Geochemistry and Zircon U-Pb-Hf Isotopes of Metamorphic Rocks from the Kaiyuan and Hulan Tectonic Mélanges, NE China: Implications for the Tectonic Evolution of the Paleo-Asian and Mudanjiang Oceans
Abstract
:1. Introduction
2. Geological Context and Previous Work
3. Sampling and Petrography
4. Analytical Techniques
4.1. Zircon U–Pb Age and Trace Element Data
4.2. Whole-Rock Major and Trace Element Analyses
4.3. In situ Zircon Lu-Hf Isotopic Analyses
5. Results
5.1. Whole-Rock Geochemistry and Protolith Reconstruction
5.2. Zircon Characteristics
5.2.1. Zircon Morphology
5.2.2. Zircon U-Pb Ages
5.2.3. Zircon Trace Elements
5.2.4. Zircon Hf Isotopes
6. Discussion
6.1. The KYTM and HLTM Geochronology Revisited
6.1.1. The KYTM
6.1.2. The HLTM
6.2. Petrogenetic Implications
6.2.1. Assessment of Element Mobility
6.2.2. Crustal Contamination of the Basaltic Rocks
6.2.3. Origin of the Early Permian Protoliths of the Metamorphic Rocks from the HLTM
6.2.4. Origin of the Late Permian and Late Triassic Protoliths of the Metamorphic Rocks from the KYTM
6.3. Tectonic Implications for the PAO Regime and MO Regime
6.3.1. Permo–Triassic Tectonic Evolution of the Eastern Segment of PAO
6.3.2. Implications for the Tectonic Evolution of the MO
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsü, K. The principles of mélanges and their bearing on the Franciscan–Knoxville Paradox. Geol. Soc. Am. Bull. 1968, 79, 1063–1074. [Google Scholar] [CrossRef]
- Rast, N.; Horton, J.W., Jr. Mélanges and olistostromes in the Appalachians of the United States and mainland Canada: An assessment. Spec. Pap. Geol. Soc. Am. 1989, 228, 1–15. [Google Scholar]
- Şengör, A.M.C. The repeated rediscovery of mélanges and its implications for the possibility and the role of objective evidence in the scientific enterprise. Spec. Pap. Geol. Soc. Am. 2003, 373, 385–446. [Google Scholar]
- Robertson, A.H.F.; Ustaömer, T. Role of tectonic-sedimentary melange and Permian–Triassic cover units, central southern Turkey in Tethyan continental margin evolution. J. Asian Earth Sci. 2011, 40, 98–121. [Google Scholar] [CrossRef]
- Kusky, T.M.; Windley, B.F.; Safonova, I.; Wakita, K.; Wakabayashi, J.; Polat, A.; Santosh, M. Recognition of ocean plate stratigraphy in accretionary orogens through earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res. 2013, 24, 501–547. [Google Scholar] [CrossRef]
- Wang, J.P.; Kusky, T.; Polat, A.; Wang, L.; Deng, H.; Wang, S.J. A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton. Tectonophysics 2013, 608, 929–946. [Google Scholar] [CrossRef]
- Wang, J.P.; Li, X.W. Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton. Geol. Soc. Am. Bull. 2019, 131, 1943–1964. [Google Scholar] [CrossRef]
- Jahn, B. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol. Soc. Lond. Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Li, J.Y. Permian geodynamic setting of northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.; Sun, S.; Li, J.L.; Huang, B.C.; Han, C.M.; Yuan, C.; Sun, M.; Chen, H.L. A tale of amalgamation of three Permo–Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Neubauer, F.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Safonova, I.; Kotlyarov, A.; Krivonogov, S.; Xiao, W.J. Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res. 2017, 50, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Safonova, I. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res. 2017, 47, 6–27. [Google Scholar] [CrossRef]
- Han, Z.Z.; Song, Z.G.; Han, C.; Zhong, W.J.; Han, M.; Yan, J.L.; Liu, H.; Du, Q.X.; Gao, L.H.; Li, J.J. U–Pb ages and Hf isotopic composition of zircons and whole rock geochemistry of volcanic rocks from the Fangniugou area: Implications for early–middle Paleozoic tectonic evolution in Jilin Province, NE China. J. Miner. Petrol. Sci. 2018, 113, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.Z.; Liu, H.; Song, Z.G.; Zhong, W.J.; Han, C.; Han, M.; Du, Q.X.; Gao, L.H.; Li, J.J.; Yan, J.L. Geochronology, geochemistry, and tectonic implications of upper Silurian–Lower Devonian meta-sedimentary rocks from the Jiangyu group in eastern Jilin Province, Northeast China. Can. J. Earth Sci. 2018, 55, 490–504. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A.; Zhao, G.C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Du, Q.X.; Han, Z.Z.; Shen, X.L.; Han, C.; Han, M.; Song, Z.G.; Gao, L.H.; Liu, H.; Zhong, W.J.; Yan, J.L. Zircon U–Pb geochronology and geochemistry of the post-collisional volcanic rocks in eastern Xinjiang Province, NW China: Implications for the tectonic evolution of the Junggar terrane. Int. Geol. Rev. 2018, 60, 339–364. [Google Scholar] [CrossRef]
- Du, L.; Long, X.P.; Yuan, C.; Zhang, Y.Y.; Huang, Z.Y.; Sun, M.; Zhao, G.C.; Xiao, W.J. Early Paleozoic Dioritic and Granitic Plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the Initiation of a Magmatic Arc in the Southern Central Asian Orogenic Belt. J. Asian Earth Sci. 2018, 153, 139–153. [Google Scholar] [CrossRef]
- Du, L.; Long, X.P.; Yuan, C.; Zhang, Y.Y.; Huang, Z.Y.; Wang, X.Y.; Yang, Y.H. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions. Lithos 2018, 304–307, 230–244. [Google Scholar] [CrossRef]
- Du, L.; Long, X.P.; Yuan, C.; Zhang, Y.Y.; Huang, Z.Y.; Sun, M.; Xiao, W.J. Petrogenesis of late paleozoic diorites and a-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos 2018, 318–319, 47–59. [Google Scholar] [CrossRef]
- Song, Z.G.; Han, C.; Liu, H.; Han, Z.Z.; Yan, J.L.; Zhong, W.J.; Gao, L.H.; Du, Q.X.; Han, M.; Li, J.J. Early-Middle Ordovician intermediate-mafic and ultramafic rocks in central Jilin Province, NE China: Geochronology, origin, and tectonic implications. Miner. Petrol. 2019, 113, 393–415. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhou, J.B. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J. Asian Earth Sci. 2015, 113, 909–921. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Li, S.Z.; Guo, L.L.; Li, X.Y.; Jiang, Z.X.; Liu, Y.J.; Li, Y.; Wang, G.Z.; Lan, H.Y.; Guo, R.H.; et al. Palaeomagnetic assessment of tectonic rotation in Northeast Asia: Implications for the coupling of intracontinental deformation and mantle convection. Int. Geol. Rew. 2020. [Google Scholar] [CrossRef]
- Han, Z.Z.; Ren, X.; Schertl, H.P.; Li, X.P.; Song, Z.G.; Du, Q.X.; Han, C.; Zhong, W.J.; Gao, L.H. Zircon U-Pb-Hf isotopes and geochemistry of Jurassic igneous rocks from the southern Zhangguangcai Range, NE China: Constraints on magmatism, petrogenesis and tectonic implications. Int. Geol. Rew. 2019. [Google Scholar] [CrossRef]
- Han, Y.G.; Zhao, G.C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 129–152. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Yang, J.H. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 2007, 30, 542–556. [Google Scholar] [CrossRef]
- Lin, W.; Faure, M.; Nomade, S.; Shang, Q.H.; Renne, P.R. Permian–Triassic amalgamation of Asia: Insights from northeast China sutures and their place in the final collision of north China and Siberia. C. R. Geosci. 2008, 340, 190–201. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Windley, B.; Huang, B.C.; Han, C.M.; Yuan, C.; Chen, H.L.; Sun, M.; Sun, S.; Li, J.L. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth and metallogeny of Central Asia. Int. J. Earth Sci. 2009, 98, 1189–1217. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, Y.; Xu, B.; Faure, M.; Shi, G.; Choulet, F. Did the Paleo-Asian Ocean between North China Block and Mongolia block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. J. Geophys. Res. Solid Earth 2013, 118, 1873–1894. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhao, P.; Wang, Y.Y.; Liao, W.; Luo, Z.W.; Bao, Q.Z.; Zhou, Y.H. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in north China. J. Asian Earth Sci. 2015, 97, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Z.C.; Li, K.; Yu, H.F.; Wu, T.R. Detrital zircon U–Pb ages and Hf isotopes of Permo-Carboniferous sandstones in central Inner Mongolia, China: Implications for provenance and tectonic evolution of the southeastern Central Asian Orogenic Belt. Tectonophysics 2016, 671, 183–201. [Google Scholar] [CrossRef]
- Li, S.; Wilde, S.A.; He, Z.J.; Jiang, X.J.; Liu, R.Y.; Zhao, L. Triassic sedimentation and post accretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China. Tectonics 2014, 33, 960–981. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Guo, P.Y.; Wang, F. Permian tectonic evolution of the eastern section of the northern margin of the North China Plate: Constraints from zircon U–Pb geochronology and geochemistry of the volcanic rocks. Acta Petrol. Sin. 2012, 28, 2733–2750. (In Chinese) [Google Scholar]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Wang, F.; Wang, Z.J. Zircon U–Pb geochronology and petrogenesis of the Late Paleozoic–Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos 2013, 170–171, 191–207. [Google Scholar] [CrossRef]
- Wang, Z.J.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Li, Y.; Cao, H.H. Geochronology and geochemistry of middle Permian-Middle Triassic intrusive rocks from central-eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Lithos 2015, 238, 13–25. [Google Scholar] [CrossRef]
- Yuan, L.L.; Zhang, X.H.; Xue, F.H.; Lu, Y.H.; Zong, K.Q. Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogeny-craton boundary. Lithos 2016, 258–259, 58–76. [Google Scholar] [CrossRef]
- Yang, D.G.; Sun, D.Y.; Gou, J.; Hou, X.G. U–Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China: Transition of the Paleo-Asian oceanic regime to the circum-Pacific tectonic regime. J. Asian Earth Sci. 2017, 143, 171–190. [Google Scholar] [CrossRef]
- Song, Z.G.; Han, Z.Z.; Gao, L.H.; Geng, H.Y.; Li, X.P.; Meng, F.X.; Han, M.; Zhong, W.J.; Li, J.J.; Du, Q.X.; et al. Permo-Triassic evolution of the southern margin of the Central Asian Orogenic Belt revisited: Insights from Late Permian igneous suite in the Daheishan Horst, NE China. Gondwana Res. 2018, 56, 23–50. [Google Scholar] [CrossRef]
- Guan, Q.B.; Liu, Z.H.; Liu, Y.J.; Liu, J.; Wang, S.J.; Tian, Y. Geochemistry and zircon U–Pb geochronology of mafic rocks in the Kaiyuan tectonic mélange of northern Liaoning Province, NE China: Constraints on the tectonic evolution of the Paleo-Asian Ocean. Geol. J. 2019, 54, 656–678. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.H.; Liu, Y.J.; Shi, S.S.; Wei, M.H.; Yang, J.J.; Gao, T. Late Paleozoic–Early Mesozoic southward subduction-closure of the Paleo-Asian Ocean: Proof from geochemistry and geochronology of Early Permian–Late Triassic felsic intrusive rocks from North Liaoning, NE China. Lithos 2019, 346–347, 105165. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Liu, Z.H.; Yin, C.Y.; Zhao, C.; Yu, X.Y.; Chen, Y.; Tian, Y.; Dong, Y. Petrogenesis of Permo-Triassic intrusive rocks in Northern Liaoning Province, NE China: Implications for the closure of the eastern Paleo-Asian Ocean. Int. Geol. Rev. 2020, 62, 754–780. [Google Scholar] [CrossRef]
- Jing, Y.; Ge, W.C.; Dong, Y.; Yang, H.; Ji, Z.; Bi, J.H.; Zhou, H.Y.; Xing, D.H. Early–Middle Permian southward subduction of the eastern Paleo-Asian Ocean: Constraints from geochronology and geochemistry of intermediate-acidic volcanic rocks in the northern margin of the North China Craton. Lithos 2020, 364–365, 105491. [Google Scholar] [CrossRef]
- Jing, Y.; Ji, Z.; Ge, W.C.; Dong, Y.; Yang, H.; Bi, J.H. Middle–late permian I-type granitoids from the Diaobingshan region in the northern margin of the North China Craton: Insight into southward subduction of the Paleo–Asian Ocean. Int. Geol. Rew. 2020. [Google Scholar] [CrossRef]
- Guan, Q.B.; Liu, Z.H.; Liu, Y.J.; Li, S.Z.; Wang, S.J.; Chen, Z.X.; Zhang, C. A tectonic transition from closure of the Paleo-Asian Ocean to subduction of the Paleo-Pacific Plate: Insights from early Mesozoic igneous rocks in eastern Jilin Province, NE China. Gondwana Res. 2020. [Google Scholar] [CrossRef]
- Wang, Z.J.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Li, Y. Geochronology and provenance of detrital zircons from late Palaeozoic strata of central Jilin Province, Northeast China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Int. Geol. Rev. 2015, 57, 211–228. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.H.; Zhao, C.; Wang, C.J.; Guan, Q.B.; Dou, S.Y.; Song, S. Geochemistry and U–Pb detrital zircon ages of late Permian to Early Triassic metamorphic rocks from northern Liaoning, North China: Evidence for the timing of final closure of the Paleo-Asian Ocean. J. Asian Earth Sci. 2017, 145, 460–474. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Pei, F.P.; Wang, Z.W.; Cao, H.H.; Xu, W.L.; Wang, Z.J.; Zhang, Y. Using detrital zircons from late Permian to Triassic sedimentary rocks in the south-eastern Central Asian Orogenic Belt (NE China) to constrain the timing of the final closure of the Paleo-Asian Ocean. J. Asian Earth Sci. 2017, 144, 82–109. [Google Scholar] [CrossRef]
- Du, Q.X.; Han, Z.Z.; Shen, X.L.; Gao, L.H.; Han, M.; Song, Z.G.; Li, J.J.; Zhong, W.J.; Yan, J.L.; Liu, H. Geochemistry and geochronology of Upper Permian-Upper Triassic volcanic rocks in eastern Jilin Province, NE China: Implications for the tectonic evolution of the Palaeo-Asian Ocean. Int. Geol. Rev. 2017, 59, 368–390. [Google Scholar] [CrossRef]
- Du, Q.X.; Han, Z.Z.; Shen, X.L.; Han, C.; Song, Z.G.; Gao, L.H.; Han, M.; Zhong, W.J.; Yan, J.L. New evidence of detrital zircon ages for the final closure time of the Paleo-Asian Ocean in the eastern Central Asian Orogenic Belt (NE China). Acta Geol. Sin. Engl. Ed. 2017, 91, 1910–1914. [Google Scholar] [CrossRef]
- Du, Q.X.; Han, Z.Z.; Shen, X.L.; Han, C.; Song, Z.G.; Gao, L.H.; Han, M.; Zhong, W.J. Geochronology and geochemistry of Permo-Triassic sandstones in eastern Jilin Province (NE China): Implications for final closure of the Paleo-Asian Ocean. Geosci. Front. 2019, 10, 368–390. [Google Scholar] [CrossRef]
- Han, Z.Z.; Zhong, W.J.; Song, Z.G.; Han, C.; Han, M.; Gao, L.H.; Du, Q.X.; Li, J.J.; Yan, J.L.; Liu, H. Geochronology and geochemistry of metasedimentary rocks from the Dongnancha Formation in the Huadian area, central Jilin Province, Northeast (NE) China: Implications for the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Geochemistry 2019, 79, 94–112. [Google Scholar] [CrossRef]
- Shen, X.L.; Du, Q.X.; Han, Z.Z.; Song, Z.G.; Han, C.; Zhong, W.J.; Ren, X. Constraints of zircon U-Pb-Hf isotopes from Late Permian-Middle Triassic flora-bearing strata in the Yanbian area (NE China) on a scissor-like closure model of the Paleo-Asian Ocean. J. Asian Earth Sci. 2019, 183, 103964. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.C.; Yang, H.; Bi, J.H.; Wang, Z.H.; Xu, W.L. Permian tectonic evolution of the Mudanjiang Ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif, NE China. Gondwana Res. 2017, 49, 147–163. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.C.; Yang, H.; Ji, Z.; He, Y.; Zhao, D.; Xu, W.L. Convergence history of the Jiamusi and Songnen-Zhangguangcai Range massifs: Insights from detrital zircon U–Pb geochronology of the Yilan Heilongjiang Complex, NE China. Gondwana Res. 2018, 56, 51–68. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.C.; Yang, H.; Liu, X.W.; Bi, J.H.; Ji, Z.; Xu, W.L. Geochemical and SIMS U–Pb rutile and LA–ICP–MS U–Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibolites of the Heilongjiang Complex, NE China. Gondwana Res. 2019, 69, 25–44. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhang, J.J.; Liu, K.; Ling, Y.Y.; Wang, M.; Wang, J.M. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China. Lithos 2016, 261, 232–249. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhang, J.J.; Li, L.; Liu, K.; Ling, Y.Y.; Wang, J.M.; Wang, M. Geochronology and geochemistry of the Heilongjiang Complex and the granitoids from the Lesser Xing’an-Zhangguangcai Range: Implications for the late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics 2017, 717, 565–584. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhang, J.J.; Li, L.; Liu, K. A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: Constraints from whole-rock geochemistry and zircon U–Pb and Lu-Hf isotopes of the Lesser Xing’an-Zhangguangcai Range granitoids. Lithos 2018, 302–303, 263–277. [Google Scholar]
- Han, W.; Zhou, J.B.; Wilde, S.A.; Li, L. LA-ICPMS zircon U–Pb dating of the Heilongjiang Complex in the Luobei area: New constraints for the late Palaeozoic-Mesozoic tectonic evolution of Jiamusi Block, NE China. Geol. J. 2020, 55, 1644–1669. [Google Scholar] [CrossRef]
- Long, X.Y.; Xu, W.L.; Guo, P.; Sun, C.Y.; Luan, J.P. Was Permian magmatism in the eastern Songnen and western Jiamusi massifs, NE China, related to the subduction of the Mudanjiang oceanic plate? Geol. J. 2020, 55, 1781–1807. [Google Scholar] [CrossRef]
- Zhao, D.; Ge, W.C.; Yang, H.; Dong, Y.; Bi, J.H.; He, Y. Petrology, geochemistry, and zircon U–Pb–Hf isotopes of Late Triassic enclaves and host granitoids at the southeastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: Evidence for magma mixing during subduction of the Mudanjiang oceanic plate. Lithos 2019, 312–313, 358–374. [Google Scholar]
- Zhou, J.B.; Wilde, S.A.; Zhao, G.C.; Zhang, X.Z.; Wang, H.; Zeng, W.S. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma? J. Geodyn. 2010, 50, 300–317. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.C.; Sun, M.; Liu, Q.; Han, Y.G.; Hou, W.; Zhang, X.R.; Eizenhofer, P.R. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang complex, northeastern China and tectonic implications. Lithos 2015, 216, 241–253. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.C.; Sun, M.; Eizenhofer, P.R.; Liu, Q.; Zhang, X.R. Geochronology and geochemistry of the Yilan greenschists and amphibolites in the Heilongjiang complex, northeastern China and tectonic implications. Gondwana Res. 2017, 43, 213–228. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.C.; Sun, M.; Han, Y.G.; Liu, Q.; Eizenhofer, P.R.; Zhang, X.R.; Hou, W.Z. Detrital zircon U–Pb and Hf isotopic data for meta-sedimentary rocks from the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 2017, 282–283, 23–32. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.C.; Ji, J.Q.; Han, Y.G.; Liu, Q.; Eizenhofer, P.R.; Zhang, X.R.; Hou, W.Z. Subduction between the Jiamusi and Songliao blocks: Geological, geochronological and geochemical constraints from the Heilongjiang Complex. Lithos 2017, 282–283, 128–144. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, J.B.; Wilde, S.A.; Zhang, X.Z.; Ren, S.M. The timing of final closure along the Changchun–Yanji suture zone: Constraints from detrital zircon U–Pb dating of the Triassic Dajianggang Formation, NE China. Lithos 2016, 261, 216–231. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 2013, 23, 1365–1377. [Google Scholar] [CrossRef]
- Zhou, J.B.; Cao, J.L.; Wilde, S.A.; Zhao, G.C.; Zhang, J.J.; Wang, B. Paleo-Pacific subduction-accretion: Evidence from geochemical and U–Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 2014, 33, 2444–2466. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.B.; Li, L. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. J. Asian Earth Sci. 2017, 145, 91–100. [Google Scholar] [CrossRef]
- Pei, F.P.; Zhang, Y.; Wang, Z.W.; Cao, H.H.; Xu, W.L.; Wang, F.; Yang, C. Early-Middle Paleozoic subduction–collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China. Lithos 2016, 261, 164–180. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.W.; Pei, F.P.; Xu, W.L.; Cao, H.H.; Wang, Z.J. Geochronology and geochemistry of Late Devonian and early Carboniferous igneous rocks of central Jilin Province, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. J. Asian Earth Sci. 2015, 97, 260–278. [Google Scholar] [CrossRef]
- Zhang, H.H.; Wang, F.; Xu, W.L.; Cao, H.H.; Pei, F.P. Petrogenesis of Early–Middle Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China: Implications for the extent of spatial–temporal overprinting of the Mongol–Okhotsk and Paleo-Pacific tectonic regimes. Lithos 2016, 256–257, 132–147. [Google Scholar] [CrossRef]
- Wang, D.F.; Chen, C.Y.; Yang, S.; Yang, X.Z.; Zhang, J.F. The foundation of Early Paleozoic Qinghezhen Group in Northern Liaoning and its important geological significance. Bull. Shenyang Inst. Geol. Miner. Res. Chin. Acad. Geol. Sci. 1988, 52, 171–177. (In Chinese) [Google Scholar]
- Huan, Y.Q.; Pei, S.J.; Chen, S.L.; Hong, Z.M.; Zhao, G.H. Ophiolitic mélange in the Kaiyuan group. Reg. Geol. Chin. 1999, 18, 4–13. (In Chinese) [Google Scholar]
- Chen, Y.J.; Peng, Y.J.; Liu, Y.W.; Sun, G.; Matthew, G. Progress in the study of chronostratigraphy of the “Qinghezhen Group”. Geol. Rev. 2006, 52, 171–177. (In Chinese) [Google Scholar]
- Liu, J.; Liu, Z.H.; Zhao, C.; Wang, C.J.; Peng, Y.B.; Zhang, H. Petrogenesis and zircon LA-ICP-MS U–Pb dating of newly discovered Mesoarchean gneisses on the northern margin of the North China Craton. Int. Geol. Rev. 2017, 59, 1575–1589. [Google Scholar] [CrossRef]
- Chi, Y.Y.; Su, Y.Z.; Nan, R.S. Division and age of Hulan Group in Hulanzhen area of central Jilin. Acta Geosci. Sinica 1997, 18, 205–214. (In Chinese) [Google Scholar]
- Xi, A.H.; Ren, H.M.; Zhang, B.F.; Wang, Y.X.; Shi, S.B.; Zhi, X.J. Isotopic chronology of the Hulan Group and its geological significance in the Central Jilin Province. J. Jilin Uni. Earth Sci. 2003, 33, 15–18. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Su, Y.Z.; Liu, E.Y. Multiple Correlation Research on the Strata of China–the Regional Strata of the Northeast China; China University of Geosciences Press: Wuhan, China, 1997; pp. 1–175. (In Chinese) [Google Scholar]
- Nan, R.S.; Guo, S.Z. Paleozoic Biostratigraphy and Lithofacies-Paleogeography of Eastern Jilin and Heilongjiang Provinces, China; Geological Publishing House: Beijing, China, 1992; pp. 1–146. (In Chinese) [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Z. Accurate U–Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.G.; Jackson, S.E.; Griffin, W.L. Data reduction software for LA–ICP–MS. In Laser–Ablation–ICP–MS Spectrometry in the Earth Sciences: Principles and Applications; Sylvester, P.J., Ed.; Mineralogical Association of Canada, MAC Short Course Series: Ottawa, ON, Canada, 2001; Volume 29, pp. 239–243. [Google Scholar]
- Ludwig, K.R. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. 2003, 4, 1–70. [Google Scholar]
- Rudnick, R.L.; Gao, S.; Ling, W.L.; Liu, Y.S.; McDonough, W.F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 2004, 7, 609–637. [Google Scholar] [CrossRef]
- Li, X.H. Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China. Geochem. J. 1997, 31, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Wu, F.Y.; Xie, L.W.; Yang, Y.H. Hf isotopic compositions of the standard zircons for U–Pb dating. Chin. Sci. Bull. 2004, 49, 1642–1648. [Google Scholar] [CrossRef]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi–collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Albarède, F.; Scherer, E.E.; Blichert–Toft, J.; Rosing, M.; Simionovici, A.; Bizzarro, M. γ–ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochim. Cosmochim. Acta 2006, 70, 1261–1270. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constrains from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Zhou, S.T. Geology of Banded Iron Formations in the Anshan–Benxi Area; Geological Publishing House: Beijing, China, 1994; pp. 1–278. (In Chinese) [Google Scholar]
- Winchester, J.A.; Max, M.D.; Long, C.B. Trace element correlation in the reworked Proterozoic Dalradian metavolcanic suites of the western Ox Mountains and NW Mayo inliers, Ireland. In Geochemistry and Mineralization of Proterozoic Volcanic Suites; Pharaoh, T., Beckinsale, R.D., Rickard, D., Eds.; Geological Society of London Special Publication: London, UK, 1987; Volume 33, pp. 489–502. [Google Scholar]
- Shaw, D.M. The Origin of the Apsley Gneiss, Ontario. Can. J. Earth Sci. 1972, 9, 18–35. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Bingen, B.; Austrheim, H.; Whitehouse, M.J.; Davis, W.J. Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of Western Norway. Contrib. Mineral. Petrol. 2004, 147, 671–683. [Google Scholar] [CrossRef]
- Cao, Y.T.; Liu, L.; Chen, D.L.; Wang, C.; Yang, W.Q.; Kang, L.; Zhu, X.H. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China. J. Asian Earth Sci. 2017, 148, 223–240. [Google Scholar] [CrossRef]
- Song, Z.J.; Liu, H.M.; Meng, F.X.; Yuan, X.Y.; Feng, Q.; Zhou, D.W.; Romaní, J.R.V.; Yan, H.B. Zircon U–Pb Ages and Hf Isotopes of Neoproterozoic Meta-Igneous Rocks in the Liansandao Area, Northern Sulu Orogen, Eastern China, and the Tectonic Implications. J. Earth Sci. 2019, 30, 1230–1242. [Google Scholar] [CrossRef]
- Song, Z.J.; Meng, F.X.; Li, H.F.; Yuan, X.Y.; Li, X.P.; Xu, Q.L. Dating of zircon LA-MC-ICP-MS U–Pb in metabasalt of zhaertai group, Inner Mongolia, China. Indian J. Geo-Mar. Sci. 2017, 46, 1950–1958. [Google Scholar]
- Mezger, K.; Krogstad, E.J. Interpretation of discordant U–Pb zircon ages: An evaluation. J. Metamorph. Geol. 1997, 15, 127–140. [Google Scholar] [CrossRef]
- Cao, Y.T.; Liu, L.; Wang, C.; Kang, L.; Li, D.; Yang, W.Q.; Zhu, X.H. Timing and nature of the partial melting processes during the exhumation of the garnet–bearing biotite gneiss in the southern Altyn Tagh HP/UHP belt, Western China. J. Asian Earth Sci. 2019, 170, 274–293. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, X.P.; Schertl, H.P.; Feng, Q.D. Petrogenesis of early cretaceous andesite dykes in the Sulu orogenic belt, eastern China. Miner. Petrol. 2019, 113, 77–97. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Cao, J.L.; Zhou, J.B.; Li, L. The tectonic evolution of the Changchun-Yanji suture zone: Constraints of zircon U–Pb ages of the Yantongshan accretionary complex (NE China). J. Asian Earth Sci. 2020, 194, 104110. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W.; Rosing, M.T. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 2002, 184, 231–254. [Google Scholar] [CrossRef]
- Condie, K.C.; Viljoen, M.J.; Kable, E.J.D. Effects of alteration on element distributions in archean tholeiites from the Barberton greenstone belt, South Africa. Contrib. Miner. Petrol. 1977, 64, 75–89. [Google Scholar] [CrossRef]
- Dostal, J.; Strong, D.F.; Jamieson, R.A. Trace element mobility in the mylonite zone within the ophiolite aureole, St. Anthony Complex, Newfoundland. Earth Planet. Sci. Lett. 1980, 49, 188–192. [Google Scholar] [CrossRef]
- Liu, J.Q.; Yin, P.; Chen, X.Y.; Cao, K. Distribution, Enrichment and Transport of Trace Metals in Sediments from the Dagu River Estuary in the Jiaozhou Bay, Qingdao, China. Minerals 2019, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.J.; Li, J.P.; Meng, F.X.; Tang, W.J.; Yuan, X.Y. Seasonal Distribution of Suspended Particulate Matter off China’s Subei Coast. Pol. J. Environ. Stud. 2018, 27, 845–852. [Google Scholar] [CrossRef]
- Ludden, J.; Gélinas, L.; Trudel, P. Archean metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Can. J. Earth Sci. 1982, 19, 2276–2287. [Google Scholar] [CrossRef]
- Rundnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 3, pp. 1–64. [Google Scholar]
- Salters, V.J.M.; Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 2004, 15, Q05004. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 2005, 46, 921–944. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, R.; Hirschmann, M.M.; Smith, N.D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 2007, 48, 2093–2124. [Google Scholar] [CrossRef] [Green Version]
- Pilet, S.; Baker, M.B.; Stolper, E.M. Metasomatized lithosphere and the origin of alkaline lavas. Science 2008, 320, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef]
- Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am. J. Sci. 1978, 278, 305–343. [Google Scholar] [CrossRef]
- Herzberg, C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 2006, 444, 605–609. [Google Scholar] [CrossRef]
- Hirschmann, M.M.; Kogiso, T.; Baker, M.B.; Stolper, E.M. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 2003, 31, 481–484. [Google Scholar] [CrossRef]
- Hirose, K.; Kushiro, I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 1993, 114, 477–489. [Google Scholar] [CrossRef]
- Hirose, K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett. 1997, 24, 2837–2840. [Google Scholar] [CrossRef]
- Walter, M.J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 1998, 39, 29–60. [Google Scholar] [CrossRef]
- Kogiso, T.; Hirschmann, M.M.; Frost, D.J. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 2003, 216, 603–617. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; Stalker, K. Immiscible transition from carbonaterich to silicate-richmelts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J. Petrol. 2006, 47, 647–671. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Tischendorf, G.; Paelchen, W. On the classification of granitoids. Z. Geol. Wiss. 1985, 13, 615–627. [Google Scholar]
- Romaní, J.R.V.; Song, Z.J.; Liu, H.M.; Sun, Y.F.; Li, H.N. Orogenic Movements during the Paleozoic Period: Development of the Granitoid Formations in the Northwestern Region of Spain’s Iberian Peninsula. J. Earth Sci. 2020, 31, 611–620. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Meng, Y.K.; Xiong, F.H.; Xu, Z.Q.; Ma, X.X. Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet: Implications for the tectonic-magmatic evolution of the Central Gangdese Belt. J. Asian Earth Sci. 2019, 176, 27–41. [Google Scholar] [CrossRef]
- Wang, S.J.; Schertl, H.P.; Pang, Y.M. Geochemistry, geochronology and Sr–Nd–Hf isotopes of two types of Early Cretaceous granite porphyry dykes in the Sulu orogenic belt, eastern China. Can. J. Earth Sci. 2020, 57, 249–266. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Y.Y.; Huang, Z.Y.; Li, X.P.; Yuan, C.; Wu, B.; Long, X.P. Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China: Insights from three episodes of granitoids. Lithos 2019, 350–351, 105243. [Google Scholar] [CrossRef]
- Du, L.; Yuan, C.; Li, X.P.; Zhang, Y.Y.; Huang, Z.Y.; Long, X.P. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. J. Earth Sci. 2019, 30, 1243–1252. [Google Scholar] [CrossRef]
- Pang, Y.M.; Guo, X.W.; Zhang, X.H.; Zhu, X.Q.; Hou, F.H.; Wen, Z.H.; Han, Z.Z. Late Mesozoic and Cenozoic tectono-thermal history and geodynamic implications of the Great Xing’an Range, NE China. J. Asian Earth Sci. 2020, 189, 104155. [Google Scholar] [CrossRef]
- Yu, Q.; Ge, W.C.; Yang, H.; Zhao, G.C.; Zhang, Y.L.; Su, L. Petrogenesis of late Paleozoic volcanic rocks from the Daheshen Formation in central Jilin Province, NE China, and its tectonic implications: Constrains from geochronology, geochemistry and Sr-Nd-Hf isotopes. Lithos 2014, 192–195, 116–131. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Martin, H. Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geology 1986, 14, 753–756. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Xiong, F.H.; Meng, Y.K.; Yang, J.S.; Liu, Z.; Xu, X.Z.; Eslami, A.; Zhang, R. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geosci. Front. 2020, 11, 227–292. [Google Scholar] [CrossRef]
- Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.; Van Calsteren, P.; Deng, W. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 1996, 37, 45–71. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.F.; Xu, X.S. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China: Characteristics and evolution of the lithospheric mantle. J. Asian Earth Sci. 2008, 33, 177–193. [Google Scholar] [CrossRef]
- Rogers, G.; Hawkesworth, C.J. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth Planet. Sci. Lett. 1989, 91, 271–285. [Google Scholar] [CrossRef]
- Sajona, F.G.; Maury, R.C.; Bellon, H.; Cotton, J.; Defant, M. High field strength elements of Pliocene–Pleistocene island–arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). J. Petrol. 1996, 37, 693–726. [Google Scholar] [CrossRef] [Green Version]
- Kelemen, P.B.; Hanghøj, K.; Greene, A.R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem. 2007, 138, 1–70. [Google Scholar]
- Wu, F.Y.; Wilde, S.A.; Sun, D.Y.; Zhang, G.L. Geochronology and petrogenesis of post-orogenic Cu, Ni-bearing mafic–ultramafic intrusions in Jilin, NE China. J. Asian Earth Sci. 2004, 23, 781–797. [Google Scholar] [CrossRef]
- Xie, H.Q.; Zhang, F.Q.; Miao, L.C.; Li, T.S.; Liu, D.Y. Characteristics of the Piaohechuan mafic-ultramafic complex, central Jilin, Northeast China: Constrains on the nature and evolution of the northeastern North China marginal tectonic belt. Geol. Bull. China 2007, 26, 810–822. (In Chinese) [Google Scholar]
- Wang, F.; Xu, W.L.; Ge, W.C.; Yang, H.; Pei, F.P.; Wu, W. The offset distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic magmatism within the Songnen-Zhangguangcai Range, Jiamusi, and Khanka massifs. Acta Petrol. Sin. 2016, 32, 1129–1140. (In Chinese) [Google Scholar]
Sample | GPS Location | Lithology | Mineral Assemblages | Protoliths 1 | Ages (Ma) 2 |
---|---|---|---|---|---|
12DP1 | N 42°31′17″ E 124°26′06″ | Hornblende epidote plagioclase gneiss | Qz (2–3 vol.%), Afs + Pl (47–52 vol.%), Ep (25–30 vol.%), Hbl (10–15 vol.%), Ttn, Ap, Zrn, Opq | Basalt | 230 |
12DP2 | N 42°31′17″ E 124°26′09″ | Hornblende biotite plagioclase gneiss | Qz (1–2% vol.), Pl (63–69% vol.), Bt (20–27% vol.), Hbl (3–5 vol.%), Ttn, Ap, Zrn, Opq | Basalt | 254 |
12TJ-1 | N 42°33′04″ E 124°21′03″ | Actinolite schist | Qz + Pl (55–60 vol.%), Act (30–37 vol.%), Bt (3–5 vol.%) | Intermediate rock | 2441 |
13NK | N 42°51′59″ E 126°28′11″ | Biotite hornblende leptynite | Qz (15–17 vol.%), Pl (50–55 vol.%), Hbl (20–23 vol.%), Bt (5 vol.%), Opq | Dacite | 281 |
13XBJ | N 42°58′17″ E 126°31′57″ | Hornblende biotite schist | Qz + Pl (10–15 vol.%), Bt (80–85 vol.%), Hbl (5 vol.%) | Basalt | 281 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Li, J.; Song, Z.; Liu, G.; Zhong, W.; Gao, L.; Du, Q. Geochemistry and Zircon U-Pb-Hf Isotopes of Metamorphic Rocks from the Kaiyuan and Hulan Tectonic Mélanges, NE China: Implications for the Tectonic Evolution of the Paleo-Asian and Mudanjiang Oceans. Minerals 2020, 10, 836. https://doi.org/10.3390/min10090836
Han Z, Li J, Song Z, Liu G, Zhong W, Gao L, Du Q. Geochemistry and Zircon U-Pb-Hf Isotopes of Metamorphic Rocks from the Kaiyuan and Hulan Tectonic Mélanges, NE China: Implications for the Tectonic Evolution of the Paleo-Asian and Mudanjiang Oceans. Minerals. 2020; 10(9):836. https://doi.org/10.3390/min10090836
Chicago/Turabian StyleHan, Zuozhen, Jingjing Li, Zhigang Song, Guyao Liu, Wenjian Zhong, Lihua Gao, and Qingxiang Du. 2020. "Geochemistry and Zircon U-Pb-Hf Isotopes of Metamorphic Rocks from the Kaiyuan and Hulan Tectonic Mélanges, NE China: Implications for the Tectonic Evolution of the Paleo-Asian and Mudanjiang Oceans" Minerals 10, no. 9: 836. https://doi.org/10.3390/min10090836
APA StyleHan, Z., Li, J., Song, Z., Liu, G., Zhong, W., Gao, L., & Du, Q. (2020). Geochemistry and Zircon U-Pb-Hf Isotopes of Metamorphic Rocks from the Kaiyuan and Hulan Tectonic Mélanges, NE China: Implications for the Tectonic Evolution of the Paleo-Asian and Mudanjiang Oceans. Minerals, 10(9), 836. https://doi.org/10.3390/min10090836