The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence
Abstract
:1. Introduction
2. Geological and Gas Geochemical Settings
2.1. Lovozero Massif
2.2. Occluded Hydrocarbon Gases
2.3. He and Ar Isotope Compositions
3. Samples and Analytical Methods
4. Results and Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Petersilie, I.A. Geology and Geochemistry of Natural Gases and Disperse Bitumens of Some Geological Formations of the Kola Peninsula; Nauka: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Petersilie, I.A.; Sørensen, H. Hydrocarbon gases and bituminous substances in rocks from the Ilímaussaq alkaline intrusion, South Greenland. Lithos 1970, 3, 59–76. [Google Scholar] [CrossRef]
- Konnerup-Madsen, J.; Larsen, E.; Rose-Hansen, J. Hydrocarbon-rich fluid inclusions in minerals from the alkaline Ilímaussaq intrusion. South Greenl. Bull. Minéral. 1979, 102, 642–653. [Google Scholar] [CrossRef]
- Ikorsky, S.V.; Nivin, V.A.; Pripachkin, V.A. Gas Geochemistry of Endogenic Formations; Nauka: St.-Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Konnerup-Madsen, J. A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex. South Greenl. Geol. Greenl. Surv. Bull. 2001, 190, 159–166. [Google Scholar] [CrossRef]
- Nivin, V.A. Occurrence forms, composition, distribution, origin and potential hazard of natural hydrogen–hydrocarbon gases in ore deposits of the Khibiny and Lovozero massifs: A review. Minerals 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Nivin, V.A.; Treloar, P.J.; Konopleva, N.G.; Ikorsky, S.V. A review of the occurrence, form and origin of C-bearing species in the Khibiny alkaline igneous complex, Kola Peninsula, NW Russia. Lithos 2005, 85, 93–112. [Google Scholar] [CrossRef]
- Nivin, V.A. Diffusely disseminated hydrogen–hydrocarbon gases in rocks of nepheline syenite complexes. Geochem. Int. 2009, 47, 672–691. [Google Scholar] [CrossRef]
- Nivin, V.A. Free hydrogen-hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NW Russia). Appl. Geochem. 2016, 74, 44–55. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Krumrei, T.V.; Pernicka, E.; Kaliwoda, M.; Markl, G. Volatiles in a peralkaline system: Abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 2007, 95, 298–314. [Google Scholar] [CrossRef]
- Graser, G.; Potter, J.; Kohler, J.; Markl, G. Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilimaussaq intrusion, South Greenland. Lithos 2008, 106, 207–221. [Google Scholar] [CrossRef]
- Markl, G.; Marks, M.A.W.; Frost, B.R. On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J. Petrol. 2010, 51, 1831–1847. [Google Scholar] [CrossRef] [Green Version]
- Nivin, V.A. Variations in the composition and origin of hydrocarbon gases from inclusions in minerals of the Khibiny and Lovozero plutons, Kola Peninsula, Russia. Geol. Ore Deposit. 2011, 53, 699–707. [Google Scholar] [CrossRef]
- Nivin, V.A. Gas Components in Magmatic Rocks: Geochemical, Mineragenic and Environmental Aspects and Results. Ph.D. Thesis, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia, 2013; p. 354. (In Russian). [Google Scholar]
- Vasyukova, O.V.; Williams-Jones, A.E.; Blamey, N.J.F. Fluid evolution in the Strange Lake granitic pluton, Canada: Implications for HFSE mobilisation. Chem. Geol. 2016, 444, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Marks, M.A.W.; Markl, G. A global review on agpaitic rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Beeskow, B.; Treloar, P.J.; Rankin, A.H.; Vennemann, T.W.; Spangenberg, J. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia. Lithos 2006, 91, 1–18. [Google Scholar] [CrossRef]
- Ryabchikov, I.D.; Kogarko, L.N. Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos 2006, 91, 35–45. [Google Scholar] [CrossRef]
- Ryabchikov, I.D.; Kogarko, L.N. Redox potential of the Khibiny magmatic system and genesis of abiogenic hydrocarbons in alkaline plutons. Geol. Ore Deposit. 2009, 51, 425–440. [Google Scholar] [CrossRef]
- Potter, J.; Longstaffe, F.J. A gas-chromatograph, continuous flow-isotope ratio mass-spectrometry method for δ13 C and δD measurement of complex fluid inclusion volatiles: Examples from the Khibina alkaline igneous complex, northwest Russia and the south Wales coalfields. Chem. Geol. 2007, 244, 186–201. [Google Scholar] [CrossRef]
- Nivin, V.A. Molecular-mass distribution of gas hydrocarbons and the problem of their origin in alkaline magmatic complexes. In Alkaline Magmatism, Its Sources and Plums; Vladykin, N.V., Ed.; Publishing House of the Institute of Geography SB RAS: Irkutsk, Russia, 2008; pp. 107–130. (In Russian) [Google Scholar]
- Nivin, V.A. Molecular–mass distribution of saturated hydrocarbons in gas of the Lovozerskii nepheline–syenite massif. Dokl. Earth Sci. 2009, 429, 1580–1582. [Google Scholar] [CrossRef]
- Laier, T.; Nytoft, H.P. Bitumen biomarkers in the Mid-Proterozoic Ilimaussaq intrusion, Southwest Greenland—A challenge to the mantle gas theory. Mar. Petrol. Geol. 2012, 30, 50–65. [Google Scholar] [CrossRef]
- Potter, J.; Salvi, S.; Longstaffe, F. Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation. Lithos 2013, 182–183, 114–124. [Google Scholar] [CrossRef]
- Etiope, G.; Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 2013, 51, 276–299. [Google Scholar] [CrossRef]
- Sephton, M.A.; Hazen, R.M. On the Origins of Deep Hydrocarbons. Rev. Miner. Geochem. 2013, 75, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Wakita, H.; Sano, Y. 3He/4He ratios in CH4-rich natural gases suggest magmatic origin. Nature 1983, 305, 792–794. [Google Scholar] [CrossRef]
- Marty, B.; Jambon, A. C/3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet. Sci. Lett. 1987, 83, 16–26. [Google Scholar] [CrossRef]
- Poreda, R.J.; Jeffrey, A.W.A.; Kaplan, I.R.; Craig, H. Magmatic helium in subduction zone natural gases. Chem. Geol. 1988, 71, 199–210. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Charlou, J.L.; Stievenard, M.; Donval, J.P.; Bougault, H.; Mevel, C. Helium and methane measurements in hydrothermal fluids from the Mid Atlantic Ridge: The Snake Pit site at 23° N. Earth Planet. Sci. Lett. 1991, 106, 17–28. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Fourré, E.; Charlou, J.L.; German, C.; Radford-Knoery, J. Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14’ N). Earth Planet. Sci. Lett. 2004, 221, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Jenden, P.D.; Hilton, D.R.; Kaplan, I.R.; Craig, H. Abiogenic hydrocarbons and Mantle helium in oil and gas fields. In The Future of Energy Gases; Howell, D.G., Ed.; US Geological Survey Professional Paper, 1570; US Government Print Office: Washington, DC, USA, 1993; pp. 31–56. [Google Scholar]
- Tolstikhin, I.N.; Marty, B. The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol. 1998, 147, 27–52. [Google Scholar] [CrossRef]
- Pinti, D.L.; Marty, B. Noble gases in oil and gas fields: Origins and processes. In Fluids and Basin Evolution; Kyser, K., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2000; pp. 160–196. [Google Scholar]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Miner. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Dai, J.; Yang, S.; Chen, H.; Shen, X. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Org. Geochem. 2005, 36, 1664–1688. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, L.; Wang, Y.; Cui, Y.; Milla, K. Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Xujiaweizi area of the Songliao Basin, China. Episodes 2009, 32, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lavrushin, V.Y.; Polyak, B.G.; Pokrovskii, B.G.; Kopp, M.L.; Buachidze, G.I.; Kamenskii, I.L. Isotopic–geochemical peculiarities of gases in mud volcanoes of Eastern Georgia. Lithol. Miner. Resour. 2009, 44, 183–197. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Ballentine, C. Insights into deep carbon derived from noble gases. Nat. Geosci. 2009, 2, 543–547. [Google Scholar] [CrossRef]
- Kikvadze, O.; Lavrushin, V.; Pokrovsky, B.; Polyak, B. Gases from mud volcanoes of western and central Caucasus. Geofluids 2010, 10, 486–496. [Google Scholar] [CrossRef]
- Holland, G.; Sherwood Lollar, B.; Li, L.; Lacrampe-Couloume, G.; Slater, G.F.; Ballentine, C.J. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 2013, 497, 357–360. [Google Scholar] [CrossRef]
- Sano, Y.; Fischer, T.P. The analysis and Interpretation of Noble Gases in Modern Hydrothermal Systems. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry; Burnard, P., Hoefs, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 249–317. [Google Scholar]
- Cinti, D.; Tassi, F.; Procesi, M.; Bonini, M.; Capecchiacci, F.; Voltattorni, N.; Vaselli, O.; Quattrocchi, F. Fluid geochemistry and geothermometry in the unexploited geothermal field of the Vicano–Cimino Volcanic District (Central Italy). Chem. Geol. 2014, 371, 96–114. [Google Scholar] [CrossRef]
- Ni, Y.; Dai, J.; Tao, S.; Wu, X.; Liao, F.; Wu, W.; Zhang, D. Helium signatures of gases from the Sichuan Basin, China. Org. Geochem. 2014, 74, 33–43. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, J.; Jin, Z.; Li, J.; Wu, X.; Meng, Q.; Yang, C.; Zhou, Q.; Feng, Z.; Zhu, D. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field. J. Asian Earth Sci. 2016, 115, 285–297. [Google Scholar] [CrossRef]
- Tolstikhin, I.N.; Ballentine, C.J.; Polyak, B.G.; Prasolov, E.M.; Kikvadze, O.E. The noble gas isotope record of hydrocarbon field formation time scales. Chem. Geol. 2017, 471, 141–152. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Cisse, C.S.T.; Diallo, A.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Warr, O.; Giunta, T.; Ballentine, C.J.; Sherwood Lollar, B. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chem. Geol. 2019, 530, 119322. [Google Scholar] [CrossRef]
- Byrne, D.J.; Barry, P.H.; Lawson, M.; Ballentine, C.J. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin. Geochim. Cosmochim. Acta 2020, 268, 186–208. [Google Scholar] [CrossRef]
- Vlasov, K.A.; Kuz’menko, M.Z.; Es’kova, E.M. The Lovozero Alkali Massif; Fry, D.G.; Syers, K., Translators; Oliver & Boyd: Edinburgh, UK, 1966. [Google Scholar]
- Gerasimovsky, V.I.; Volkov, V.P.; Kogarko, L.N.; Polyakov, A.I.; Saprykina, T.V.; Balashov, Y.A. The Geochemistry of the Lovozero Alkaline Massif; Part 1 and Part 2; Australian National University Press: Canberra, Australia, 1966. [Google Scholar]
- Bussen, I.V.; Sakharov, A.S. Petrology of the Lovozero Alkaline Massif; Nauka: Leningrad, Russia, 1972. (In Russian) [Google Scholar]
- Pekov, I.V. Lovozero Massif: History, Pegmatites, Minerals; Ocean Pictures Ltd.: Moscow, Russia, 2000. [Google Scholar]
- Arzamastsev, A.A.; Arzamastseva, L.V.; Zhirova, A.M.; Glaznev, V.N. Model of formation of the Khibiny–Lovozero ore-bearing volcanic–plutonic complex. Geol. Ore Deposit. 2013, 55, 341–356. [Google Scholar] [CrossRef]
- Suk, N.I.; Kotel’nikov, A.R.; Viryus, A.A. Crystallization of loparite in alkaline fluid-magmatic systems (from experimental and mineralogical data). Russ. Geol. Geophys. 2013, 54, 436–453. [Google Scholar] [CrossRef]
- Pakhomovsky, Y.A.; Ivanyuk, G.Y.; Yakovenchuk, V.N. Loparite-(Ce) in rocks of the Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk. Geol. Ore Deposit. 2014, 56, 685–698. [Google Scholar] [CrossRef]
- Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Yakovenchuk, V.N. Eudialyte-group minerals in rocks of Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk. Geol. Ore Deposit. 2015, 57, 600–613. [Google Scholar] [CrossRef]
- Kalashnikov, A.O.; Konopleva, N.G.; Pakhomovsky, Y.A.; Ivanyuk, G.Y. Rare earth deposits of the Murmansk Region, Russia—A review. Econ. Geol. 2016, 111, 1529–1559. [Google Scholar] [CrossRef]
- Kogarko, L.N. Geochemistry of fractionation of coherent elements (Zr and Hf) during the profound differentiation of peralkaline magmatic systems: A case study of the Lovozero complex. Geochem. Int. 2016, 54, 1–6. [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V. Mineral systems, their types, and distribution in nature. I. Khibiny, Lovozero, and the Mont Saint-Hilaire. Geol. Ore Dep. 2016, 58, 551–558. [Google Scholar] [CrossRef]
- Zartman, R.E.; Kogarko, L.N. Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkaline Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia. Contrib. Mineral. Petrol. 2017, 172, 32. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Ivanyuk, G.Y.; Kalashnikov, A.O.; Pakhomovsky, Y.A.; Bazai, A.V.; Yakovenchuk, V.N. Petrogenesis of the Eudialyte Complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia). Minerals 2019, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Potter, J.; Rankin, A.H.; Treloar, P.J.; Nivin, V.A.; Ting, W.; Ni, P. A preliminary study of methane inclusions in alkaline igneous rocks of the Kola igneous province, Russia: Implications for the origin of methane in igneous rocks. Eur. J. Miner. 1998, 10, 1167–1180. [Google Scholar] [CrossRef]
- Potter, J.; Rankin, A.H.; Treloar, P.J. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, NW Russia. Lithos 2004, 75, 311–330. [Google Scholar] [CrossRef]
- Nivin, V.A. Gas concentrations in minerals with reference to the problem of the genesis of hydrocarbon gases in rocks of the Khibiny and Lovozero massifs. Geochem. Int. 2002, 40, 883–898. [Google Scholar]
- Potter, J.; Konnerup-Madsen, J. A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks. In Hydrocarbons in Crystalline Rocks; Petford, N., McCaffrey, K.J.W., Eds.; The Geological Society of London: London, UK, 2003; pp. 151–173. [Google Scholar]
- Nivin, V.A.; Kamensky, I.L.; Tolstikhin, I.N. Helium and argon isotope abundances in rocks of Lovozero alkaline massif. Isotopenpraxis 1993, 28, 281–287. [Google Scholar] [CrossRef]
- Nivin, V.A.; Ikorsky, S.V. Some genetic features of the Lovozero rare-metal deposits (NW Russia) as it follows from noble gas (He, Ar) isotope abundances. In Deep-Seated Magmatism, Magmatic Sources and the Problem of Plumes; Dalnauka: Vladivostok, Russia, 2002; pp. 230–253. [Google Scholar]
- Nivin, V.A. Helium and argon isotopes in rocks and minerals of the Lovozero alkaline massif. Geochem. Int. 2008, 46, 482–502. [Google Scholar] [CrossRef]
- Marty, B.; Tolstikhin, I.N.; Kamensky, I.L.; Nivin, V.A.; Balaganskaya, E.G.; Zimmermann, J.-L. Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russian) and the argon isotopic composition in the deep mantle. Earth Planet. Sci. Lett. 1998, 164, 179–192. [Google Scholar] [CrossRef]
- Tolstikhin, I.N.; Kamensky, I.L.; Marty, B.; Nivin, V.A.; Vetrin, V.R.; Balaganskaya, E.G.; Ikorsky, S.V.; Gannibal, M.A.; Weiss, D.; Verhulst, A.; et al. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: Identification of lower mantle plume component. Geochim. Cosmochim. Acta 2002, 66, 881–901. [Google Scholar] [CrossRef]
- Kramm, U.; Kogarko, L.N. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia. Lithos 1994, 32, 225–242. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Bea, F.; Glaznev, V.N.; Arzamastseva, L.V.; Montero, P. Kola Alkaline Province in the Paleozoic: Evaluation of Primary Mantle Magma Composition and Magma Generation Conditions. Russ. J. Earth Sci. 2001, 3, 1–32. Available online: http://rjes.agu.org/v03/tje01054/tje01054.htm (accessed on 1 August 2020). [CrossRef]
- Kogarko, L.N.; Lahaye, Y.; Brey, G.P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic shield: Sr, Nd and Hf isotope systematics. Miner. Petrol. 2010, 98, 197–208. [Google Scholar] [CrossRef]
- Nivin, V.A.; Ikorsky, S.V.; Avedisyan, A.A. Hydrocarbon and noble gases of fluid inclusions in minerals of alkaline and carbonatite complexes of the Kola province. In Proceedings of the Transactions of the XI International Conference on Thermobarogeochemistry, 8–12 September 2003; VNIISIMS: Alexandrov, Russia; pp. 277–292. (In Russian). [Google Scholar]
- Welhan, J.A. Origins of methane in hydrothermal systems. Chem. Geol. 1988, 71, 183–198. [Google Scholar] [CrossRef]
- Abrajano, T.A.; Sturchio, N.C.; Bohlke, J.K.; Lyon, G.L.; Poreda, R.J.; Stevens, C.M. Methane-hydrogen gas seeps, Zambales ophiolite, Philippines: Deep or shallow origin? Chem. Geol. 1988, 71, 211–222. [Google Scholar] [CrossRef]
- Xu, S.; Nakai, S.; Wakita, H.; Wang, X. Mantle-derived noble gases from Songliao Basin, China. Geochim. Cosmochim. Acta 1995, 59, 4675–4683. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Kosztolanyi, C.; Ryabchikov, I.D. Geochemistry of the reduced fluid in alkali magmas. Geochem. Int. 1987, 24, 20–27. [Google Scholar]
- Bardina, N.Y.; Popov, V.S. Fenites: Systematics, conditions of formation and significance for crustal magmatism. Zap. Vseross. Mineral. O-va 1994, 123, 1–19. (In Russian) [Google Scholar]
- Arzamastev, A.A.; Arzmastseva, L.V.; Zaraiskii, G.P. Contact interaction of agpaitic magmas with basement gneisses: An example of the Khibina and Lovozero massifs. Petrology 2011, 19, 115–139. [Google Scholar] [CrossRef]
- Kozlov, E.N.; Arzamastsev, A.A. Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula. Petrology 2015, 23, 45–67. [Google Scholar] [CrossRef]
- Elliott, H.A.L.; Wall, F.; Chakhmouradian, A.R.; Siegfried, P.R.; Dahlgren, S.; Weatherley, S.; Finch, A.A.; Marks, M.A.W.; Dowman, E.; Deady, E. Fenites associated with carbonatite complexes: A review. Ore Geol. Rev. 2018, 93, 38–59. [Google Scholar] [CrossRef]
- Sindern, S.; Kramm, U. Volume characteristics and element transfer of fenite aureoles: A case study from the Iivaara alkaline complex, Finland. Lithos 2000, 51, 75–93. [Google Scholar] [CrossRef]
- Nivin, V.A.; Devirts, A.L.; Lagutina, Y.P. The origin of the gas phase in the Lovozero massif based on hydrogen-isotope data. Geochem. Int. 1995, 32, 65–71. [Google Scholar]
- Mokrushina, O.D.; Mokrushin, A.V.; Telezhkin, A.A. Fluid and melt inclusions in nepheline from the loparite deposit of the Lovozero alkaline massif. In Alkaline Magmatism, its Sources and Plums; Materials of the XV International Workshop; Vladykin, N.V., Ed.; Institute of Geochemistry SB RAS: Simferopol-Irkutsk, Russia, 2019; pp. 274–284. (In Russian) [Google Scholar]
- Lapidus, A.L.; Loktev, S.M. Present-day catalytic syntheses of hydrocarbons from carbon dioxide and hydrogen. Zh. Vses. Khim. O-va Im. D.I. Mendeleeva 1986, 31, 527–532. (In Russian) [Google Scholar]
- Ione, K.G.; Mysov, V.M.; Stepanov, V.G.; Parmon, V.N. New data on the possibility of catalytic abiogenic synthesis of hydrocarbons in the earth’s crust. Petrol. Chem. 2001, 41, 159–165. [Google Scholar]
- Sharapov, V.N.; Ione, K.G.; Mazurov, M.P.; Mysov, V.M.; Perepechko, Y.V. Geocatalysis and Evolution of Mantle-Crust Magmatogenic Fluid Systems; Acad. Izd. Academic Publishing House “Geo”: Novosibirsk, Russia, 2007. (In Russian) [Google Scholar]
- Chukanov, N.V.; Pekov, I.V.; Sokolov, S.V.; Nekrasov, A.N.; Ermolaeva, V.N.; Naumova, I.S. On the problem of the formation and geochemical role of bituminous matter in pegmatites of the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia. Geochem. Int. 2006, 44, 715–728. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Lacrampe-Couloume, G.; Voglesonger, K.; Onstott, T.C.; Pratt, L.M.; Slater, G.F. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 2008, 72, 4778–4795. [Google Scholar] [CrossRef]
- Sinev, M.Y.; Fattakhova, Z.T.; Lomonosov, V.I.; Gordienko, Y.A. Kinetics of oxidative coupling of methane: Bridging the gap between comprehension and description. J. Nat. Gas Chem. 2009, 18, 273–287. [Google Scholar] [CrossRef]
Sample Number | Rock 1/Mineral | Geological Position 2 |
---|---|---|
1 | Eudialyte feldspar urtite with loparite | EC |
2 | Eudialyte foyaite | EC |
3 | Eudialyte lujavrite | EC |
4 | Eudialyte lujavrite | EC |
5 | Eudialyte lujavrite | EC |
6 | Murmanite-eudyalite lujavrite | EC |
7 | Feldspar urtite | DC, I-1 |
8 | Loparite urtite | DC, I-4 |
9 | Zeolitized feldspar urtite | DC, I-4 |
10 | Nepheline from feldspar urtite | DC, I-4 |
11 | Feldspar from urtite | DC, I-4 |
12 | Sodalite from feldspar urtite | DC, I-4 |
13 | Feldspar urtite | DC, series I |
14 | Zeolitized urtite | DC, II-4 |
15 | Loparite malignite | DC, II-4 |
16 | Zeolitized urtite | DC, II-5 |
17 | Urtite | DC, III-1 |
18 | Feldspar urtite | DC, series IV |
19 | Ijolite-urtite | DC, series V |
20 | Trachytoid feldspar urtite | DC, series V |
21 | Trachytoid feldspar urtite | DC, series V |
22 | Trachytoid feldspar urtite | DC, series V |
23 | Nepheline from feldspar urtite | DC, series V |
24 | Zeolitized foyaite | DC, above I-2 |
25 | Foyaite | DC, II-1 |
26 | Foyaite with villiaumite and eudialite | DC, II-3 |
27 | Analcime-bearing foyaite | DC, II-4 |
28 | Albitized foyaite | DC, II-4 |
29 | Zeolitized foyaite | DC, below II-4 |
30 | Foyaite | DC, below II-4 |
31 | Foyaite with sodalite and cancrinite | DC, below II-4 |
32 | Nepheline from foyaite | DC, below II-4 |
33 | Feldspar from foyaite | DC, below II-4 |
34 | Clinopyroxene from foyaite | DC, below II-4 |
35 | Sodalite from foyaite | DC, below II-4 |
36 | Eudialite-bearing foyaite | DC, above II-5 |
37 | Eudialite-bearing foyaite | DC, above II-5 |
38 | Eudialite-bearing foyaite | DC, above II-5 |
39 | Foyaite | DC, below II-5 |
40 | Foyaite | DC, above II-7 |
41 | Apatite- and eudialite-bearing foyaite | DC, above III-1 |
42 | Foyaite with eudialite | DC, above III-1 |
43 | Foyaite | DC, above III-8 |
44 | Villiaumite-bearing foyaite | DC, III-14 |
45 | Villiaumite-bearing foyaite | DC, III-14e |
46 | Foyaite | DC, above III-15 |
47 | Eudialite-bearing foyaite | DC, below III-16 |
48 | Eudialite-bearing foyaite | DC, below III-16 |
49 | Foyaite | DC, above IV-1 |
50 | Foyaite | DC, below IV-5 |
51 | Foyaite | DC, below IV-5 |
52 | Zeolitized lujavrite | DC, I-4 |
53 | Zeolitized loparite lujavrite | DC, I-4 |
54 | Lujavrite with amphibole | DC, II-7 |
55 | Amphibole lujavrite | DC, series II |
56 | Lujavrite | DC, III-14 |
57 | Lujavrite | DC, III-14 |
58 | Loparite lujavrite with villiaumite | DC, III-14 |
59 | Loparite lujavrite | DC, III-14 |
60 | Poikilitic nepheline syenite | DC, below III-2 |
61 | Poikilitic nepheline syenite | DC, above III-14 |
62 | Coarse-grained nepheline syenite | ENCM |
63 | Coarse-grained nepheline syenite | ENCM |
64 | Coarse-grained nepheline syenite | ENCM |
65 | Pegmatoid nepheline syenite | ENCM |
66 | Pegmatoid nepheline syenite | ENCM |
67 | Pyroxene-feldspar fenite | EXCM |
68 | Pyroxene-feldspar fenite | EXCM |
69 | Fenitized gneiss | EXCM |
70 | Fenitized gneiss | EXCM |
71 | Fenitized gneiss | EXCM |
72 | Fenitized gneiss | EXCM |
73 | Biotite gneiss | EXCM |
Sample 1 | 4He 10−6 cm3/g | 3He/4He 10−8 | 40Ar 10−6 cm3/g | 40Ar/36Ar | CH4 10−3 cm3/g | C2H6 10−4 cm3/g | ∑C5H12 2 10−7 cm3/g |
---|---|---|---|---|---|---|---|
1 | 0.9 | 12.0 | 2.5 | 524 | 11.5 | 2.5 | n.a. 3 |
2 | 0.8 | 10.2 | 3.4 | 378 | 5.0 | 2.0 | n.a. |
3 | 0.6 | 17.5 | 3.3 | 603 | 20.7 | 6.8 | 43.0 |
4 | 2.4 | 6.4 | n.a. | n.a. | 2.5 | 1.4 | 6.4 |
5 | 3.3 | 5.8 | 1.5 | 496 | 4.6 | 1.6 | n.a. |
6 | 1.8 | 5.5 | n.a. | n.a. | 1.4 | 1.1 | n.a. |
7 | 2.1 | 4.2 | n.a. | n.a. | 16.8 | 4.5 | n.a. |
8 | 190 | 1.0 | n.a. | n.a. | 2.2 | 6.0 | n.a. |
9 | 260 | 7.2 | n.a. | n.a. | 31.2 | 18.9 | n.a. |
10 | 71.0 | 7.7 | 4.5 | 573 | 27.8 | 21.3 | 63.0 |
11 | 20.3 | 8.5 | 4.1 | 513 | 31.2 | 17.5 | 38.9 |
12 | 33.0 | 8.8 | 7.8 | 362 | 56.3 | 39.4 | 137 |
13 | 2.3 | 2.2 | 1.2 | 590 | 23.0 | 7.9 | n.a. |
14 | 47.0 | 3.0 | n.a. | n.a. | 9.8 | 9.1 | n.a. |
15 | 632 | 1.0 | n.a. | n.a. | 2.7 | 5.8 | n.a. |
16 | 2.4 | 4.0 | n.a. | n.a. | 7.7 | 9.5 | n.a. |
17 | 36.1 | 34.0 | 4.9 | 944 | 3.7 | 1.4 | n.a. |
18 | 5.3 | 15.3 | 7.7 | 3446 | 35.8 | 10.1 | n.a. |
19 | 64.8 | 19.2 | 13.9 | 3602 | 41.0 | 10.0 | n.a. |
20 | 63.7 | 15.8 | n.a. | n.a. | 1.5 | 0.6 | n.a. |
21 | 329 | 16.0 | n.a. | n.a. | 16.3 | 3.8 | 7.3 |
22 | 295 | 20.0 | 2.2 | 491 | 16.3 | 3.8 | 7.3 |
23 | 297 | 20.2 | 5.6 | 2760 | 22.7 | 3.1 | n.a. |
24 | 1.2 | 4.9 | 3.5 | 394 | 17.7 | 7.4 | n.a. |
25 | 1.6 | 4.1 | 1.4 | 461 | 6.1 | 3.0 | 12.0 |
26 | 4.9 | 3.8 | n.a. | n.a. | 20.5 | 5.3 | n.a. |
27 | 37.0 | 4.5 | n.a. | n.a. | 13.0 | 3.4 | n.a. |
28 | 25.0 | 2.3 | n.a. | n.a. | 0.4 | 0.2 | n.a. |
29 | 47.0 | 1.2 | n.a. | n.a. | 26.3 | 14.6 | n.a. |
30 | 2.2 | 4.3 | n.a. | n.a. | 4.4 | 4.2 | n.a. |
31 | 21.9 | 5.2 | n.a. | n.a. | 47.2 | 18.7 | n.a. |
32 | 42.5 | 5.3 | 4.2 | 661 | 41.1 | 26.6 | 46.0 |
33 | 7.7 | 5.4 | 12.2 | 1141 | 72.4 | 41.1 | 72.0 |
34 | 9.6 | 10.8 | 1.0 | 400 | 1.8 | 1.1 | n.a. |
35 | 29.0 | 5.0 | 7.1 | 661 | 47.9 | 31.4 | 82.0 |
36 | 1.1 | 6.5 | n.a. | n.a. | 64.3 | 12.6 | 27.4 |
37 | 1.4 | 3.7 | n.a. | n.a. | 5.6 | 3.3 | 9.9 |
38 | 0.8 | 8.6 | n.a. | n.a. | 4.3 | 1.6 | n.a. |
39 | 0.8 | 9.6 | 2.9 | 481 | 5.3 | 4.6 | n.a. |
40 | 2.0 | 9.4 | 4.5 | 1115 | 0.7 | 0.1 | n.a. |
41 | 6.0 | 24.0 | n.a. | n.a. | 73.7 | 33.5 | n.a. |
42 | 7.7 | 26.8 | n.a. | n.a. | 86.6 | 39.7 | 360 |
43 | 20.7 | 28.3 | 4.2 | 1565 | 41.8 | 8.8 | n.a. |
44 | 25.5 | 26.0 | 6.2 | 1675 | 96.6 | 33.3 | n.a. |
45 | 6.8 | 25.2 | 2.7 | 792 | 46.8 | 16.7 | n.a. |
46 | 32.0 | 29.1 | 3.9 | 681 | 56.7 | 10.2 | n.a. |
47 | 32.0 | 25.0 | n.a. | n.a. | 87.7 | 30.6 | n.a. |
48 | 24.0 | 30.2 | n.a. | n.a. | 101 | 36.4 | 116 |
49 | 30.3 | 40.0 | 6.8 | 5449 | 0.7 | 0.1 | n.a. |
50 | 18.7 | 23.6 | 5.0 | 1524 | 55.7 | 14.8 | n.a. |
51 | 26.7 | 27.4 | 8.8 | 1432 | 46.8 | 18.7 | n.a. |
52 | 4.4 | 1.6 | n.a. | n.a. | 0.1 | 0.1 | n.a. |
53 | 145 | 0.5 | n.a. | n.a. | 0.5 | 0.8 | n.a. |
54 | 6.3 | 3.2 | n.a. | n.a. | 2.5 | 0.7 | n.a. |
55 | 14.4 | 2.1 | n.a. | n.a. | 2.3 | 2.9 | n.a. |
56 | 7.6 | 10.9 | 6.6 | 1579 | 19.3 | 5.6 | n.a. |
57 | 13.0 | 15.0 | 6.1 | 1123 | 9.5 | 1.5 | n.a. |
58 | 49.5 | 1.6 | 5.0 | 1572 | 14.3 | 8.0 | n.a. |
59 | 70.0 | 1.0 | 3.9 | 1231 | 8.6 | 7.4 | n.a. |
60 | 57.5 | 25.9 | 6.2 | 2836 | 2.0 | 0.7 | n.a. |
61 | 27.0 | 27.0 | n.a. | n.a. | 1.1 | 0.5 | n.a. |
62 | 1.5 | 4.8 | n.a. | n.a. | 0.6 | 0.4 | n.a. |
63 | 6.0 | 4.8 | n.a. | n.a. | 6.0 | 4.1 | n.a. |
64 | 0.8 | 4.4 | n.a. | n.a. | 1.0 | 0.5 | n.a. |
65 | n.a. | n.a. | n.a. | n.a. | 0.9 | 0.4 | n.a. |
66 | 1.0 | 3.7 | n.a. | n.a. | 1.3 | 0.4 | n.a. |
67 | 0.5 | 85.0 | n.a. | n.a. | 2.9 | 0.5 | 1.3 |
68 | 0.5 | 110.7 | n.a. | n.a. | 4.5 | 0.4 | n.a. |
69 | 0.8 | 78.0 | n.a. | n.a. | n.a. | n.a. | n.a. |
70 | 7.0 | 93.0 | n.a. | n.a. | 7.0 | 0.5 | n.a. |
71 | 0.7 | 54.0 | n.a. | n.a. | 13.0 | 0.8 | n.a. |
72 | n.a. | n.a. | n.a. | n.a. | 5.3 | 0.3 | n.a. |
73 | 0.7 | 17.4 | n.a. | n.a. | 1.9 | n.a. | n.a. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nivin, V. The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence. Minerals 2020, 10, 830. https://doi.org/10.3390/min10090830
Nivin V. The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence. Minerals. 2020; 10(9):830. https://doi.org/10.3390/min10090830
Chicago/Turabian StyleNivin, Valentin. 2020. "The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence" Minerals 10, no. 9: 830. https://doi.org/10.3390/min10090830
APA StyleNivin, V. (2020). The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence. Minerals, 10(9), 830. https://doi.org/10.3390/min10090830