Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Setting
3.1. Regional Geology
3.2. Geology and Mineralization of the Studied Prospects
3.2.1. The Konos Hill Prospect
3.2.2. The Pagoni Rachi Prospect
4. Results
4.1. Occurrence and Textural Features of Pyrite
4.2. Major and Trace Element Geochemistry of Pyrite
4.2.1. EPM Analyses
4.2.2. LA-ICP-MS Analyses
5. Discussion
5.1. Distribution of Trace Elements in Porphyry-Style Pyrite
5.2. Distribution of Trace Elements in Epithermal-Style Pyrite
5.3. Fingerprinting the Transition from the Porphyry to Epithermal Environment—Comparison to Other Porphyry/Epithermal Systems
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abraitis, P.K.; Pattrick, R.A.D.; Vaughan, D.J. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang, and Hougou gold deposits, North China craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.; Haase, K.M.; Klemd, R.; Krumm, S.; Strauss, S. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem. Geol. 2016, 423, 7–18. [Google Scholar] [CrossRef]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of invisible gold in the common sulfides. Can. Miner. 1990, 28, 1–16. [Google Scholar]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Kesler, S.E.; Deditius, A.P.; Chryssoulis, S. Geochemistry of Se and Te in arsenian pyrite: New evidence for the role of Se and Te hydrothermal complexes in Carlin and epithermal-type deposits. In Au-Ag Telluride-Selenide Deposits: Field Workshop of IGCP-486, Espoo, Finland, 26–31 August 2007; Kojonen, K.K., Cook, N.J., Ojala, V.J., Eds.; Geological Survey of Finland: Espoo, Finland, 2007; Volume 53, pp. 85–95. [Google Scholar]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.; John, D.A.; Theodore, T.G. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin Trend, Nevada. Econ. Geol. 2003, 98, 1069–1105. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite and sphalerite, and part II. Selenium levels in pyrite: Comparison with d34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Reich, M.; Becker, U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chem. Geol. 2006, 225, 278–290. [Google Scholar] [CrossRef]
- Blanchard, M.; Alfredsson, M.; Brodholt, J.; Wright, K.; Catlow, C.R.A. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geoch. Cosmoch. Acta 2007, 71, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Morey, A.A.; Tomkins, A.G.; Bierlin, F.P.; Wienberg, R.F.; Davidson, G.J. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Econ. Geol. 2008, 103, 599–614. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An insitu LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Franchini, M.; McFarlane, C.; Maydagán, L.; Reich, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Sykora, S.; Cooke, D.R.; Meffre, S.; Stephanov, A.S.; Gardner, K.; Scott, R.; Selley, D.; Harris, A.C. Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Econ. Geol. 2018, 113, 193–208. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Baker, T.; Dubé, B.; Groves, D.I.; Hart, C.J.R.; Gosselin, P. Distribution, character and genesis of gold deposits in metamorphic terranes. Econ. Geol. 2005, 100, 407–450. [Google Scholar]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Simmons, S.F.; White, N.C.; John, D.A. Geological characteristics of epithermal precious and base metal deposits. Econ. Geol. 2005, 100, 485–522. [Google Scholar]
- Revan, M.K.; Genç, Y.; Maslennikov, V.V.; Maslennikov, S.P.; Large, R.R.; Danyushevsky, L.V. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geol. Rev. 2014, 63, 129–149. [Google Scholar] [CrossRef]
- Foustoukos, D.I.; Seyfried, W.E. Fluid Phase Separation Processes in Submarine Hydrothermal Systems. In Fluid–Fluid Interactions, Reviews in Mineralogy and Geochemistry; Liebscher, A., Christoph, C.A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2007; Volume 65, pp. 213–233. [Google Scholar]
- Schmidt, K.; Koschinsky, A.; Garbe-Schönberg, D.; de Carvalho, L.M.; Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol. 2007, 242, 1–21. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.L.; Cook, N.J.; Pring, A.; Brugger, J.; Danyushevsky, L.V.; Shimizu, M. ‘Invisible gold’ in bismuth chalcogenides. Geoch. Cosmoch. Acta 2009, 73, 1970–1999. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Chryssoulis, S.L.; Venter, D.; Kesler, S.E. Decoupled geochemical behaviour of As and Cu in hydrothermal systems. Geology 2009, 37, 707–710. [Google Scholar] [CrossRef]
- Maydagán, L.; Franchini, M.B.; Lentz, D.; Pons, J.; McFarlane, C. Sulfide composition and isotopic signature of the Altar Cu–Au deposit, Argentina: Constraints on the evolution of the porphyry–epithermal system. Can. Miner. 2013, 51, 813–840. [Google Scholar] [CrossRef]
- Gregory, M.J.; Lang, J.R.; Gilbert, S.; Hoal, K.O. Geometallurgy of the Pebble porphyry copper–gold–molybdenum deposit, Alaska: Implications for gold distribution and paragenesis. Econ. Geol. 2013, 108, 463–482. [Google Scholar] [CrossRef]
- Zwahlen, C.; Cioldi, S.; Wagner, T.; Rey, R.; Heinrich, C. The porphyry Cu–(Mo–Au) deposit at Altar (Argentina): Tracing gold distribution by vein mapping and LA–ICPMS mineral analysis. Econ. Geol. 2014, 109, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
- Alford, L.; Gysi, A.P.; Hurtig, N.C.; Monecke, T.; Pfaff, K. Porphyry-related polymetallic Au-Ag vein deposit in the Central City district, Colorado: Mineral paragenesis and pyrite trace element chemistry. Ore Geol. Rev. 2020, 119, 103295. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.G.; Jackson, S.E.; Griffin, W.L. Data reduction software for LA-ICP-MS: Appendix. In Laser Ablation-ICP Mass Spectrometry in the Earth Sciences: Principles and Applications; Sylvester, P.J., Ed.; Mineralogical Association Canada (MAC): Thunder Bay, ON, Canada, 2001; Volume 29, pp. 239–243. [Google Scholar]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Sylvester, P., Ed.; Mineralogical Association of Canada: Thunder Bay, ON, Canada, 2008; Volume 40, pp. 308–311. [Google Scholar]
- Jochum, K.P.; Nohl, U.; Herwig, K.; Lammel, E.; Stoll, B.; Hofmann, A.W. GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geost. Geoanal. Res. 2005, 29, 333–338. [Google Scholar] [CrossRef]
- Brun, J.P.; Sokoutis, D. Core complex segmentation in North Aegean, a dynamic view. Tectonics 2018, 37, 1797–1830. [Google Scholar] [CrossRef] [Green Version]
- Kydonakis, K.; Brunn, J.-P.; Sokoutis, D. North Aegean core complexes, the gravity spreading of a thrust wedge. J. Geophys. Res. Solid Earth 2015, 120, 1601. [Google Scholar] [CrossRef] [Green Version]
- Kydonakis, K.; Moulas, E.; Chatzitheodoridis, E.; Brunn, J.-P.; Kostopoulos, D. First-report on Mesozoic eclogite-facies metamorphism preceding Barrovian overprint from the western Rhodope (Chalkidiki, northern Greece). Lithos 2015, 220, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Turpaud, P.; Reischmann, T. Characterisation of igneous terranes by zircon dating: Implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece. Int. J. Earth Sci. 2010, 99, 567–591. [Google Scholar] [CrossRef]
- Magganas, A.C. Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos 2002, 65, 165–182. [Google Scholar] [CrossRef]
- Bonev, N.; Marchev, P.; Moritz, R.; Collings, D. Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U-Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Res. 2015, 27, 760–775. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.-P.; et al. Aegean tectonics: Strain localization, slab tearing and trench retreat. Tectonophysics 2013, 597, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Vamvaka, A.; Gkarlaouni, C. The Thrace basin in the Rhodope province of NE Greece—A Tertiary supra-detachment basin and its geodynamic implications. Tectonophysics 2013, 595, 90–105. [Google Scholar] [CrossRef]
- Del Moro, A.; Innocenti, F.; Kyriakopoulos, C.; Manetti, P.; Papadopoulos, P. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. Neues Jahrbuch für Mineralogie Abhandlungen 1988, 159, 113–115. [Google Scholar]
- Marchev, P.; Kaiser-Rohrmeier, B.; Heinrich, C.; Ovtcharova, M.; von Quadt, A.; Raicheva, R. Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope Massif of Bulgaria and Greece. Ore Geol. Rev. 2005, 27, 53–89. [Google Scholar] [CrossRef]
- Perkins, R.; Copper, F.J.; Condon, D.J.; Tattitsch, B.; Naden, J. Post-collisional Cenozoic extension in the northern Aegean: The high-K to shoshonitic intrusive rocks of the Maronia Magmatic Corridor, northeastern Greece. Lithosphere 2018, 10, 582–601. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P.; Tarkian, M.; Arikas, K. Mineralogy of telluride-bearing epithermal ores in Kassiteres-Sappes area, western Thrace, Greece. Miner. Petol. 2006, 87, 31–52. [Google Scholar] [CrossRef]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Baker, T.; Moritz, R.; Bissig, T.; Monecke, T.; et al. Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals 2018, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Pe-Piper, G.; Piper, D.J.W. The igneous rocks of Greece: The anatomy of an orogen. In Beiträge der Regionalen Geologie der Erde; Gebrüder Borntraeger: Berlin, Germany, 2002; p. 573. [Google Scholar]
- Moritz, R.; Márton, I.; Ortelli, M.; Marchev, P.; Voudouris, P.; Bonev, N.; Spikings, R.; Cosca, M. A review of age constraints of epithermal precious and base metal deposits of the Tertiary Eastern Rhodopes: Coincidence with Late Eocene-Early Oligocene tectonic plate reorganization along the Tethys. In Scientific Annals of the School of Geology AUTh, Proceedings of the XIX Congress of the Carpathian Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; Christofides, G., Kantiranis, D., Kostopoulos, D.S., Chatzipetros, A., Eds.; Faculty of Sciences, Aristotle University of Thessaloniki: Solun, Greece, 2010; Volume 100, pp. 351–358. [Google Scholar]
- Ersoy, E.Y.; Palmer, M.R. Eocene-Quaternary magmatic activity in the Aegean: Implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos 2013, 180, 5–24. [Google Scholar] [CrossRef]
- Arikas, K.; Voudouris, P. Hydrothermal alterations and mineralizations of magmatic rocks in the southern Rhodope Massif. Acta Volcanol. 1998, 10, 353–365. [Google Scholar]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 59, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Tsirambides, A.; Filippidis, A. Sb-Bi-Bearing Metallogeny of the SerboMacedonian-Rhodope Metallogenic Belt (SRMB). Bull. Geol. Soc. Greece 2019, 55, 34–64. [Google Scholar] [CrossRef]
- Galanopoulos, E.; Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Hart, C.; Melfos, V.; Zaccarini, F.; Alfieris, D.A. New porphyry Mo mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and mineralogical constraints. Geosciences 2018, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Melfos, V.; Vavelidis, M.; Christofides, G.; Seidel, E. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Miner. Depos. 2002, 37, 648–668. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.; Melfou, M.; Sánchez, M.G.; Papadopoulou, L.; Filippidis, A.; Spry, P.G.; Schaarschmidt, A.; Klemd, R.; Haase, K.M.; et al. Mineralogical constraints on the potassic and sodic-calcic hydrothermal alteration and vein-type mineralization of the Maronia porphyry Cu-Mo ± Re ± Au deposit in NE Greece. Minerals 2020, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Ortelli, M.; Moritz, R.; Voudouris, P.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, Eastern Rhodopes, Greece. In Proceedings of the 10th Biennial SGA Meeting, Townsville, Australia, 17–20 August 2009; pp. 536–538. [Google Scholar]
- Voudouris, P. Hydrothermal corundum, topaz, diaspore and alunite supergroup minerals in the advanced argillic alteration lithocap of the Kassiteres-Sapes porphyry-epithermal system, western Thrace, Greece. J. Miner. Geochem. 2014, 191, 117–136. [Google Scholar] [CrossRef]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Moritz, R.; Kanellopoulos, C. First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system. In Proceedings of the 1st International Electronic Conference on Mineral Science, Sciforum, Basel, Switzerland, 16–31 July 2018; Volume 1. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Kartal, T.; Arikas, K.; Moritz, R.; Ortelli, M. Rhenium-rich molybdenite and rheniite (ReS2) in the Pagoni Rachi-Kirki Mo-Cu-Te-Ag-Au deposit, Northern Greece. implications for the rhenium geochemistry of porphyry style Cu-Mo and Mo mineralization. Can. Miner. 2009, 47, 1013–1036. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Moritz, R.; Ortelli, M.; Kartal, T. Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: Mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals 2013, 3, 165–191. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Kartal, T.; Schleicher, H.; Moritz, R.; Ortelli, M. The Pagoni Rachi/Kirki Cu-Mo-Re-Au-Ag-Te deposit, northern Greece: Mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyry-epithermal system. Can. Miner. 2013, 51, 411–442. [Google Scholar] [CrossRef]
- Mavrogonatos, C.; Voudouris, P.; Berndt, J.; Klemme, S.; Zaccarini, F.; Spry, P.G.; Melfos, V.; Tarantola, A.; Keith, M.; Klemd, R.; et al. Trace Elements in Magnetite from the Pagoni Rachi Porphyry Prospect, NE Greece: Implications for Ore Genesis and Exploration. Minerals 2019, 9, 725. [Google Scholar] [CrossRef] [Green Version]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Periferakis, A. Biotite Chemistry from Porphyry-Style Mineralization in Western Thrace, Greece. In Proceedings of the 8th Geochemistry Symposium, Antalya, Turkey, 2–6 May 2018; Volume 193, pp. 2–6. [Google Scholar]
- Kilias, S.P.; Naden, J.; Paktsevanoglou, M.; Giampouras, M.; Stavropoulou, A.; Apeiranthiti, D.; Mitsis, I.; Koutles, T.; Michael, K.; Christidis, C. Multistage alteration, mineralization and ore–forming fluid properties at the Viper (Sappes) Au–Cu–Ag–Te ore body, W. Thrace, Greece. Bull. Geol. Soc. Greece 2013, 47, 1635–1644. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Baker, T. Cenozoic Porphyry-Epithermal and Other Intrusion-Related Deposits in Northeastern Greece: Geological, Mineralogical and Geochemical Constraints. Soc. Econ. Geol. Guide Ser. 2016, 54, 43–82. [Google Scholar]
- Voudouris, P.; Melfos, V.; Baker, T.; Spry, P.G. Diverse Styles of Oligocene-Miocene Magmatic-Hydrothermal Deposits in Northeastern Greece: Relationships between Tectonic-, Magmatic Activity, Alteration and Au-Ag Mineralization. Soc. Econ. Geol. Guide Ser. 2016, 54, 83–112. [Google Scholar]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Moritz, R.; Papavassiliou, K.; Falalakis, G. Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece. Miner. Petrol. 2011, 103, 79–100. [Google Scholar] [CrossRef]
- Repstock, A.; Voudouris, P.; Kolitsch, U. New occurrences of watanabeite, colusite, “arsenosulvanite” and Cu-excess tetrahedrite-tennantite at the Pefka high-sulfidation epithermal deposit, northeastern Greece. J. Miner. Geochem. 2015, 192, 135–149. [Google Scholar] [CrossRef]
- Ortelli, M.; Moritz, R.; Voudouris, P.; Cosca, M.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, Eastern Rhodopes, Greece. In Proceedings of the 8th Swiss Geoscience Meeting, Fribourg, Switzerland, 19–20 November 2010. [Google Scholar]
- Voudouris, P.; Mavrogonatos, C.; Melfos, V.; Spry, P.G.; Magganas, A.; Alfieris, D.; Soukis, K.; Tarantola, A.; Periferakis, A.; Kołodziejczyk, J.; et al. The geology and mineralogy of the Stypsi porphyry Cu-Mo-Au-Re prospect, Lesvos Island, Aegean Sea, Greece. Ore Geol. Rev. 2019, 112, 10323. [Google Scholar] [CrossRef]
- Arancibia, O.N.; Clark, A.H. Early magnetite–amphibole–plagioclase alteration-mineralization in the Island Copper porphyry copper–gold–molybdenum deposit, British Columbia. Econ. Geol. 1996, 91, 402–438. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Masterman, G.J.; Cooke, D.R.; Berry, R.F.; Walshe, J.L.; Lee, A.W.; Clark, A.H. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ. Geol. 2005, 100, 835–862. [Google Scholar] [CrossRef]
- Monecke, T.; Monecke, J.; Reynolds, T.J.; Tsuruoka, S.; Bennett, M.M.; Skewes, W.B.; Palin, R.M. Quartz solubility in the H2O-NaCl System: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol. 2018, 113, 1007–1046. [Google Scholar] [CrossRef]
- Fouquet, Y.; Henry, K.; Knott, R.; Cambon, P. Geochemical Section of the TAG Hydrothermal Mound. Proc. Ocean Drill. Program Sci. Results 1998, 158, 363–387. [Google Scholar]
- Ding, K.; Seyfried, W.E. Determination of Fe–Cl complexing in the low pressure supercritical region (NaCl fluid): Iron solubility constraints on pH of subseafloor hydrothermal fluids. Geochim. Cosmochim. Acta 1992, 56, 3681–3692. [Google Scholar] [CrossRef]
- Bazarkina, E.F.; Pokrovski, G.S.; Zotov, A.V.; Hazemann, J.-L. Structure and stability of cadmium chloride complexes in hydrothermal fluids. Chem. Geol. 2010, 276, 1–17. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Borisova, A.Y.; Bychkov, A.Y. Speciation and Transport of Metals and Metalloids in Geological Vapors. In Thermodynamics of Geothermal Fluids, Reviews in Mineralogy and Geochemistry; Stefánsson, A., Driesner, T., Bénézeth, P., Eds.; Mineralogical Association Canada (MAC): Thunder Bay, ON, Canada, 2013; Volume 76, pp. 165–218. [Google Scholar]
- Layton-Matthews, D.; Peter, J.M.; Scott, S.D.; Leybourne, M. Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada. Econ. Geol. 2008, 103, 61–88. [Google Scholar] [CrossRef]
- Kesler, S.E.; Chryssoulis, S.L.; Simon, G. Gold in porphyry copper deposits: Its abundance and fate. Ore Geol. Rev. 2002, 21, 103–124. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Zakirov, I.V.; Roux, J.; Testemale, D.; Hazemann, J.L.; Bychkov, A.V.; Golikova, G.V. Experimental study of arsenic speciation in vapor phase to 500 °C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochim. Cosmochim. Acta 2002, 66, 3453–3480. [Google Scholar] [CrossRef] [Green Version]
- Pokrovski, G.S.; Roux, J.; Harrichoury, J.C. Fluid density control on vapor–liquid partitioning of metals in hydrothermal systems. Geology 2005, 33, 657–660. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Klemm, L.M.; Pettke, T.; Heinrich, C.A.; Campos, E. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Econ. Geol. 2007, 102, 1021–1045. [Google Scholar] [CrossRef]
- Simon, A.C.; Pettke, T.; Candela, P.A.; Piccoli, P.M.; Heinrich, C.A. The partitioning behaviour of As and Au in S-free and S-bearing magmatic assemblages. Geochim. Cosmochim. Acta 2007, 71, 1764–1782. [Google Scholar] [CrossRef]
- Voudouris, P.; Spry, P.G.; Melfos, V.; Haase, K.; Klemd, R.; Mavrogonatos, C.; Repstock, A.; Alfieris, D. Gold deposits in Greece: Hypogene ore mineralogy as a guide for precious and critical metal exploration. In Proceedings of the 1st International Electronic Conference on Mineral Science, Basel, Switzerland, 16–31 July 2018; p. 13. [Google Scholar] [CrossRef]
- Voudouris, P.; Spry, P.G.; Melfos, V.; Alfieris, D. Tellurides and bismuth sulfosalts in gold occurrences of Greece: Mineralogy and genetic considerations. Geol. Surv. Finland Guide 2007, 53, 85–94. [Google Scholar]
- Voudouris, P. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece. Miner. Petrol. 2006, 87, 241–275. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
Prospect | Vein Type | Vein Assemblage | Alteration Assemblage | Form, Texture, Zonation |
---|---|---|---|---|
Konos Hill | D-type | Qz + Py + Ccp ± Mol + Bn + Po + Hem + Ser | Ser + Qz ± Py ± Cal (“Sericitic”) | Continuous quartz-pyrite veins/pyrite-chalcopyrite-molybdenite veins reopening and overprinting earlier quartz veins |
“Epithermal” (E-type) | Qz + Cal + Sp + Gn + Py + Ccp ± Tnt/Ttr ± Eng ± Ag-Au | Qz + Cal + Ser ± Kln | Continuous straight-sided, up to 15 cm wide, quartz-carbonate veins with sharp parallel walls | |
Pagoni Rachi | M-type | Mag + Ccp + Hem + Py + Bn + Or/Ab + Bt + Act + Ep + Mol + Au | Qz + Or/Ab + Act + Ep + Bt + Chl + Cal + Mag (“Sodic/Potassic-Calcic”) | Narrow (width less than 0.5 cm), irregular in shape and discontinuous and/or straight-sided veinlets |
D-type | Py + Ccp ± Mol + Po + Hem + Ser ± Qz ± Au + Cal ± Rhn ± Bn ± Gn | Qz + Ser + Py ± Cal (“Sericitic”) | Continuous, up to 10 cm wide, massive pyrite veins, pyrite-molybdenite-chalcopyrite veins, reopening and overprinting eralier quartz veins | |
“Epithermal” (E-type) | Qz + Cal + Sp + Gn + Ccp + Py ± Tnt/Ttr ± Eng ± Ag-Au ± Tell ± Ser ± Kln | Qz + Cal + Ser ± Kln | Continuous straight-sided, up to 20 cm wide, quartz-carbonate veins with sharp parallel walls |
Konos Hill Prospect | ||||||||||||
Type | D-type (n = 29) | E-type (n = 17) | ||||||||||
Element | MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG | ||||
As | 0.04 | 0.19 | 0.04 | 0.03 | 0.11 | 1.48 | 0.41 | 0.32 | ||||
Fe | 45.85 | 47.06 | 0.34 | 46.47 | 45.84 | 48.37 | 0.58 | 46.70 | ||||
Cu | b.d.l. | 0.05 | 0.01 | 0.01 | b.d.l. | 0.23 | 0.06 | 0.04 | ||||
Ni | b.d.l. | b.d.l. | - | - | b.d.l. | b.d.l. | - | - | ||||
Co | 0.05 | 0.14 | 0.02 | 0.08 | b.d.l. | 0.03 | 0.03 | 002 | ||||
Au | b.d.l. | 0.08 | 0.03 | 0.02 | b.d.l. | 0.07 | 0.01 | 0.00 | ||||
Se | b.d.l. | 0.06 | - | - | b.d.l. | b.d.l. | - | - | ||||
S | 52.55 | 54.24 | 0.48 | 53.29 | 51.41 | 54.18 | 0.74 | 53.14 | ||||
Total | 98.56 | 101.13 | 0.71 | 99.91 | 99.58 | 100.77 | 0.58 | 100.17 | ||||
Pagoni Rachi Prospect | ||||||||||||
Type | M-type (n = 22) | D-type (n = 26) | E-type (n = 15) | |||||||||
Element | MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG |
As | b.d.l. | 0.14 | 0.03 | 0.02 | b.d.l. | 0.34 | 0.07 | 0.05 | b.d.l. | 0.09 | 0.03 | 0.02 |
Fe | 45.59 | 46.89 | 0.32 | 46.23 | 46.05 | 47.01 | 0.26 | 46.35 | 45.68 | 47.07 | 0.34 | 46.54 |
Cu | b.d.l. | 0.05 | 0.02 | 0.01 | b.d.l. | 0.04 | 0.01 | 0.01 | b.d.l. | 0.05 | 0.02 | 0.01 |
Ni | b.d.l. | 0.03 | 0.01 | 0.00 | b.d.l. | 0.20 | 0.04 | 0.01 | b.d.l. | b.d.l. | - | - |
Co | 0.05 | 0.64 | 0.14 | 0.13 | 0.08 | 0.30 | 0.06 | 0.07 | b.d.l. | 0.01 | - | - |
Au | b.d.l. | 0.16 | 0.04 | 0.02 | b.d.l. | 0.16 | 0.04 | 0.04 | b.d.l. | 0.06 | - | - |
Se | b.d.l. | b.d.l. | - | - | b.d.l. | 0.10 | 0.02 | 0.04 | b.d.l. | b.d.l. | - | - |
S | 52.27 | 53.70 | 0.35 | 52.88 | 51.74 | 53.61 | 0.45 | 52.73 | 52.98 | 54.66 | 0.49 | 53.79 |
Total | 98.69 | 100.55 | 0.53 | 99.29 | 98.73 | 100.23 | 0.49 | 99.26 | 98.70 | 101.31 | 0.75 | 100.09 |
Element | D-type (n = 15) | E-type (n = 12) | ||||||
---|---|---|---|---|---|---|---|---|
MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG | |
Mn | 0.57 | 1.12 | 0.19 | 0.75 | 0.42 | 13 | 4.90 | 6.55 |
Co | 0.56 | 1395 | 378 | 254 | 0.30 | 457 | 156 | 101 |
Ni | 3.50 | 46 | 15 | 18 | 1.96 | 628 | 196 | 102 |
Cu | 0.30 | 9.12 | 2.99 | 2.33 | 4.78 | 351 | 124 | 111 |
Zn | 2.11 | 3.35 | 0.47 | 2.75 | 3.99 | 49 | 15 | 18 |
Ga | 0.13 | 0.56 | 0.25 | 0.27 | 0.17 | 2.00 | 0.53 | 0.85 |
Ge | 1.03 | 1.22 | 0.09 | 1.15 | 0.75 | 2.20 | 0.52 | 1.29 |
As | 7.22 | 1577 | 485 | 436 | 688 | 16,429 | 5207 | 8203 |
Se | 21 | 233 | 69 | 93 | b.d.l | b.d.l. | - | - |
Mo | 0.12 | 0.12 | - | 0.12 | 0.41 | 15 | 4.85 | 4.00 |
Ag | b.d.l. | b.d.l. | - | - | 0.92 | 19 | 6.38 | 8.76 |
Cd | 0.47 | 0.50 | 0.02 | 0.49 | 0.49 | 41 | 13 | 13 |
In | b.d.l. | b.d.l. | - | - | 0.04 | 0.25 | 0.08 | 0.09 |
Sn | 0.16 | 0.21 | 0.04 | 0.19 | 0.29 | 9 | 3.18 | 1.81 |
Sb | 0.10 | 0.11 | 0.01 | 0.10 | 1.98 | 292 | 99 | 131 |
W | 0.04 | 0.04 | - | 0.04 | 0.01 | 0.40 | 0.13 | 0.18 |
Au | 0.02 | 0.06 | 0.01 | 0.03 | 0.09 | 1.10 | 0.30 | 0.62 |
Tl | 0.00 | 0.01 | 0.00 | 0.01 | 0.05 | 18 | 6.31 | 11 |
Pb | 0.05 | 0.48 | 0.13 | 0.27 | 34 | 898 | 277 | 401 |
Bi | 0.02 | 0.11 | 0.04 | 0.06 | 0.21 | 42 | 12 | 4.55 |
Element | M-type (n = 16) | D-type (n = 22) | E-type (n = 12) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG | MIN | MAX | SD | AVRG | |
Mn | 0.53 | 9.10 | 2.64 | 2.74 | 0.59 | 5.83 | 1.35 | 1.87 | 0.92 | 264 | 80 | 58 |
Co | 0.49 | 13 | 3.63 | 3.67 | 0.28 | 576 | 169 | 97 | 1.24 | 198 | 49 | 55 |
Ni | 2.88 | 77 | 22 | 20 | 3.27 | 113 | 25 | 22 | 4.38 | 52 | 17 | 28 |
Cu | 0.54 | 1659 | 524 | 168 | 0.49 | 9824 | 2530 | 678 | 6.22 | 31 | 8.52 | 16 |
Zn | 2.04 | 2751 | 734 | 199 | 3.02 | 3.55 | 0.22 | 3.39 | 3 | 2012 | 669 | 326 |
Ga | 0.15 | 0.16 | 0.01 | 0.15 | 0.12 | 0.70 | 0.26 | 0.37 | 1 | 4 | 1.25 | 2.37 |
Ge | 1.09 | 1.22 | 0.07 | 1.16 | 1.09 | 1.59 | 0.18 | 1.27 | 1.1 | 3 | 0.65 | 1.64 |
As | 3.20 | 233 | 80 | 78 | 91 | 3745 | 1084 | 1166 | 3.77 | 121 | 43 | 63 |
Se | 11 | 137 | 45 | 77 | 42 | 187 | 39 | 91 | 11 | 63 | 17 | 29 |
Mo | 0.11 | 8.69 | 4.20 | 2.39 | 0.09 | 33 | 9.98 | 11 | 0.36 | 4 | 1.22 | 2.23 |
Ag | b.d.l. | 2.10 | - | 2.10 | 0.56 | 0.56 | - | 0.56 | 0.56 | 2 | 0.49 | 1.32 |
Cd | b.d.l. | 27 | 18 | 14 | b.d.l. | b.d.l | - | - | 0.61 | 6 | 1.65 | 1.75 |
In | b.d.l. | 0.20 | 0.10 | 0.09 | 0.03 | 0.04 | 0.01 | 0.03 | 0.09 | 0.10 | 0.01 | 0.10 |
Sn | b.d.l. | 0.17 | - | 0.17 | 0.13 | 0.19 | 0.04 | 0.16 | b.d.l. | 0.20 | 0.03 | 0.18 |
Sb | 0.07 | 1.08 | 0.44 | 0.50 | 0.13 | 0.57 | 0.20 | 0.33 | 0.17 | 1.77 | 0.46 | 0.53 |
W | b.d.l. | 0.24 | - | 0.24 | 0.03 | 0.23 | 0.09 | 0.08 | 0.01 | 0.11 | 0.04 | 0.06 |
Au | 0.02 | 0.61 | 0.25 | 0.18 | 0.04 | 4.35 | 1.21 | 0.52 | 0.09 | 0.33 | 0.09 | 0.22 |
Tl | 0.01 | 0.02 | 0.00 | 0.01 | 0.01 | 0.01 | - | - | 0.06 | 0.21 | 0.05 | 0.15 |
Pb | 0.04 | 129 | 43 | 24 | 0.05 | 18 | 5.09 | 3.43 | 34 | 620 | 166 | 134 |
Bi | 0.02 | 4.85 | 1.76 | 1.07 | 0.03 | 18 | 4.06 | 3.04 | 0.14 | 7451 | 628 | 2148 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavrogonatos, C.; Voudouris, P.; Zaccarini, F.; Klemme, S.; Berndt, J.; Tarantola, A.; Melfos, V.; Spry, P.G. Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece. Minerals 2020, 10, 784. https://doi.org/10.3390/min10090784
Mavrogonatos C, Voudouris P, Zaccarini F, Klemme S, Berndt J, Tarantola A, Melfos V, Spry PG. Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece. Minerals. 2020; 10(9):784. https://doi.org/10.3390/min10090784
Chicago/Turabian StyleMavrogonatos, Constantinos, Panagiotis Voudouris, Federica Zaccarini, Stephan Klemme, Jasper Berndt, Alexandre Tarantola, Vasilios Melfos, and Paul G. Spry. 2020. "Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece" Minerals 10, no. 9: 784. https://doi.org/10.3390/min10090784
APA StyleMavrogonatos, C., Voudouris, P., Zaccarini, F., Klemme, S., Berndt, J., Tarantola, A., Melfos, V., & Spry, P. G. (2020). Multi-Stage Introduction of Precious and Critical Metals in Pyrite: A Case Study from the Konos Hill and Pagoni Rachi Porphyry/Epithermal Prospects, NE Greece. Minerals, 10(9), 784. https://doi.org/10.3390/min10090784