Analysis and Prediction of the Thiourea Gold Leaching Process Using Grey Relational Analysis and Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Sample and Reagents
2.2. Microorganism and Culture Conditions
2.3. Bio-Oxidation Experiments
2.4. TU Leaching Experiments
2.5. Analytical Methods
2.6. Grey Relational Analysis
2.6.1. Data Collection and Analysis
2.6.2. The Normalization of Raw Data
2.6.3. Calculation of Maximum and Minimum Values
2.6.4. Calculation of Relational Coefficient
2.6.5. Calculation of Relational Degree
2.7. Artificial Neural Network (ANN)
3. Results and Discussion
3.1. Relative Importance of Influencing Variables
3.2. Performance of the Independent ANN Models
4. Conclusions
- (1)
- The relational degree of all the influencing parameters collected from the TU leaching process related to the gold recovery and TU consumption was analyzed in GRA. The results showed that the temperature, leaching time and amount of agents have a significant influence on the gold recovery and TU consumption, but the initial pH and stirring speed had a little influence.
- (2)
- The prediction results obtained by the ANN model were quite satisfactory. It achieved quite a high correlation coefficient (R > 0.99) for the training, testing, and validation stages. The performance evaluation showed that the MAE was 1.9226 and the RMSE was 2.0785 for gold recovery, and the MAE was 0.2809 and the RMSE was 0.3352 for TU consumption. In addition, the prediction accuracy reached over 94% for gold recovery and 95% for TU consumption. These results showed that the predicted values were in excellent agreement with the experimental values, and the validity of the model was verified.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
TU | thiourea |
ANN | artificial neural network |
GRA | grey relational analysis |
FDS | formamidine disulfide |
Lt | leaching time |
T | temperature |
Td | thiourea dosage |
Ss | stirring speed |
Fc | ferric iron concentration |
s | standard deviation |
CTu | thiourea consumption |
Eh | redox potential |
As | absolute difference |
Lm | minimum value |
Hm | maximum value |
ζ | grey relational coefficient |
R | grey relational degree |
MAE | the mean absolute error |
RMSE | the root mean square error |
RAu | gold recovery |
References
- Hong, J.; Silva, R.A.; Park, J.; Lee, E.; Park, J.; Kim, H. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic. J. Biosci. Bioeng. 2016, 121, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Ofori-Sarpong, G.; Osseo-Asare, K. Preg-robbing of gold from cyanide and non-cyanide complexes: Effect of fungi pretreatment of carbonaceous matter. Int. J. Miner. Process. 2013, 119, 27–33. [Google Scholar] [CrossRef]
- Birich, A.; Stopic, S.; Friedrich, B. Kinetic Investigation and Dissolution Behavior of Cyanide Alternative Gold Leaching Reagents. Sci. Rep. 2019, 9, 7191. [Google Scholar] [CrossRef] [PubMed]
- Grosse, A.C.; Dicinoski, G.W.; Shaw, M.J.; Haddad, P.R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy 2003, 69, 1–21. [Google Scholar] [CrossRef]
- Xu, B.; Kong, W.; Li, Q.; Yang, Y.; Jiang, T.; Liu, X. A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution. Metals 2017, 7, 222. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, X.; Wu, H.; Li, S.; Wang, G.-H.; Liu, X.; Qiu, G.-Z.; Wang, D. A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy 2017, 171, 213–221. [Google Scholar] [CrossRef]
- Fleming, C.A.; McMullen, J.; Thomas, K.G.; Wells, J.A. Recent advances in the development of an alternative to the cyanidation process: Thiosulfate leaching and resin in pulp. Min. Met. Explor. 2003, 20, 1–9. [Google Scholar] [CrossRef]
- Parker, G.; Hope, G.A. Spectroelectrochemical investigations of gold leaching in thiourea media. Miner. Eng. 2008, 21, 489–500. [Google Scholar] [CrossRef]
- Gonen, N.; Körpe, E.; Yıldırım, M.; Selengil, U.; Yildirim, M. Leaching and CIL processes in gold recovery from refractory ore with thiourea solutions. Miner. Eng. 2007, 20, 559–565. [Google Scholar] [CrossRef]
- Hisshion, R.J.; Waller, C.G. Recovering gold with thiourea. Min. Mag. 1984, 151, 237, 239, 241, 243. [Google Scholar]
- Chen, C.; Lung, T.; Wan, C. A study of the leaching of gold and silver by acidothioureation. Hydrometallurgy 1980, 5, 207–212. [Google Scholar] [CrossRef]
- Olyaei, Y.; Noparast, M.; Tonkaboni, S.Z.S.; Haghi, H.; Amini, A. Response of low-grade gold ore to cyanidation and thiourea leaching. Part. Sci. Technol. 2017, 37, 86–93. [Google Scholar] [CrossRef]
- Hilson, G.; Monhemius, A.; Monhemius, A. Alternatives to cyanide in the gold mining industry: What prospects for the future? J. Clean. Prod. 2006, 14, 1158–1167. [Google Scholar] [CrossRef]
- Tanrıverdi, M.; Mordoğan, H.; Ipekoğlu, Ü. Leaching of Ovacık gold ore with cyanide, thiourea and thiosulphate. Miner. Eng. 2005, 18, 363–365. [Google Scholar] [CrossRef]
- Rahmanian, B.; Pakizeh, M.; Mansoori, S.A.A.; Abedini, R. Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. J. Hazard. Mater. 2011, 187, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, F.; Lundberg, J. Remaining useful life prediction of grinding mill liners using an artificial neural network. Miner. Eng. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ghaedi, A.; Negintaji, E.; Ansari, A.; Mohammadi, F. Artificial neural network—Imperialist competitive algorithm based optimization for removal of sunset yellow using Zn(OH)2 nanoparticles-activated carbon. J. Ind. Eng. Chem. 2014, 20, 4332–4343. [Google Scholar] [CrossRef]
- Yin, X.-G.; Yu, W. Selection and Evaluation of Input Parameters of Neural Networks Using Grey Superior Analysis. Text. Res. J. 2007, 77, 375–386. [Google Scholar] [CrossRef]
- Kim, B.-J.; Cho, K.; Lee, S.-G.; Park, C.; Choi, N.; Lee, S. Effective Gold Recovery from Near-Surface Oxide Zone Using Reductive Microwave Roasting and Magnetic Separation. Metals 2018, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Bidari, E.; Aghazadeh, V. Alkaline leaching pretreatment and cyanidation of arsenical gold ore from the Carlin-type Zarshuran deposit. Can. Met. Q. 2018, 57, 283–293. [Google Scholar] [CrossRef]
- Salazar-Campoy, M.M.; Valenzuela-García, J.L.; Quiróz-Castillo, L.S.; Encinas-Romero, M.A.; Tiburcio-Munive, G.; Guerrero-Germán, P.; Parga-Torres, J.R. Comparative Study of Gold Extraction from Refractory Pyritic Ores through Conventional Leaching and Simultaneous Pressure Leaching/Oxidation. Mining. Met. Explor. 2020, 1–6. [Google Scholar] [CrossRef]
- Konadu, K.T.; Huddy, R.J.; Harrison, S.T.; Osseo-Asare, K.; Sasaki, K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archeaon and fungal crude enzymes. Miner. Eng. 2019, 138, 86–94. [Google Scholar] [CrossRef]
- Zheng, C.; Huang, Y.; Guo, J.; Cai, R.; Zheng, H.; Lin, C.; Chen, Q. Investigation of cleaner sulfide mineral oxidation technology: Simulation and evaluation of stirred bioreactors for gold-bioleaching process. J. Clean. Prod. 2018, 192, 364–375. [Google Scholar] [CrossRef]
- González, R.; Gentina, J.C.; Acevedo, F. Biooxidation of a gold concentrate in a continuous stirred tank reactor: Mathematical model and optimal configuration. Biochem. Eng. J. 2004, 19, 33–42. [Google Scholar] [CrossRef]
- Marchevsky, N.; Quiroga, M.B.; Giaveno, A.; Donati, E.R. Microbial oxidation of refractory gold sulfide concentrate by a native consortium. Trans. Nonferrous Met. Soc. China 2017, 27, 1143–1149. [Google Scholar] [CrossRef]
- Mubarok, M.; Winarko, R.; Chaerun, S.K.; Rizki, I.; Ichlas, Z.T. Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/sulfur-oxidizing mixotrophic bacteria. Hydrometallurgy 2017, 168, 69–75. [Google Scholar] [CrossRef]
- Jones, R.; Koval, S.; Nesbitt, H. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim. Cosmochim. Acta 2003, 67, 955–965. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Perrot, F.; Morris, C.; Rea, S.M.; Benvie, B.; Austin, P.; Hackl, R. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy 2014, 141, 117–125. [Google Scholar] [CrossRef]
- Astudillo, C.; Acevedo, F. Effect of CO2 air enrichment in the biooxidation of a refractory gold concentrate by Sulfolobus metallicus adapted to high pulp densities. Hydrometallurgy 2009, 97, 94–97. [Google Scholar] [CrossRef]
- Wang, G.-H.; Xie, S.; Liu, X.; Wu, Y.; Liu, Y.; Zeng, T. Bio-oxidation of a high-sulfur and high-arsenic refractory gold concentrate using a two-stage process. Miner. Eng. 2018, 120, 94–101. [Google Scholar] [CrossRef]
- Orgül, S.; Atalay, Ü. Reaction chemistry of gold leaching in thiourea solution for a Turkish gold ore. Hydrometallurgy 2002, 67, 71–77. [Google Scholar] [CrossRef]
- Juan, W.; Pute, W.; Xining, Z. Soil infiltration based on bp neural network and grey relational analysis. Rev. Bras. Ciênc. Solo 2013, 37, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, M.G.; Ferrini, M.; Manni, A. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. Chemosphere 2017, 186, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, L.; Liu, H. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. J. Clean. Prod. 2019, 209, 415–423. [Google Scholar] [CrossRef]
- Li, J.; Miller, J. Reaction kinetics for gold dissolution in acid thiourea solution using formamidine disulfide as oxidant. Hydrometallurgy 2002, 63, 215–223. [Google Scholar] [CrossRef]
Constituent | Au * | C | As | Fe | SiO2 | CaO | MgO | Al2O3 | Cu | Pb | S | Sb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | 34.85 | 0.98 | 9.03 | 18.96 | 29.15 | 3.88 | 1.61 | 4.17 | 0.23 | 3.28 | 19.71 | 0.93 |
Phase of Au | Exposed Gold | Encapsulated in Arsenopyrite | Encapsulated in Sulfides | Encapsulated in Oxides | Encapsulated in Other Minerals |
---|---|---|---|---|---|
Content * | 1.819 | 18.669 | 2.771 | 11.089 | 0.502 |
Distribution | 5.22 | 53.57 | 7.95 | 31.82 | 1.44 |
Phase of S | Elemental Sulphur | Sulphate | Sulphide | ||
Content | 0.101 | 1.350 | 18.259 | ||
Distribution | 0.51 | 6.85 | 92.64 | ||
Phase of As | Elemental Arsenic | Arsenic Oxide | Arsenate | Arsenic Sulphide | Arsenopyrite |
Content | 0.010 | 0.200 | 0.420 | 2.300 | 6.100 |
Distribution | 0.11 | 2.21 | 4.65 | 25.47 | 67.55 |
Test No. | Parameters | Recovery | Consumption | |||||
---|---|---|---|---|---|---|---|---|
Leaching Time | Initial pH | Temperature | TU Dosage | Stirring Speed | Ferric Iron Concentration | Gold | TU | |
(h) | - | (°C) | (g/L) | (r/min) | (g/L) | (%) | (kg/t) | |
1 | 2.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 45.3 | 3.24 |
2 | 2.5 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 54.6 | 4.9 |
3 | 3.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 62.6 | 6.3 |
4 | 3.5 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 68.8 | 7.3 |
5 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 75 | 8.1 |
6 | 5.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 77.3 | 8.8 |
7 | 6.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 78.2 | 10.1 |
8 | 4.0 | 1.4 | 35.0 | 6.0 | 400.0 | 6.0 | 73.8 | 7.56 |
9 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 75 | 8.1 |
10 | 4.0 | 1.6 | 35.0 | 6.0 | 400.0 | 6.0 | 70.2 | 8.28 |
11 | 4.0 | 1.7 | 35.0 | 6.0 | 400.0 | 6.0 | 69.3 | 8.64 |
12 | 4.0 | 1.8 | 35.0 | 6.0 | 400.0 | 6.0 | 65.7 | 9.36 |
13 | 4.0 | 1.9 | 35.0 | 6.0 | 400.0 | 6.0 | 63.8 | 9.87 |
14 | 4.0 | 2.0 | 35.0 | 6.0 | 400.0 | 6.0 | 57.3 | 10.3 |
15 | 4.0 | 1.5 | 25.0 | 6.0 | 400.0 | 6.0 | 42.6 | 5.04 |
16 | 4.0 | 1.5 | 27.5 | 6.0 | 400.0 | 6.0 | 57.2 | 5.61 |
17 | 4.0 | 1.5 | 30.0 | 6.0 | 400.0 | 6.0 | 62.3 | 6.66 |
18 | 4.0 | 1.5 | 32.5 | 6.0 | 400.0 | 6.0 | 69.65 | 7.38 |
19 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 75 | 8.1 |
20 | 4.0 | 1.5 | 37.5 | 6.0 | 400.0 | 6.0 | 75.45 | 9.8 |
21 | 4.0 | 1.5 | 40.0 | 6.0 | 400.0 | 6.0 | 77.1 | 11.7 |
22 | 4.0 | 1.5 | 35.0 | 2.0 | 400.0 | 6.0 | 51.2 | 6.12 |
23 | 4.0 | 1.5 | 35.0 | 3.0 | 400.0 | 6.0 | 60.6 | 6.66 |
24 | 4.0 | 1.5 | 35.0 | 4.0 | 400.0 | 6.0 | 68.9 | 7.2 |
25 | 4.0 | 1.5 | 35.0 | 5.0 | 400.0 | 6.0 | 72.3 | 7.56 |
26 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 75 | 8.1 |
27 | 4.0 | 1.5 | 35.0 | 7.0 | 400.0 | 6.0 | 74.6 | 8.45 |
28 | 4.0 | 1.5 | 35.0 | 8.0 | 400.0 | 6.0 | 74.1 | 8.82 |
29 | 4.0 | 1.5 | 35.0 | 6.0 | 200.0 | 6.0 | 60.3 | 6.84 |
30 | 4.0 | 1.5 | 35.0 | 6.0 | 250.0 | 6.0 | 63.9 | 7.2 |
31 | 4.0 | 1.5 | 35.0 | 6.0 | 300.0 | 6.0 | 67.3 | 7.56 |
32 | 4.0 | 1.5 | 35.0 | 6.0 | 350.0 | 6.0 | 70.75 | 7.83 |
33 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.0 | 75 | 8.1 |
34 | 4.0 | 1.5 | 35.0 | 6.0 | 450.0 | 6.0 | 72.6 | 8.5 |
35 | 4.0 | 1.5 | 35.0 | 6.0 | 500.0 | 6.0 | 75.4 | 9 |
36 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 2.80 | 50.1 | 5.76 |
37 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 3.73 | 56.3 | 6.66 |
38 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 4.67 | 63.2 | 7 |
39 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 5.60 | 67.4 | 7.11 |
40 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 6.53 | 75.3 | 7.2 |
41 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 7.47 | 76.2 | 7.56 |
42 | 4.0 | 1.5 | 35.0 | 6.0 | 400.0 | 9.33 | 77.6 | 8.1 |
Influencing Variables | Gold Recovery | Rank | TU Consumption | Rank |
---|---|---|---|---|
Leaching time | 0.779 | 2 | 0.757 | 2 |
Initial pH | 0.725 | 6 | 0.742 | 3 |
Temperature | 0.783 | 1 | 0.762 | 1 |
TU dosage | 0.765 | 4 | 0.718 | 4 |
Stirring speed | 0.756 | 5 | 0.707 | 6 |
Ferric iron concentration | 0.778 | 3 | 0.715 | 5 |
Training Algorithm | Gold Recovery | TU Consumption | ||||
---|---|---|---|---|---|---|
MAE | RMSE | Accuracy (%) | MAE | RMSE | Accuracy (%) | |
Levenberg–Marquardt | 1.9226 | 2.0785 | 97.22 | 0.2809 | 0.3352 | 96.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Nan, X.; Meng, F.; Li, Q.; Chen, X.; Yang, Y.; Xu, B.; Jiang, T. Analysis and Prediction of the Thiourea Gold Leaching Process Using Grey Relational Analysis and Artificial Neural Networks. Minerals 2020, 10, 811. https://doi.org/10.3390/min10090811
Xu R, Nan X, Meng F, Li Q, Chen X, Yang Y, Xu B, Jiang T. Analysis and Prediction of the Thiourea Gold Leaching Process Using Grey Relational Analysis and Artificial Neural Networks. Minerals. 2020; 10(9):811. https://doi.org/10.3390/min10090811
Chicago/Turabian StyleXu, Rui, Xiaolong Nan, Feiyu Meng, Qian Li, Xuling Chen, Yongbin Yang, Bin Xu, and Tao Jiang. 2020. "Analysis and Prediction of the Thiourea Gold Leaching Process Using Grey Relational Analysis and Artificial Neural Networks" Minerals 10, no. 9: 811. https://doi.org/10.3390/min10090811
APA StyleXu, R., Nan, X., Meng, F., Li, Q., Chen, X., Yang, Y., Xu, B., & Jiang, T. (2020). Analysis and Prediction of the Thiourea Gold Leaching Process Using Grey Relational Analysis and Artificial Neural Networks. Minerals, 10(9), 811. https://doi.org/10.3390/min10090811