | 119.78 | 9.56 | 1.03 | 0.11 | 0.10 | 21.09 | 3.79 | 0.56 | 0.77 | 14.53 | 0.31 | 9.70 | 3.10 |
AVE-P | 234.88 | 1.59 | 7.60 | 36.92 | 23.50 | 1.47 | 5.48 | 13.00 | 16.72 | 30.42 | 9.58 | 244.48 | 25.49 | 1.73 | 0.19 | 0.99 | 33.55 | 6.94 | 2.00 | 2.99 | 12.82 | 0.62 | 17.24 | 3.61 |
world coals 1 | 10 | 1.6 | 3.90 | 28.00 | 16 | 5.1 | 13 | 16 | 23 | 5.8 | 8.3 | 36.00 | 3.70 | 2.20 | 0.22 | 1 | 150 | 1.20 | 0.28 | 1.10 | 7.8 | 0.97 | 3.30 | 2.4 |
world clays 2 | 54 | 3 | 15 | 120 | 110 | 19 | 49 | 36 | 89 | 16 | 133 | 190 | 11 | 1.6 | 0.91 | 13 | 460 | 120 | 110 | 2.6 | 14 | 0.38 | 4.3 | 4.3 |
Sample | WJW5-1 | WJW5-2P | WJW5-3 | WJW5-4 | WJW5-5P | WJW5-6 | WJW5-7P | WJW5-8 | WJW5-9P | WJW5-10 | WJW5-11P | WJW-12F | AVE-C | AVE-P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 107.82 | 12.19 | 18.63 | 36.12 | 18.71 | 16.74 | 92.11 | 18.08 | 7.92 | 9.59 | 47.45 | 5.26 | 34.50 | 30.61 |
Ce | 151.46 | 30.02 | 40.89 | 73.38 | 36.36 | 32.48 | 164.69 | 35.84 | 14.92 | 20.34 | 84.29 | 17.82 | 59.06 | 58.02 |
Pr | 15.60 | 3.34 | 4.69 | 7.95 | 3.70 | 3.58 | 18.06 | 3.94 | 1.52 | 2.27 | 9.12 | 2.27 | 6.34 | 6.33 |
Nd | 51.86 | 11.38 | 17.36 | 28.23 | 12.31 | 12.88 | 59.57 | 13.69 | 4.90 | 8.14 | 30.50 | 8.44 | 22.03 | 21.18 |
Sm | 8.73 | 2.47 | 3.86 | 5.74 | 2.12 | 2.71 | 10.32 | 2.72 | 0.85 | 1.84 | 5.27 | 2.31 | 4.27 | 3.89 |
Eu | 1.42 | 0.45 | 0.67 | 0.97 | 0.34 | 0.50 | 1.67 | 0.54 | 0.17 | 0.45 | 1.31 | 0.57 | 0.76 | 0.75 |
Gd | 8.94 | 2.57 | 3.82 | 5.74 | 2.09 | 2.72 | 10.05 | 2.80 | 0.99 | 1.90 | 5.50 | 2.67 | 4.32 | 3.98 |
Tb | 0.89 | 0.54 | 0.71 | 0.90 | 0.26 | 0.47 | 1.14 | 0.42 | 0.17 | 0.38 | 0.79 | 0.70 | 0.63 | 0.60 |
Dy | 4.04 | 3.39 | 4.15 | 4.75 | 1.51 | 2.61 | 5.15 | 2.51 | 1.30 | 2.24 | 4.64 | 4.24 | 3.38 | 3.37 |
Y | 16.71 | 17.83 | 21.81 | 23.20 | 8.30 | 14.78 | 23.55 | 14.57 | 9.51 | 13.66 | 23.98 | 20.54 | 17.45 | 17.29 |
Ho | 0.76 | 0.75 | 0.90 | 1.00 | 0.34 | 0.58 | 1.01 | 0.57 | 0.35 | 0.51 | 1.04 | 0.92 | 0.72 | 0.73 |
Er | 2.03 | 1.97 | 2.38 | 2.65 | 0.93 | 1.57 | 2.76 | 1.57 | 1.06 | 1.43 | 2.81 | 2.31 | 1.94 | 1.97 |
Tm | 0.28 | 0.31 | 0.38 | 0.43 | 0.15 | 0.25 | 0.41 | 0.26 | 0.19 | 0.24 | 0.46 | 0.37 | 0.31 | 0.31 |
Yb | 1.79 | 1.81 | 2.28 | 2.67 | 0.89 | 1.49 | 2.60 | 1.56 | 1.13 | 1.51 | 2.79 | 2.23 | 1.89 | 1.91 |
Lu | 0.26 | 0.27 | 0.34 | 0.39 | 0.13 | 0.23 | 0.38 | 0.24 | 0.17 | 0.22 | 0.41 | 0.32 | 0.28 | 0.28 |
REY | 372.60 | 89.29 | 122.86 | 194.09 | 88.14 | 93.58 | 393.48 | 99.30 | 45.14 | 64.72 | 220.34 | 70.94 | 157.86 | 151.22 |
LaN/LuN | 4.41 | 0.49 | 0.59 | 0.99 | 1.49 | 0.79 | 2.56 | 0.80 | 0.51 | 0.47 | 1.24 | 0.18 | 1.34 | 1.08 |
LaN/SmN | 1.85 | 0.74 | 0.72 | 0.94 | 1.33 | 0.93 | 1.34 | 1.00 | 1.40 | 0.78 | 1.35 | 0.34 | 1.04 | 1.08 |
GdN/LuN | 2.89 | 0.82 | 0.95 | 1.25 | 1.31 | 1.02 | 2.20 | 0.98 | 0.50 | 0.73 | 1.14 | 0.70 | 1.30 | 1.11 |
EuN/EuN* | 0.91 | 0.80 | 0.81 | 0.83 | 0.87 | 0.88 | 0.89 | 0.98 | 0.93 | 1.08 | 1.25 | 0.92 | 0.92 | 0.94 |
GdN/GdN* | 1.49 | 0.90 | 0.98 | 1.11 | 1.29 | 1.03 | 1.35 | 1.15 | 1.09 | 0.94 | 1.19 | 0.78 | 1.12 | 1.10 |
Type | L-type | H-type | H-type | H-M-type | L-type | H-M-type | L-type | H-type | H-type | H-type | L-type | H-type | - | - |
Aluminosilicate Affinity | |||||||
---|---|---|---|---|---|---|---|
r(Al, Si) > 0.7 | Li (0.78, 0.82) | Ga (0.88, 0.87) | Nb (0.79, 0.82) | Hf (0.71, 0.74) | |||
Ta (0.77, 0.82) | TiO2 (0.79, 0.78) | MgO (0.74, 0.67) | Na2O (0.84, 0.83) | ||||
r(Al, Si)= 0.4–0.69 | K2O (0.60, 0.50) | Sc (0.53, 0.47) | V (0.50, 0.41) | Cr (0.44, 0.34) | |||
Cu (0.67, 0.64) | Zn (0.59, 0.52) | Rb (0.58, 0.49) | Zr (0.62, 0.66) | ||||
Cs (0.55, 0.46) | W (0.58, 0.59) | Bi (0.51, 0.54) | Th (0.55, 0.57) | ||||
Correlation Coefficients between Selected Elements | |||||||
Al2O3–SiO2 = 0.99 | CaO–SiO2 = −0.65 | CaO–Al2O3 = −0.66 | Li–Zr (0.90) | Li–Nb (0.93) | Li–Hf (0.97) | ||
Li–Ta (0.87) | Li–Bi (0.82) | Ga–TiO2 (0.70) | Zr–Nb (0.92) | Zr–Hf (0.96) | Zr–Ta (0.80) | ||
Zr–Th (0.65) | Nb–Ta (0.95) | Nb–Hf (0.96) | Nb–Th (0.76) | Hf–Ta (0.86) | Hf–Th (0.74) | ||
Ta–Th (0.83) | TiO2–Zr (0.81) | TiO2–Nb (0.86) | TiO2–Hf (0.82) | TiO2–Ta (0.83) | TiO2–Th (0.83) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Xiao, L.; Zhang, K.; Jiao, Y.; Wang, Z.; Li, J.; Guo, W.; Gao, P.; Qin, S.; Zhao, C. Geochemistry of Carboniferous–Permian Coal from the Wujiawan Mine, Datong Coalfield, Northern China: Modes of Occurrence, Origin of Valuable Trace Elements, and Potential Industrial Utilization. Minerals 2020, 10, 776. https://doi.org/10.3390/min10090776
Ma J, Xiao L, Zhang K, Jiao Y, Wang Z, Li J, Guo W, Gao P, Qin S, Zhao C. Geochemistry of Carboniferous–Permian Coal from the Wujiawan Mine, Datong Coalfield, Northern China: Modes of Occurrence, Origin of Valuable Trace Elements, and Potential Industrial Utilization. Minerals. 2020; 10(9):776. https://doi.org/10.3390/min10090776
Chicago/Turabian StyleMa, Jialiang, Lin Xiao, Ke Zhang, Yukun Jiao, Zhenzhen Wang, Jinxiao Li, Wenmu Guo, Pengpeng Gao, Shenjun Qin, and Cunliang Zhao. 2020. "Geochemistry of Carboniferous–Permian Coal from the Wujiawan Mine, Datong Coalfield, Northern China: Modes of Occurrence, Origin of Valuable Trace Elements, and Potential Industrial Utilization" Minerals 10, no. 9: 776. https://doi.org/10.3390/min10090776
APA StyleMa, J., Xiao, L., Zhang, K., Jiao, Y., Wang, Z., Li, J., Guo, W., Gao, P., Qin, S., & Zhao, C. (2020). Geochemistry of Carboniferous–Permian Coal from the Wujiawan Mine, Datong Coalfield, Northern China: Modes of Occurrence, Origin of Valuable Trace Elements, and Potential Industrial Utilization. Minerals, 10(9), 776. https://doi.org/10.3390/min10090776