Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Regional and Local Geology
4. Hydrothermal Venting
5. Results
5.1. Hydrothermal Precipitates
5.2. Bulk Ore Geochemistry
5.3. Mineralogy
5.4. Hydrothermal Mineral Paragenesis
5.5. Mineral-Chemistry
6. Discussion
6.1. Interpretation on Mineral Paragenesis
6.2. Formation of Arsenian Pyrite
6.3. Effects of Biological Activity on Sulfide Deposition
6.4. Comparison with Other Shallow and Very Shallow Marine Vent Sites in the Mediterranean and Elsewhere
6.5. Enrichment in an Epithermal Suite of Elements and Cinnabar Deposition
6.6. Comparison with Other On-Shore Milos Mineralization and Sources of As and Hg in the Fluids
7. Conclusions
- (1)
- We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, shallow-water (2–10 m) and low temperature (up to 115 °C) hydrothermal venting at Paleochori Bay discharges CO2 and H2S gas and liquid (pH ~3.5–7.6) and has led to an assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Hydrothermal edifices recovered from the seafloor are composed of volcaniclastic detrital material cemented by pyrite and marcasite in variable proportions.
- (2)
- Paragenetic relations indicate deposition of two distinct mineral assemblages: (1) colloform As1− and Hg-bearing pyrite/marcasite (Py I) together with Mn-bearing calcite and apatite, and (2) massive As3+-rich pyrite (Py II) associated with alunite/natroalunite—jarosite/natojarosite solid solution and barite. Amorphous silica occur throughout the paragenetic sequence. Mercury, in the form of cinnabar, occurs in up to 3 μm grains within arsenian pyrite (Py I) layers, usually forming distinct cinnabar-enriched micro-layers.
- (3)
- A negative correlation between As and S in pyrite I suggests that As1− substitutes for sulfur, a feature consistent with reducing, higher pH, and low-sulfidation conditions prevailing during colloform pyrite/marcasite (Py I) and cinnabar deposition associated with calcite and apatite. Overgrowths of arsenian pyrite layers (up to 3.2 wt % As) onto As-free pyrite within the colloform pyrite/marcasite bands indicate fluctuation in the As content of the hydrothermal fluid. The deposition of As3+ pyrite in association with alunite is consistent with low pH, low Cl, vapor-dominated, and higher fO2 fluids as reflected by the positive correlation between As and Fe, where As substitutes for Fe in the octahedral site of pyrite.
- (4)
- The pyrite-bearing hydrothermal precipitates at Paleochori Bay are enriched in epithermal-type elements like As, Sb, Tl and Hg. In addition to boiling, mixing with seawater at the seafloor and biological activity are responsible mechanisms for this epithermal-like mineralization.
- (5)
- The Paleochori vents contain the first documented occurrence of cinnabar on the seafloor of the Aegean Sea and the Mediterranean area and provide an important link between offshore hydrothermal activity and the onshore mercury and arsenic mineralizing system on Milos Island. This study demonstrates that metal and metalloid precipitation in shallow-water continental arc environments is controlled by epithermal processes known from their subaerial analogues.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hekinian, R.; Fevrier, M.; Bischoff, P.; Picot, W.; Shanks, W.C. Sulfide deposits from the East Pacific Rise near 21° N. Science 1980, 207, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Von Damm, K.L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Ann. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulfides at the modern seafloor, a review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- Scott, S.D. Submarine hydrothermal systems and deposits. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 797–935. [Google Scholar]
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Modern sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 2005, 100, 111–141. [Google Scholar]
- Hannington, M.D.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- German, C.R.; Petersen, S.; Hannington, M.D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming? Chem. Geol. 2016, 420, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R.; Petersen, S.; Bach, W. Effects of temperature, sulfur and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 2014, 48, 699–702. [Google Scholar] [CrossRef]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Klemd, R.; Krumm, S.; Strauss, S. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem. Geol. 2016, 423, 7–18. [Google Scholar] [CrossRef]
- Humphris, S.E.; Klein, F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems. Ann. Rev. Mar. Sci. 2018, 10, 315–343. [Google Scholar] [CrossRef]
- Fouquet, Y.; von Stackelberg, U.; Charlou, J.L.; Erzinger, J.; Herzig, P.M.; Muhe, R.; Wiedicke, M. Metallogenesis in back-arc environments: The Lau basin example. Econ. Geol. 1993, 88, 2154–2181. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D.; Arribas, A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: Implications for magmatic contributions to seafloor hydrothermal systems. Miner. Depos. 1998, 33, 226–237. [Google Scholar] [CrossRef]
- Grimaud, D.; Ishibashi, J.; Lagabrielle, Y.; Auzende, J.M.; Urabe, T. Chemistry of hydrothermal fluids from the 17° S active site on the North Fiji basin ridge (SW Pacific). Chem. Geol. 1991, 93, 209–218. [Google Scholar] [CrossRef]
- Schmidt, K.; Garbe-Schönberg, D.; Hannington, M.D.; Anderson, M.O.; Bühring, B.; Haase, K.; Haruel, C.; Lupton, J.; Koschinsky, A. Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system. Geochim. Cosmochim. Acta 2017, 207, 185–209. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Sedwick, P.N.; Fryer, P.; VonderHaar, D.L.; Yeh, H.W. Unusual geochemistry of hydrothermal vents on submarine arc volcanoes: Kasuga Seamounts, Northern Mariana Arc. Earth Planet. Sci. Lett. 1993, 114, 517–528. [Google Scholar] [CrossRef]
- Reeves, E.P.; Seewald, J.S.; Saccocia, P.; Bach, W.; Craddock, P.R.; Shanks, W.C.; Sylva, S.P.; Walsh, E.; Pichler, T.; Rosner, M. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 2011, 75, 1088–1123. [Google Scholar] [CrossRef] [Green Version]
- Halbach, P.; Pracejus, B.; Märten, A. Geology and mineralogy of massive sulfide ores from the central Okinawa trough, Japan. Econ. Geol. 1993, 88, 2210–2225. [Google Scholar] [CrossRef]
- Monecke, T.; Petersen, S.; Hannington, M.D. Constraints on water depth of massive sulfide formation: Evidence from modern seafloor hydrothermal systems in arc-related settings. Econ. Geol. 2014, 109, 2079–2101. [Google Scholar] [CrossRef]
- Stoffers, P.; Worthington, T.J.; Schwarz-Schampera, U.; Hannington, M.D.; Massoth, G.J.; Hekinian, R.; Schmidt, M.; Lundsten, L.J.; Evans, L.J.; Vaiomo’Unga, R.; et al. Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific. Geology 2006, 34, 453–456. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Depos. 2011, 46, 541–584. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Klemd, R.; Smith, D.J.; Schwarz-Schampera, U.; Bach, W. Constraints on the source of Cu in a submarine magmatic hydrothermal system, Brothers volcano, Kermadec island arc. Contrib. Mineral. Petrol. 2018, 173, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kleint, C.; Bach, W.; Diehl, A.; Fröhberg, N.; Garbe-Schönberg, D.; Hartmann, J.F.; de Ronde, C.E.J.; Sander, S.G.; Strauss, H.; Stucker, V.K.; et al. Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc. Chem. Geol. 2019, 528, 119–289. [Google Scholar] [CrossRef]
- Kilias, S.P.; Nomikou, P.; Papanikolaou, D.; Polymenakou, P.N.; Godelitsas, A.; Argyraki, A.; Carey, S.; Gamaletsos, P.; Mertzimekis, T.J.; Stathopoulou, E.; et al. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci. Rep. 2013, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Prol-Ledesma, R.M.; Dando, P.R.; de Ronde, C.E.J. Preface Special Issue on “Shallow-water Hydrothermal Venting”. Chem. Geol. 2005, 224, 1–4. [Google Scholar] [CrossRef]
- Tarasov, V.G.; Gebruk, A.V.; Mironov, A.N.; Moskalev, L.I. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol. 2005, 224, 5–39. [Google Scholar] [CrossRef]
- Kleint, C.; Kuzmanovski, S.; Powell, Z.; Bühring, S.I.; Sander, S.G.; Koschinsky, A. Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand). Mar. Chem. 2015, 173, 244–252. [Google Scholar] [CrossRef]
- Wu, S.F.; You, C.F.; Lin, Y.P.; Valsami-Jones, E.; Baltatzis, E. New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece). J. Volcanol. Geotherm. Res. 2016, 310, 58–71. [Google Scholar] [CrossRef]
- Pichler, T.; Dix, G.R. Hydrothermal venting within a coral reef ecosystem. Ambitle Island, Papua New Guinea. Geology 1996, 24, 435–438. [Google Scholar] [CrossRef]
- Pichler, T.; Giggenbach, W.F.; Mcinnes, B.I.A.; Buhl, D.; Duck, B. Fe sulfide formation due to seawater-gas-sediment interaction in a shallow water hydrothermal system at Lihir Island, Papua New Guinea. Econ. Geol. 1999, 94, 281–287. [Google Scholar] [CrossRef]
- Pichler, T.; Veizer, J.; Hall, G.E.M. The origin and chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar. Chem. 1999, 64, 229–252. [Google Scholar] [CrossRef]
- Prol-Ledesma, R.M.; Canet, C.; Melgarejo, J.C.; Tolson, G.; Rubio-Ramos, M.A.; Cruz-Ocampo, J.C.; Ortega-Osorio, A.; Torres-Vera, M.A.; Reyes, A. Cinnabar deposition in submarine coastal hydrothermal vents, Pacific Margin of central Mexico. Econ. Geol. 2002, 97, 1331–1340. [Google Scholar] [CrossRef]
- Canet, C.; Prol-Ledesma, R.M.; Torres-Alvarado, I.; Gilg, H.A.; Villanueva, R.E.; Cruz, R.L.S. Silica-carbonate stromatolites related to coastal hydrothermal venting in Bahia Concepcion, Baja California Sur, Mexico. Sediment. Geol. 2005, 174, 97–113. [Google Scholar] [CrossRef]
- Canet, C.; Prol-Ledesma, R.M.; Proenza, J.A.; Rubio-Ramos, M.A.; Forrest, M.J.; Torres Vera, M.A.; Rodriguez-Diaz, A.A. Mn-Ba-Hg mineralization at shallow submarine hydrothermal vents in Bahia Concepcion, Baja California Sur, Mexico. Chem. Geol. 2005, 224, 96–112. [Google Scholar] [CrossRef]
- Canet, C.; Prol-Ledesma, R.M. Mineralizing processes at shallow submarine hydrothermal vents: Examples from Mexico. Geol. Soc. Am. Spec. Pap. 2007, 422, 359–376. [Google Scholar]
- Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D. Coastal submarine hydrothermal activity off northern Baja California. J. Geoph. Res. 1978, 83, 1757–1774. [Google Scholar] [CrossRef]
- Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D. Coastal submarine hydrothermal activity off northern Baja California 2. Evolutionary history and isotope chemistry. J. Geoph. Res. 1981, 86, 9451–9468. [Google Scholar] [CrossRef]
- Stoffers, P.; Hannington, M.; Wright, I.; Herzig, P.; de Ronde, C. Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand. Geology 1999, 27, 931–934. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LAICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Dando, P.R.; Hughes, J.A.; Leahy, Y.; Niven, S.J.; Taylor, L.J.; Smith, C. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont. Shelf Res. 1995, 15, 913–929. [Google Scholar] [CrossRef]
- Valsami-Jones, E.; Baltatzis, E.; Bailey, E.H.; Boyce, A.J.; Alexander, J.L.; Magganas, A.; Anderson, L.; Waldron, S.; Ragnarsdottir, K.V. The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. J. Volcanol. Geotherm. Res. 2005, 148, 130–151. [Google Scholar] [CrossRef]
- Jamieson, J.W.; Hannington, M.D.; Petersen, S. Seafloor Massive Sulfide Resources. In Encyclopedia of Maritime and Offshore Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Varnavas, S.P.; Cronan, D.S. Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: A synthesis. Chem. Geol. 2005, 224, 40–54. [Google Scholar] [CrossRef]
- Wu, S.F.; You, C.F.; Wang, B.S.; Valsami-Jones, E.; Baltatzis, E. Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence. Geophis. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Wu, S.F.; You, C.F.; Valsami-Jones, E.; Baltatzis, E.; Shen, M.L. Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc. Mar. Chem. 2012, 140, 33–43. [Google Scholar] [CrossRef]
- Price, R.E.; Savov, I.; Planer-Friedrich, B.; Bühring, S.; Amend, J.P.; Pichler, T. Processes influencing extreme as enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chem. Geol. 2013, 348, 15–26. [Google Scholar] [CrossRef]
- Gilhooly, W.P.; Fike, D.A.; Druschel, G.K.; Kafantaris, F.C.A.; Price, R.E.; Amend, J.P. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Geochem. Trans. 2014, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Godelitsas, A.; Price, R.E.; Pichler, T.; Amend, J.; Gamaletsos, P.; Göttlicher, J. Amorphous As-sulfide precipitates from the shallow-water hydrothermal vents off Milos Island (Greece). Mar. Chem. 2015, 177, 687–696. [Google Scholar] [CrossRef]
- Duràn-Toro, V.M.; Price, R.E.; Maas, M.; Brombach, C.C.; Pichler, T.; Rezwan, K. Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system. Mar. Chem. 2019, 211, 25–36. [Google Scholar] [CrossRef]
- Houghton, J.L.; Gilhooly, W.P.; Kafantaris, F.C.A.; Druschel, G.K.; Lu, G.S.; Amend, J.P.; Godelitsas, A.; Fike, D.A. Spatially and temporally variable sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Mar. Chem. 2019, 208, 83–94. [Google Scholar] [CrossRef]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Tarasov, V.G.; Propp, M.V.; Propp, L.N.; Zhirmunsky, A.V.; Namsaraev, B.B.; Gorlenko, V.M.; Starynin, D.A. Shallow-water gasohydrothermal vents of Ushishir Volcano and the ecosystem of Krater-naya Bight (The Kurile Islands). Mar. Ecol. 1990, 11, 1–23. [Google Scholar] [CrossRef]
- Fitzsimons, M.F.; Dando, P.R.; Hughes, J.A.; Thiermann, F.; Akoumianaki, I.; Pratt, S.M. Submarine hydrothermal brine seeps off Milos, Greece: Observations and geochemistry. Mar. Chem. 1997, 57, 325–340. [Google Scholar] [CrossRef]
- Christidis, G.E. Origin of the Bentonite Deposits of Eastern Milos, Aegean, Greece: Geological, Mineralogical and Geochemical Evidence. Clays Clay Miner. 1995, 43, 63–77. [Google Scholar] [CrossRef]
- Hein, J.R.; Stamatakis, M.G.; Dowling, J.S. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece. Trans. Inst. Min. Metall. 2000, 109, 67–76. [Google Scholar] [CrossRef]
- Kilias, S.P.; Naden, J.; Cheliotis, I.; Shepherd, T.J.; Constandinidou, H.; Crossing, J.; Simos, I. Epithermal gold mineralisation in the active Aegean volcanic arc: The Profitis Ilias deposit, Milos Island, Greece. Miner. Depos. 2001, 36, 32–44. [Google Scholar] [CrossRef]
- Naden, J.; Kilias, S.P.; Darbyshire, D.B.F. Active geothermal systems with entrained seawater as analogues for transitional continental magmato-hydrothermal and volcanic-hosted massive sulfide mineralization—The example of Milos Island, Greece. Geology 2005, 33, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Alfieris, D.; Voudouris, P.; Spry, P.G. Shallow submarine epithermal Pb-Zn-Cu-Au-Ag-Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, Geological and Geochemical constraints. Ore Geol. Rev. 2013, 53, 159–180. [Google Scholar] [CrossRef]
- Papavasiliou, K.; Voudouris, P.; Kanellopoulos, C.; Glasby, G.; Alfieris, D.; Mitsis, I. New geochemical and mineralogical constraints on the genesis of the Vani hydrothermal manganese deposit at NW Milos island, Greece: Comparison with the Aspro Gialoudi deposit and implications for the formation of the Milos manganese mineralization. Ore Geol. Rev. 2017, 80, 594–611. [Google Scholar] [CrossRef]
- Smith, D.J.; Naden, J.; Miles, A.J.; Bennett, H.; Bicknell, S.H. Mass wasting events and their impact on the formation and preservation of submarine ore deposits. Ore Geol. Rev. 2018, 97, 143–151. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Cronan, D.S.; Varnavas, S.P. Metalliferous sediments off Milos, Hellenic Volcanic Arc. Explor. Min. Geol. 1999, 8, 289–297. [Google Scholar]
- Stüben, D.; Glasby, G.P. Geochemistry of shallow submarine hydrothermal fluids from Paleohori Bay, Milos, Aegean Sea. Explor. Min. Geol. 1999, 8, 273–287. [Google Scholar]
- Baltatzis, E.; Valsami-Jones, E.; Magganas, A.; Kati, M. Tamarugite from Milos island, Greece. Neues Jahrb. Mineral.-Mon. 2001, 8, 371–377. [Google Scholar]
- Price, R.E.; Giovannelli, D. A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents. Ref. Mod. Earth Syst. Environ. Sci. 2017. [Google Scholar] [CrossRef]
- Varnavas, S.P.; Papavasiliou, C. Submarine hydrothermal mineralization processes and insular mineralization in the Hellenic Volcanic Arc system: A review. Ore Geol. Rev. 2020, 124, 103541. [Google Scholar] [CrossRef]
- Kati, M.; Valsami-Jones, E.; Baltatzis, E.; Magganas, A. Hydrothermal precipitates from the active submarine vents in Paleochori Bay, Milos Island, Greece. In The South Aegean Active Volcanic Arc: Present Knowledge and Futue Perspectives”, Proceedings of the SAAVA 2003 International Conference, Milos Island, Greece, 17–20 September 2003; George Eliopoulos: Milos Island, Greece, 2003; p. 71. [Google Scholar]
- Kati, M.; Voudouris, P.; Magganas, A.; Valsami-Jones, E.; Baltatzis, E.; Kanellopoulos, C.; Mavrogonatos, C. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece. In Proceedings of the EGU General Assembly, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 31–75. [Google Scholar]
- Gautier, P.; Brun, J.P. Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evia island). Tectonophysics 1994, 238, 399–424. [Google Scholar] [CrossRef]
- Jolivet, L.; Brun, J.P. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Royden, L.; Faccenna, C. Subduction orogeny and the Late Cenozoic evolution of the Mediterranean Arcs. Ann. Rev. Earth Planet. Sci. 2018, 46, 261–289. [Google Scholar] [CrossRef] [Green Version]
- Pe-Piper, G.; Piper, D.J.W. The igneous rocks of Greece: The anatomy of an orogen. In Beiträge zur Regionalen Geologie der Erde; Gebrüder Borntraeger: Berlin, Germany, 2002; p. 573. [Google Scholar]
- Fytikas, M.; Innocenti, F.; Kolios, N.; Manetti, P.; Mazzuoli, R.; Poli, G.; Rita, F.; Villari, L. Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets. J. Volcanol. Geotherm. Res. 1986, 28, 297–317. [Google Scholar] [CrossRef]
- Stewart, A.L.; McPhie, J. Facies architecture and Late Pliocene-Pleistocene evolution of a felsic volcanic island, Milos, Greece. Bull. Volcanol. 2006, 68, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.L.; McPhie, J. Setting of epitherrnal Au deposits in a modern volcanic island arc setting, Milos, Greece: Implications for mineral exploration. In Mineral Exploration and Sustainable Development; Eliopoulos, D., Ed.; Millpress: Rotterdam, The Nederlands, 2003; pp. 533–536. [Google Scholar]
- Alfieris, D.; Voudouris, P. High- and intermediate sulfidation Au-Ag-Te mineralization in a shallow submarine setting, Milos island, Greece: Mineralogy and geological environment of formation. In Mineral Exploration and Research: Digging Deeper; Association for Economic Geology: Dublin, Ireland, 2007; pp. 893–896. [Google Scholar]
- Lister, G.S.; Banga, G.; Feenstra, A. Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 1984, 12, 221–225. [Google Scholar] [CrossRef]
- Grasemann, B.; Huet, B.; Schneider, D.A.; Rice, A.H.N.; Lemonnier, N.; Tschegg, C. Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece). Bull. Geol. Soc. Am. 2018, 130, 238–262. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Mavrogonatos, C.; Tarantola, A.; Götze, J.; Alfieris, D.; Maneta, V.; Psimis, I. Amethyst occurrences in Tertiary volcanic rocks of Greece: Mineralogical, fluid inclusion and oxygen isotope constraints on their genesis. Minerals 2018, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Valsami-Jones, E.; Baltaztis, E.; Magganas, A.; Bailey, E.H.; Alexander, J.L.; Ragnarsdottir, K.V.; Kemp, A.I. The geochemistry of hydrothermal vent waters from Milos Island, Hellenic volcanic arc. Mineral. Mag. 1998, 62, 1565–1566. [Google Scholar] [CrossRef] [Green Version]
- Khimasia, A.; Rovere, A.; Pichler, T. Hydrothermal areas, microbial mats and sea grass in Paleochori Bay, Milos, Greece. J. Maps 2020, 16, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Dando, P.R.; Stuben, D.; Varnavas, S.P. Hydrothermalism in the Mediterranean Sea. Prog. Oceanogr. 1999, 44, 333–367. [Google Scholar] [CrossRef]
- Dando, P.R.; Aliani, S.; Arab, H.; Bianchi, C.N.; Brehmer, M.; Cocito, S.; Fowler, S.W.; Gundersen, J.; Hooper, L.E.; Kolbl, R.; et al. Hydrothermal studies in the Aegean Sea. Phys. Chem. Earth 2000, 25, 1–8. [Google Scholar] [CrossRef]
- Price, R.E.; Lesniewski, R.; Nitzsche, K.S.; Meyerdierks, A.; Saltikov, C.; Pichler, T.; Amend, J.P. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front. Microbiol. 2013, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yücel, M.; Sievert, S.M.; Vetriani, C.; Foustoukos, D.I.; Giovannelli, D.; Le Bris, N. Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem. Geol. 2013, 356, 11–20. [Google Scholar] [CrossRef]
- Kotopoulou, I.; Godelitsas, A.; Göttlicher, J.; Steininger, R.; Price, R.; Fike, D.A.; Amend, J.P.; Gilhooly, W.P.; Druschel, G.K.; Mertzimekis, T.J.; et al. Sulfur mineralogy and speciation in the shallow-sea hydrothermal sediments off Milos island (Greece). In Proceedings of the Goldschmidt Conference, Prague, Czech Republic, 16–21 August 2015. [Google Scholar]
- Fytikas, M. Updating of the geological and geothermal research on Milos island. Geothermics 1989, 18, 485–496. [Google Scholar] [CrossRef]
- Pflumio, C.; Boulegue, J.; Liakopoulos, A.; Brique, L. Oxygen, hydrogen, strontium isotopes and metals in the present-date and past geothermal systems of Milos Island (Aegean arc). In Source, Transport and Deposition of Metals; Pagel, M., Leroy, J.L., Eds.; Balkema: Rotterdam, The Nederlands, 1991; pp. 107–112. [Google Scholar]
- Reich, M.; Kesler, S.E.; Wang, L.M.; Ewing, R.C.; Becker, U. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and as in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Hanor, J.S. Barite-celestine geochemistry and environments of formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- Scott, K.M. Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Am. Mineral. 1987, 72, 178–187. [Google Scholar]
- Berkenbosch, H.A.; de Ronde, C.E.J.; Gemmell, J.B.; McNeill, A.W.; Goemann, K. Mineralogy and formation of black smoker chimneys from Brothers submarine Volcano, Kermadec arc. Econ. Geol. 2012, 107, 1613–1633. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic hosted massive sulphide deposit (Southern Urals, Russia) using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Murowchick, J.B.; Barnes, H.L. Marcasite precipitation from hydrothermal solutions. Geochim. Cosmochim. Acta 1986, 50, 2615–2629. [Google Scholar] [CrossRef]
- Aliani, S.; Meloni, R.; Dando, P.R. Periodicities in sediment temperature time-series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean). J. Mar. Syst. 2004, 46, 109–119. [Google Scholar] [CrossRef]
- Hannington, M.D.; Thompson, G.; Rona, P.A.; Scott, S.D. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature 1988, 333, 64–66. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Doyle, K.; Holwell, D.A.; Jenkin, G.R.T.; Barry, T.L.; Becker, J.; Rampe, J. Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochim. Cosmochim. Acta 2020, 274, 172–191. [Google Scholar] [CrossRef]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of “invisible gold” in the common sulfides. Can. Mineral. 1990, 28, 1–16. [Google Scholar]
- Einaudi, M.T.; Hedenquist, J.W.; Inan, E.E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Soc. Econ. Geol. Spec. Publ. 2003, 10, 285–313. [Google Scholar]
- Deditius, A.P.; Utsunorniya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Chryssoulis, S.L.; Venter, D.; Kesler, S.E. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 2009, 37, 707–710. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Kesler, S.E. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. Am. Miner. 2009, 94, 391–394. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Kesler, S.E.; Deditius, A.; Ewing, R.; Utsunomiya, S. Arsenian Pyrite in Epithermal and Carlin-type Deposits: Implications for Processes and Sources. In Proceedings of the Geological Society of Nevada, Reno, NV, USA, 14–22 May 2010. [Google Scholar]
- Qian, G.; Brugger, J.; Testamale, D.; Skiner, W.; Pring, A. Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochim. Cosmochim. Acta 2013, 100, 1–10. [Google Scholar] [CrossRef]
- Román, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F.; Deditius, A.P. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim. Cosmochim. Acta 2019, 264, 60–85. [Google Scholar] [CrossRef]
- Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am. Mineral. 1999, 84, 1071–1079. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.R.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Pokrovski, G.S.; Zakirov, I.V.; Roux, J.; Testemale, D.; Hazemann, J.-L.; Bychkov, A.Y.; Golikova, G.V. Experimental study of arsenic speciation in vapor phase to 500 °C: Implications for as transport and fractionation in low-density crustal fluids and volcanic gases. Geochim. Cosmochim. Acta 2002, 66, 3453–3480. [Google Scholar] [CrossRef] [Green Version]
- Pokrovski, G.S.; Borisova, A.Y.; Bychkov, A.Y. Speciation and transport of metals and metalloids in geological vapors. Rev. Mineral. Geochem. 2013, 76, 165–218. [Google Scholar] [CrossRef] [Green Version]
- Sillitoe, R.H. Epithermal paleosufaces. Mineral. Depos. 2015, 50, 767–793. [Google Scholar] [CrossRef]
- Stoffregen, R. Stability relations of jarosite and natrojarosite at 100–250 °C. Geochim. Cosmochim. Acta 1993, 57, 2417–2429. [Google Scholar] [CrossRef]
- Rye, R.O.; Alpers, C.N. The Stable Isotope Geochemistry of Jarosite; US Geological Survey Open-File Report: Reston, VA, USA, 1997; pp. 88–97.
- Monecke, T.; Petersen, S.; Augustin, N.; Hannington, M.D. Seafloor hydrothermal systems and associated mineral deposits of the Tyrrhenian Sea. Mem. Descr. Carta Geol. d’It. 2019, 104, 41–74. [Google Scholar]
- Tanner, D.; Henley, R.W.; Mavrogenes, J.A.; Holden, P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit, Chile. Contrib. Mineral. Petrol. 2016, 171, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, P.; Prol-Ledesma, R.M.; Canet, C.; Melgarejo, J.C.; Fallick, A.E. Isotopic evidence for biogenic precipitation as a principal mineralization process in coastal gasohydrothermal vents, Punta Mita, Mexico. Chem. Geol. 2005, 224, 113–121. [Google Scholar] [CrossRef]
- Dekov, V.M.; Bindi, L.; Burgaud, G.; Petersen, S.; Asael, D.; Rédou, V.; Fouquet, Y.; Pracejus, B. Inorganic and biogenic As-sulfide precipitation at seafloor hydrothermal fields. Mar. Geol. 2013, 342, 28–38. [Google Scholar] [CrossRef]
- Prol-Ledesma, R.M.; Canet, C.; Villanueva-Estrade, R.E.; Ortega-Osorio, A. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents. Am. Mineral. 2010, 95, 1500–1507. [Google Scholar] [CrossRef]
- Ohfuji, H.; Rickard, D. Experimental syntheses of framboids—A review. Earth Sci. Rev. 2005, 71, 147–170. [Google Scholar] [CrossRef]
- Wauschkuhn, A.; Gröpper, H. Rezente Sulfidbildung auf und bei Vulcano, Äolische Inseln, Italien. N. Jb. Min. Abh. 1975, 126, 87–111. [Google Scholar]
- Marani, M.P.; Gamberi, F.; Savelli, C. Shallow-water polymetallic sulfide deposits in the Aeolian island arc. Geology 1997, 25, 815–818. [Google Scholar] [CrossRef]
- Savelli, C.; Marani, M.; Gamberi, F. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea). J. Volanol. Geotherm. Res. 1999, 88, 305–323. [Google Scholar] [CrossRef]
- Becke, R.; Merkel, B.; Pohl, T. Mineralogical and geological characteristics of the shallow-water massive sulfide precipitates of Panarea, Aeolian Islands, Italy. In Research in Shallow Marine and Fresh Water Systems; Freiberg Online Geology; Merkely, B., Schipek, M., Eds.; TU Bergakademie Freiberg: Freiberg, Germany, 2009; pp. 94–100. [Google Scholar]
- Dekov, V.M.; Kamenov, G.D.; Abrasheva, M.D.; Capaccioni, B.; Munnik, F. Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea Platform (Aeolian Arc, Tyrrhenian Sea). Chem. Geol. 2013, 335, 136–148. [Google Scholar] [CrossRef]
- Katsouri, S.; Scott, S.D.; Gorton, M.P.; Magganas, A.; Valsami-Jones, E.; Baltatzis, E.; Kati, M. Formation of hydrothermal sulfides in active shallow water systems: The role of freshwater vs seawater. In SEG 2004: Predictive Mineral Discovery Under Cover, Proceedings of the SEG Eugen Stumpfl Memorial Symposium, Perth, Australia, 27 September–1 October 2004; Muhling, J., Ed.; The University of Western Australia, Centre for Global Metallogeny: Perth, Australia, 2004; pp. 220–223. [Google Scholar]
- Monecke, T.; Petersen, S.; Hannington, M.D.; Grant, H.; Samson, I.M. The Minor Element Endowment of Modern Sea-Floor Massive Sulfides and Comparison with Deposits Hosted in Ancient Volcanic Successions. Rev. Econ. Geol. 2016, 18, 245–306. [Google Scholar]
- Nestmeyer, M. Mineralogy and Geochemistry of Hydrothermal Mineralisations Calypso Vents and Paleochori Bay. Master’s Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Erlangen, Germany, November 2019. [Google Scholar]
- Wind, S.C.; Schneider, D.A.; Hannington, M.D.; McFarlane, C.R.M. Regional similarities in lead isotopes and trace elements in galena of the Cyclades Mineral District, Greece with implications for the underlying basement. Lithos 2020, 366–367, 105559. [Google Scholar] [CrossRef]
Site | Sample No | Mineralization-Type | Hydrothermal Mineralogy | Fluid pH | Fluid T (°C) | Water Depth (m) |
---|---|---|---|---|---|---|
03-98 | ML03 | Sulfide mound | Pyrite I, cinnabar, marcasite | 7.6 | 107 | 4.1 |
04-98 | ML04 | Sulfide mound | Pyrite II, alunite-jarosite, barite | 5.6 | 110 | 3.8 |
ML04A | Metalliferous sediment | Pyrite II | n.a. | n.a. | 4.1 | |
ML04B | Metalliferous sediment | Pyrite II | n.a. | n.a. | 4.1 | |
05-98 | ML05 | Sulfide mound | Pyrite II, marcasite, alunite-jarosite | 5.2 | 72.5 | 3.9 |
06-98 | ML06 | Metalliferous sediment | Pyrite I | 6.0 | 111 | 4.0 |
07-97 | ML07A | Sulfide mound | Pyrite II, alunite, Sr-barite | 3.5 | 97 | 2.2 |
11-97 | ML11A | Sulfide mound | Pyrite II, alunite-jarosite, barite | 5.1 | 49 | 2.6 |
22-97 | ML22B | Sulfide mound | Pyrite II, barite | 5.7 | 74.1 | 4.3 |
27-96 | ML27C | Sulfide mound | Pyrite I, Mn-calcite, barite | 6.3 | n.a. | 2.5 |
ML27CC | Sulfide mound | Pyrite I, Sr-barite | n.a. | n.a. | 2.5 | |
ML27D | Sulfide mound | Pyrite II, alunite-jarosite, barite | n.a. | n.a. | 4.0 | |
28-96 | ML28C | Sulfide mound | Pyrite I, Mn-calcite, gypsum | 6.5 | 95 | 2.5 |
38-96 | ML38A | Sulfide mound | Pyrite I, barite, calcite | 7.1 | 105 | 2.5 |
ML38B | Sulfide mound | Pyrite I, Mn-calcite, barite | n.a. | n.a. | 2.5 | |
ML38C | Sulfide mound | Pyrite I, Mn-calcite, barite, gypsum | n.a. | n.a. | 2.5 |
Sample | ML03 | ML05 | ML04A | ML04B | ML06 |
---|---|---|---|---|---|
Element | Sulfide Mound | Sulfide Mound | Metalliferous Sediment | Metalliferous Sediment | Metalliferous Sediment |
Fe | 27.06 | 15.36 | 1.24 | 0.99 | 2.06 |
As | 736.0 | 2587 | 92.6 | 116.1 | 411.0 |
Bi | 0.16 | 0.08 | 0.14 | 0.12 | 0.04 |
Cd | 0.22 | 0.19 | 0.03 | 0.03 | 0.05 |
Co | 44.8 | 111 | 813.2 | 204.6 | 237.8 |
Cu | 32.24 | 21.55 | 8.82 | 6.38 | 10.33 |
Ga | 2.1 | 1.5 | 2.2 | 1.0 | 0.1 |
Ge | 0.2 | 0.2 | <0.1 | <0.1 | <0.1 |
Hg | 33.73 | 4.62 | 0.54 | 0.50 | 0.44 |
Mn | 2362 | 559 | 193 | 305 | 58 |
Mo | 8.82 | 6.54 | 2.75 | 2.07 | 2.14 |
Ni | 64.1 | 78.8 | 54.5 | 23.2 | 26.2 |
Pb | 13.88 | 17.56 | 7.07 | 5.57 | 11.62 |
Sb | 6.18 | 14.12 | 3.55 | 274.3 | 1.90 |
Se | 1.2 | 0.8 | <0.1 | 0.1 | 0.2 |
Sn | 4.2 | 2.8 | 0.1 | 0.1 | 1.0 |
Te | 0.18 | 0.07 | <0.02 | 0.08 | 0.06 |
Zn | 83.4 | 76.4 | 25.2 | 11.3 | 17.7 |
Ag | 185 | 103 | 119 | 119 | 110 |
Au | 22.6 | 13.0 | 2.9 | 10.8 | 2.2 |
Element | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | 46.26 | 45.96 | 46.01 | 47.15 | 46.73 | 44.82 | 46.08 | 46.06 | 45.35 | 46.18 | 43.13 | 47.53 | 44.97 | 45.14 | 4.28 | 6.79 |
Co | 0.01 | 0.01 | 0.14 | 0.01 | 0.01 | 0.14 | 0.05 | 0.07 | 0.02 | 0.11 | b.d.l. | 0.03 | 0.10 | 0.10 | b.d.l. | b.d.l. |
Ni | 0.03 | b.d.l. | 0.07 | b.d.l. | 0.03 | b.d.l. | b.d.l. | 0.11 | b.d.l. | 0.01 | 0.01 | 0.01 | b.d.l. | 0.13 | b.d.l. | b.d.l. |
Cu | b.d.l. | b.d.l. | 0.04 | b.d.l. | 0.11 | 0.03 | b.d.l. | 0.09 | 0.05 | 0.03 | b.d.l. | 0.08 | 0.04 | b.d.l. | b.d.l. | b.d.l. |
Zn | b.d.l. | 0.10 | 0.03 | 0.11 | b.d.l. | 0.12 | 0.21 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.04 | 0.07 | 0.04 | b.d.l. | b.d.l. |
Hg | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 79.06 | 73.25 |
Μn | 0.16 | 0.13 | 0.37 | b.d.l. | 0.01 | b.d.l. | 0.02 | b.d.l. | 0.52 | 0.18 | 0.62 | 0.22 | 0.10 | 0.16 | b.d.l. | b.d.l. |
As | 1.35 | 0.49 | 0.75 | 0.02 | 0.93 | 3.20 | 1.99 | 1.71 | 0.50 | 0.29 | 1.72 | b.d.l. | 0.15 | 0.11 | b.d.l. | b.d.l. |
S | 51.50 | 52.62 | 52.76 | 53.16 | 52.19 | 50.63 | 51.33 | 51.11 | 53.59 | 53.54 | 53.37 | 53.00 | 53.29 | 53.13 | 17.82 | 19.45 |
Total | 99.31 | 99.30 | 100.16 | 100.45 | 100.00 | 98.94 | 99.68 | 99.15 | 100.03 | 100.34 | 98.85 | 100.92 | 98.70 | 98.81 | 101.16 | 99.49 |
Structural formula on the basis of 2 S pfu | 3 apfu | |||||||||||||||
Fe | 1.032 | 1.003 | 1.001 | 1.018 | 1.028 | 1.017 | 1.031 | 1.035 | 0.972 | 0.990 | 0.928 | 1.030 | 0.969 | 0.976 | 0.149 | 0.222 |
Co | 0.003 | 0.003 | 0.001 | 0.002 | 0.002 | 0.001 | 0.002 | 0.002 | ||||||||
Ni | 0.001 | 0.002 | 0.001 | 0.002 | 0.003 | |||||||||||
Cu | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.002 | 0.001 | ||||||||
Zn | 0.002 | 0.002 | 0.002 | 0.004 | 0.001 | 0.001 | 0.001 | |||||||||
Hg | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.768 | 0.668 |
Μn | 0.004 | 0.003 | 0.008 | 0.011 | 0.004 | 0.014 | 0.005 | 0.002 | 0.004 | |||||||
As | 0.022 | 0.008 | 0.012 | 0.015 | 0.054 | 0.033 | 0.029 | 0.008 | 0.005 | 0.028 | 0.002 | 0.002 |
Wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
K2O | 6.78 | 6.70 | 8.16 | 6.72 | 7.92 | 2.83 | 4.02 | 1.99 | 2.69 | 1.26 |
Na2O | 1.07 | 0.86 | 1.01 | 1.75 | 1.11 | 3.77 | 1.70 | 6.25 | 5.31 | 6.33 |
CaO | b.d.l. | b.d.l. | 0.12 | 0.06 | 0.30 | 0.07 | b.d.l. | 0.14 | b.d.l. | 0.05 |
Al2O3 | 34.02 | 33.81 | 30.92 | 32.74 | 34.35 | 30.56 | 19.91 | 8.64 | 15.54 | 11.49 |
SiO2 | b.d.l. | b.d.l. | b.d.l. | 4.30 | 2.03 | 5.71 | 2.80 | 1.92 | b.d.l. | 2.02 |
Fe2O3 | 1.55 | 3.49 | 5.91 | 0.92 | 2.08 | 4.62 | 22.55 | 33.03 | 27.96 | 31.02 |
SO3 | 37.47 | 39.19 | 39.16 | 37.43 | 37.87 | 36.78 | 33.26 | 34.29 | 33.32 | 34.12 |
P2O5 | 2.66 | 1.70 | 0.13 | b.d.l. | 0.64 | 0.08 | 0.02 | 0.10 | 1.61 | b.d.l. |
Total | 83.55 | 85.75 | 85.44 | 83.93 | 86.31 | 84.42 | 84.26 | 86.36 | 86.43 | 86.33 |
Structural formula on the basis of 11 (O) | ||||||||||
K | 0.653 | 0.624 | 0.787 | 0.647 | 0.752 | 0.268 | 0.420 | 0.216 | 0.286 | 0.134 |
Na | 0.157 | 0.122 | 0.146 | 0.257 | 0.163 | 0.548 | 0.268 | 1.015 | 0.852 | 1.021 |
Ca | 0.012 | 0.006 | 0.023 | 0.006 | 0.012 | 0.006 | ||||
Al | 3.033 | 2.922 | 2.747 | 2.905 | 2.998 | 2.701 | 1.931 | 0.852 | 1.517 | 1.126 |
Si | 0.327 | 0.152 | 0.426 | 0.227 | 0.157 | 0.169 | ||||
Fe3+ | 0.087 | 0.192 | 0.338 | 0.052 | 0.117 | 0.262 | 1.394 | 2.082 | 1.738 | 1.937 |
S | 2.123 | 2.170 | 2.217 | 2.117 | 2.112 | 2.071 | 2.053 | 2.158 | 2.065 | 2.123 |
P | 0.169 | 0.105 | 0.006 | 0.000 | 0.041 | 0.006 | 0.000 | 0.006 | 0.111 | 0.000 |
Element | Milos (This Study) | Milos * | Punta Mita | Punta Banda | Bahía Concepción | Luise Harbor Lihir | Panarea Black Point | Panarea Secca dei Panarelli | Panarea Lisca Bianka | Arc Volcanoes |
---|---|---|---|---|---|---|---|---|---|---|
Nr | 5 | - | 6 | 3 | 4 | 4 | 3 | 10 | 3 | 56 |
Cu | 15.9 | - | 31.8 | 7.3 | 97.5 | 124 | 7 | 65 | 21 | 60,000 |
Pb | 11.1 | - | <5 | 8.3 | 15 | 10.8 | 110,267 | 14,162 | 20 | 13,000 |
Zn | 42.8 | 53.1 | 44.3 | 107 | 76 | 255 | 327,233 | 31,067 | 100 | 105,000 |
Ag | 0.1 | - | <5 | - | - | 0.32 | 2 | - | - | 210 |
Mn | 695 | 3000 | - | 1233 | - | - | 6933 | - | 32 | - |
As | 789 | 1400 | 36.8 | 5666 | 2443 | 2650 | 5700 | 317 | 69 | 1263 |
Au | 0.01 | 0.01 | - | - | - | 0.05 | <4 | - | 9.7 | |
Cd | 0.1 | - | - | - | - | - | 723 | 81 | 1 | 402 |
Sb | 60.0 | - | 13.0 | 767 | 75 | 86 | 83 | 143 | - | 1304 |
Tl | 214 | - | 54.6 | 417 | - | 2.8 | 177 | - | 4 | 81.8 |
Hg | 8.0 | - | 40.2 | 5333 | - | 315 | - | - | - | 249 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voudouris, P.; Kati, M.; Magganas, A.; Keith, M.; Valsami-Jones, E.; Haase, K.; Klemd, R.; Nestmeyer, M. Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece. Minerals 2021, 11, 14. https://doi.org/10.3390/min11010014
Voudouris P, Kati M, Magganas A, Keith M, Valsami-Jones E, Haase K, Klemd R, Nestmeyer M. Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece. Minerals. 2021; 11(1):14. https://doi.org/10.3390/min11010014
Chicago/Turabian StyleVoudouris, Panagiotis, Marianna Kati, Andreas Magganas, Manuel Keith, Eugenia Valsami-Jones, Karsten Haase, Reiner Klemd, and Mark Nestmeyer. 2021. "Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece" Minerals 11, no. 1: 14. https://doi.org/10.3390/min11010014
APA StyleVoudouris, P., Kati, M., Magganas, A., Keith, M., Valsami-Jones, E., Haase, K., Klemd, R., & Nestmeyer, M. (2021). Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece. Minerals, 11(1), 14. https://doi.org/10.3390/min11010014