Metal Mobility in a Mine-Affected Floodplain
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sediment Sampling
3.2. Physicochemical Properties of the Sediments
3.3. Sequential Extraction of Metals
3.4. Mineral Forms of Metal
3.5. Quality Assurance/Quality Control (QA/QC)
4. Results and Discussion
4.1. The Sediment Characteristics and Metal Speciation of the Biała River
4.2. The Sediment Characteristics and Metal Speciation of the Biała Przemsza River
4.3. Potential Metal Mobility
4.4. Metal Mobility—Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Younger, P.L.; Banwart, S.A.; Hedin, R.S. Mine Water: Hydrology, Pollution, Remediation; Kluwer Academic: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Olias, M.; Nieto, J.M.; Sarmiento, A.M.; Ceron, J.C.; Canovas, C.R. Seasonal water quality variations in a river affected by acid mine drainage: The Odiel River (South West Spain). Sci. Total Environ. 2004, 333, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.; Wood, P.J.; Reid, I. The impairment of river systems by metal mine contamination: A review including remediation options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017–2077. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Mine waters: Acidic to circumneutral. Elements 2011, 7, 3932013398. [Google Scholar] [CrossRef]
- Simón, M.; Martĵn, F.; Ortiz, I.; Garcĵa, I.; Fernández, J.; Fernández, E.; Dorronsoro, C.; Aguilar, J. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. Sci. Total Environ. 2001, 279, 63–74. [Google Scholar] [CrossRef]
- Arroyo, Y.R.; Siebe, C. Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico. Catena 2007, 71, 497–506. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Pereira, P. Addressing quality and usability of surface water bodies in semi-arid regions with mining influences. Environ. Proc. Intern. J. 2018, 5, 707–725. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Schell, C.H.; Macklin, M.G. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 1999, 14, 1015–1030. [Google Scholar] [CrossRef]
- Valente, T.; Grande, J.A.; de la Torre, M.L.; Santisteban, M.; Cerón, J.C. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl. Geochem. 2013, 39, 11–25. [Google Scholar] [CrossRef]
- Fuller, C.C.; Bargar, J. Processes of Zinc Attenuation by Biogenic Manganese Oxides Forming in the Hyporheic Zone of Pinal Creek, Arizona. Environ. Sci. Technol. 2014, 48, 2165–2172. [Google Scholar] [CrossRef] [Green Version]
- Ciszewski, D. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: Consequences for pollution monitoring (Upper Silesia, Poland). Environ. Geol. 1998, 36, 45–54. [Google Scholar] [CrossRef]
- Ciszewski, D.; Aleksander-Kwaterczak, U. Contrasting sediment and water chemistry indicates the extent of the hyporheic zone in a polluted river system. Geol. Geophys. Environ. 2016, 42, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Du Laing, G.; Meers, E.; Dewispelaere, M.; Rinklebe, J.; Vandecasteele, B.; Verloo, M.G.; Tack, F.M.G. Effect of water table level on metal mobility at different depths in wetland soils of the Scheldt Estuary (Belgium). Water Air Soil Pollut. 2009, 202, 353–367. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 2014, 228–229, 142–159. [Google Scholar] [CrossRef]
- Ciszewski, D.; Czajka, A.; Błażej, S. Rapid migration of heavy metals and 137Cs in alluvial sediments. Upper Odra River valley, Poland. Environ. Geol. 2008, 55, 1577–1586. [Google Scholar] [CrossRef]
- Cappuyns, V.; Swennen, R. Secondary mobilization of heavy metals in overbank sediments. J. Environ. Monit. 2004, 6, 434–440. [Google Scholar] [CrossRef]
- Frohne, T.; Rinklebe, J.; Diaz-Bone, R.A. Contamination of floodplain soils along Wupper River, Germany, with As, Co, Cu, Ni, Sb and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soils Sed. Contam. 2014, 23, 779–799. [Google Scholar] [CrossRef]
- Mosley, L.M.; Palmer, D.; Leyden, E.; Cook, F.; Zammit, B.; Shand, P.; Baker, A.; Fitzpatrick, R.W. Acidification of floodplains due to river level decline during drought. J. Contam. Hydrol. 2014, 161, 10–23. [Google Scholar] [CrossRef]
- Lynch, S.F.L.; Batty, L.C.; Byrne, P. Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals 2014, 4, 52–73. [Google Scholar] [CrossRef] [Green Version]
- Guven, D.E.; Akinci, G. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. J. Environ. Sci. 2013, 25, 1784–1794. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.Y.; Shen, L.G.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Peng, J.F.; Song, Y.H.; Yuan, P.; Cui, X.Y.; Qiu, G.L. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef]
- Frohne, T.; Rinklebe, J.; Diaz-Bone, R.A.; Du Laing, G. Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 2011, 160, 414–424. [Google Scholar] [CrossRef]
- Carvalho, P.C.S.; Neiva, A.M.R.; Silva, M.M.V.G. Assessment to the potential mobility and toxicity of metals and metalloids in soils contaminated by old Sb–Au and As–Au mines (NW Portugal). Environ. Earth Sci. 2012, 65, 1215–1230. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Wang, J.; Qi, J.; Wang, C.; Lippold, H.; Lippmann-Pipke, J. Factor analysis and sequential extraction unveil geochemical processes relevant for trace metal distributions in fluvial sediments of a pyrite mining area, China. Carbonat. Evaporit. 2010, 25, 51–63. [Google Scholar] [CrossRef]
- Akinci, G.; Guven, D.E. Assessment of chemical fractionations and mobilization potentials for heavy metals in wastes and their solid matrices in a mining site in the inland Aegean Region in Turkey. Environ. Monit. Assess. 2019, 191, 25. [Google Scholar] [CrossRef] [PubMed]
- Aleksander-Kwaterczak, U.; Ciszewski, D. Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead-zinc mine: Functioning of a diffuse pollution source. Environ. Earth Sci. 2012, 65, 1179–1189. [Google Scholar] [CrossRef]
- Ciszewski, D. Groundwater chemistry in a meander bend of the polluted Biała Przemsza River. Pol. J. Environ. Stud. 2019, 28, 1601–1611. [Google Scholar] [CrossRef]
- Kret, E.; Czop, M.; Pietrucin, D. Requirements for numerical hydrogeological model implementation for predicting the environmental impact of the mine closure based on the example of the Zn/Pb mines in the Olkusz area. In Proceedings Mine Water and Circular Economy, IMWA; Wolkersdorfer, C., Sartz, L., Sillanpaa, M., Hakkinen, A., Eds.; IMWA: Wendelstein, Germany, 2017; pp. 703–709. [Google Scholar]
- Morman, J.; Czop, M. Antropogeniczne przeobrażenia reżimu hydrogeologicznego rzeki Sztoły w południowej części rejonu olkuskiego. In Proceedings of the Conference: Zagrożenia Naturalne w Górnictwie 248, Krakow, Poland, 4–6 June 2012; IGSMiE PAN. pp. 248–258. (In Polish). [Google Scholar]
- Witkowski, A.J.; Motyka, J.; Wróbel, J. Assessment of potential risk of groundwater contamination in areas subjected to the intensive mining drainage, case study from Poland—Olkusz Zn–Pb ore mining region. In Proceedings of the 8th International Congress on Mine Water & the Environment, Johannesburg, South Africa, 28 October–1 November 2003; pp. 221–234. [Google Scholar]
- Adamczyk, Z.; Motyka, J.; Witkowski, A.J. Impact of Zn–Pb ore mining on groundwater quality in the Olkusz region. In Proceedings of the 7th IMWA Congress, Katowice-Ustroń, Poland, 11–15 September 2000; pp. 27–37. [Google Scholar]
- Czaja, S. Changes in river discharge structure and regime in mining-industrial-urban areas. Reg. Environ. Chang. 2005, 5, 18–26. [Google Scholar] [CrossRef]
- Wójcik, W. Kumulacja wybranych metali ciężkich przez środowisko mokradłowe na przykładzie rozlewiska rzeki Białej; Rozprawy Monografie; Wydawnictwo AGH: Krakow, Poland, 1995; Volume 22, p. 139. (In Polish) [Google Scholar]
- Policht-Latawiec, A.; Kanownik, W.; Lekstan, M. Zmiany wskaźników fizykochemicznych wody kanału Dąbrówka spowodowane działalnością kopalni rud cynku i ołowiu. Ann. Set Environ. Protect. 2015, 17, 1350–1364. (In Polish) [Google Scholar]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ureb, A.; Quevauvillerc, P.H. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Ciszewski, D. Pollutant dispersal in groundwater and sediments of gaining and losing river reaches affected by metal mining. Environ. Earth Sci. 2016, 75, 95. [Google Scholar] [CrossRef] [Green Version]
- Aleksander-Kwaterczak, U.; Plenzler, D. Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environ. Earth Sci. 2019, 78, 530. [Google Scholar] [CrossRef] [Green Version]
- Bauerek, A.; Bebek, M.; Sracek, O.; Smieja-Król, B. Chemical composition of surface runoff from flotation wastes of Zn–Pb ore formation of the Mississippi Valley-type, Olkusz, Southern Poland. J. Geochem. Explor. 2013, 132, 54–62. [Google Scholar] [CrossRef]
- Górecka, E.; Bellok, A.; Socha, J.; Wnuk, R.; Kibitlewski, S. Zróżnicowanie zawartości metali w odpadach flotacyjnych rud Zn–Pb (ZGH Bolesław, rej. Olkuski). Przegl. Geolog. 1994, 42, 834–841. (In Polish) [Google Scholar]
- Ciszewski, D.; Kucha, H.; Skwarczek, M. Authigenic minerals and sediments in the hyporheic zone of the Biała Przemsza River polluted by metal ore mining. Przegl. Geolog. 2017, 65, 650–660. (In Polish) [Google Scholar]
- Noel, V.; Boye, K.; Kukkadapu, R.K.; Bone, S.; Lezama Pacheco, J.S.; Cardelli, E.; Janot, N.; Fendorf, S.; Williams, K.H.; Bargar, J.R. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Sci. Total Environ. 2017, 603–604, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Marschner, P.; Fitzpatrick, R.W.; Mosley, L.M. Global risks of severe acidification of acid sulfate soils due to increasing drought and the importance of organic matter for mitigation. In Soil Science and Ecological Civilization, Northwest A&F; University Press: Xi’an, China, 2016; pp. 176–186. [Google Scholar]
- Rigby, P.A.; Dobos, S.K.; Cook, F.J.; Goonetilleke, A. Role of organic matter in framboidal pyrite oxidation. Sc. Total Environ. 2006, 367, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Hoffman, T.; Schuwirth, N. Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings. J. Soils Sediments 2008, 8, 433–441. [Google Scholar] [CrossRef]
- Cresswell, T.; Smith, R.E.W.; Nugegoda, D.; Simpson, S.L. Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: Implications for bioavailability. Environ. Sci. Pollut. Res. 2013, 20, 7803–7814. [Google Scholar] [CrossRef]
- Schaider, L.A.; Senn, D.B.; Estes, E.R.; Brabander, D.J.; Shine, J.P. Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides. Sci. Total Environ. 2014, 490, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska-Czapla, M.; Nocoń, K.; Szopa, S.; Łyko, A. Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environ. Monit. Assess. 2016, 188, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruszecka, A.; Wdowin, M. Characteristics and distribution of analyzed metals in soil profiles in the vicinity of a postflotation waste site in the Bukowno region, Poland. Environ. Monit. Assess. 2013, 185, 8157–8168. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, T. Proglacial valley facies of the Silesian Uppland–genetic factors and their sedimentological effects. Geol. Sudet. 1992, 26, 1–113. [Google Scholar]
- Cavalazzi, B.; Agangi, A.; Barbieri, R.; Franchi, F.; Gasparotto, G. The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced process. Geol. Ore Depos. 2014, 56, 395–408. [Google Scholar] [CrossRef]
- Smith, J.; Melville, M.D. Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulphate soil environment. Appl. Geochem. 2004, 19, 1837–1853. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochem. Cosmochem. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Lewin, J.; Macklin, M.G. Metal mining and floodplain sedimentation in Britain. In International Geomorphology; Gardiner, V., Ed.; Wiley: New York, NY, USA, 1986; pp. 1009–1027. [Google Scholar]
- Dundar, M.S.; Altundag, H.; Eyupoglu, V.; Keskin, S.C.; Tutunoglu, C. Determination of heavy metals in lower Sakarya River sediments using a BCR-sequential extraction procedure. Environ. Monit. Assess. 2012, 184, 33–41. [Google Scholar] [CrossRef]
- Ospina-Alvarez, N.; Głaz, Ł.; Dmowski, K.; Krasnodebska-Ostrega, B. Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environ. Chem. Lett. 2014, 12, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, G.A.; Loch, J.P.G. Decalicification of soils subject to periodic waterlogging. Eur. J. Soil Sci. 2000, 51, 27–33. [Google Scholar] [CrossRef]
- Chrastný, V.; Vanek, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef]
- Mast, M.A. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970–2010. Environ. Monit. Assess. 2013, 185, 9343–9359. [Google Scholar] [CrossRef] [PubMed]
- Mosley, L.M. Drought impacts on the water quality of freshwater systems: Review and integration. Earth Sc. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Ciszewski, D. The past and prognosis of mining cessation impact on river sediment pollution. J. Soils Sediments 2019, 19, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Baryaktar, H.; Turalioglu, F.S. Composition of wet and bulk deposition in Erzurum, Turkey. Chemosphere 2005, 59, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Nagorski, S.; McKinnon, T.; Moore, J. Seasonal and storm-scale variations in heavy metal concentrations of two mining-contaminated streams, Montana, USA. J. Phys. IV 2003, 107, 909. [Google Scholar]
- Valencia-Avellan, M.; Slack, R.A.E.; Stockdale, A.; Mortimer, R.J.G. Effect of episodic rainfall on aqueous metal mobility from historical mine sites. Environ. Chem. 2017, 14, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Thompson, V.; Dunstone, N.J.; Scaife, A.A.; Smith, D.M.; Slingo, J.M.; Brown, S.; Belcher, S.E. High risk of unprecedented UK rainfall in the current climate. Nat. Comm. 2017, 107. [Google Scholar] [CrossRef] [Green Version]
- Gruszecka-Kosowska, A.; Kicińska, A. Long-term metal-content changes in soils on the Olkusz Zn-Pb ore-bearing area, Poland. Int. J. Environ. Res. 2017, 11, 359–376. [Google Scholar] [CrossRef] [Green Version]
Mineral | Sampling Depth [cm] | ||||
---|---|---|---|---|---|
0–30 | 30–60 | 60–100 | 100–150 | 150–200 | |
Quartz | 2.8–6.1 | 5.2–6.0 | 6.6–50.9 | 85.1–89.1 | 85.2–88.5 |
Orthoclase | 0.0 | 0.0 | 0.0–7.4 | 4.1–11.0 | 5.7–8.4 |
Albite | 0.0 | 0.0 | 0.0 | 0.6–1.2 | 0.7–1.5 |
Calcite | 4.6–10.0 | 9.0–12.0 | 2.9–4.8 | 0.0–1.3 | 0.0–1.2 |
Dolomite | 61.0–70.9 | 66.0–67.2 | 2.7–61.1 | 0.0 | 0.0 |
Pyrite | 2.8–5.4 | 4.3–6.3 | 0.7–4.3 | 0.0–0.2 | 0.0–0.2 |
Marcasite | 5.6–9.6 | 5.1–9.2 | 0.9–4.2 | 0.0–0.4 | 0.0–0.3 |
Sphalerite | 0.4–1.0 | 0.5–1.0 | 0.0–0.4 | 0.0 | 0.0 |
Galena | 0.3–0.6 | 0.6–0.7 | 0.0–0.5 | 0.0 | 0.0 |
Biała River | |||||
Sediment Depth | Zn | Cd | Pb | Ca | pH |
Loams with organic > 0.25 m | 1375–101,677 1556 | 2.0–76.0 18.0 | 62–227 112 | 20,597–27,735 26,242 | 6.8–7.2 6.9 |
Loams (altered) | 1–14,455 1495 | 1.0–27.0 1.0 | 1–857 10 | 5860–17,140 10,119 | 7.1–7.6 7.3 |
Loams (unaltered) | 506–2281 1394 | 1.0–13.0 7.0 | 9–2155 1082 | 4519–11,423 7971 | 7.9–8.0 8.0 |
Fluvial sands < 1.0 m | 112–609 442 | 1.0–25.0 6.0 | 1–77 38 | 1–2578 1643 | 5.9–6.7 6.2 |
Biała Przemsza River | |||||
Sands with organic > 0.25 m | 12–634 540 | 1.3–2.5 1.8 | 1–228 7 | 59–6987 6531 | 6.3–7.1 6.6 |
Shallow fluvial sands | 1–192 64 | <1.0–2.0 <1.0 | <1–10 <1 | 118–4090 718 | 6.1–7.2 6.7 |
Fluvial sands < 1.0 m | 10–233 55 | <1.0 <1.0 | <1–6 2 | 74–3980 204 | 5.4–6.5 6.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciszewski, D.; Aleksander-Kwaterczak, U. Metal Mobility in a Mine-Affected Floodplain. Minerals 2020, 10, 814. https://doi.org/10.3390/min10090814
Ciszewski D, Aleksander-Kwaterczak U. Metal Mobility in a Mine-Affected Floodplain. Minerals. 2020; 10(9):814. https://doi.org/10.3390/min10090814
Chicago/Turabian StyleCiszewski, Dariusz, and Urszula Aleksander-Kwaterczak. 2020. "Metal Mobility in a Mine-Affected Floodplain" Minerals 10, no. 9: 814. https://doi.org/10.3390/min10090814
APA StyleCiszewski, D., & Aleksander-Kwaterczak, U. (2020). Metal Mobility in a Mine-Affected Floodplain. Minerals, 10(9), 814. https://doi.org/10.3390/min10090814